
Lecture Notes on
Goal Stacks

15-317: Constructive Logic
Frank Pfenning

Lecture 20
Tuesday, April 4, 2023

1 Introduction

We have emphasized the central role of high level rule descriptions: on one hand they
are abstract enough to allow formal proof of correctness, and on the other hand they are
concrete enough to support an implementation (be it directly in logic programming or
indirectly in functional programming). Today, we’ll encounter another example of this
and also practice rule induction.

When we looked at proof reduction as a basic mechanism for computation we carefully
developed a notion of small step reduction from the local reduction delivered to us from
proof theory such that it satisfied preservation, progress, and determinism. The metacir-
cular interpreter from Lecture 19 does not quite satisfy that because the details of proof
construction in the object logic still depends on details of proof construction in the meta-
logic. And both of them are Horn clauses! The choices left are:

1. Subgoal ordering: in which order do we solve G1 ∧ G2? The informal strategy is to
derive G1 before G2.

2. Backtracking: in which order do we try the program clauses? The informal strategy
is to try them in the order the are presented.

3. Unification: how do we avoid guessing terms when quantifiers are instantiated?
The informal strategy is to find a most general solution to the equations imposed
by matching atomic propositions.

In this lecture we tackle subgoal ordering; in the next lecture we take a look at unification.

2 Continuations as Stacks of Goals

Let’s recall the rules for backward chaining from the last lecture in Figure 1. Only one of
these rules, namely ∧R has more than premise. We have added ⊤ as another possible goal
because that turns out to be convenient for today’s lecture. The way we have been writing

LECTURE NOTES TUESDAY, APRIL 4, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/19-meta.pdf

Goal Stacks L20.2

Horn clauses D ::= ∀x.D | G⊃ P | P
Goals G ::= P | G1 ∧G2 | ⊤ | ∃x.G(x)

Choice Γ
C−→ P

D ∈ Γ Γ, [D]
FL−→ P

Γ
C−→ P

FLC

Left Focus Γ, [D]
FL−→ P

Γ, [P]
FL−→ P

id
Γ

FR−→ [G]

Γ, [G⊃ P]
FL−→ P

⊃L
Γ, [D(t)]

FL−→ P

Γ, [∀x.D(x)]
FL−→ P

∀L

Right Focus Γ
FR−→ [G].

Γ
FR−→ [G1] Γ

FR−→ [G2]

Γ
FR−→ [G1 ∧G2]

∧R
Γ

FR−→ [⊤]
⊤R

Γ
FR−→ [G(t)]

Γ
FR−→ [∃x.G(x)]

∃R
Γ

C−→ P

Γ
FR−→ [P]

CFR

Figure 1: Backward chaining for Horn clauses

LECTURE NOTES TUESDAY, APRIL 4, 2023

Goal Stacks L20.3

and interpreting these rules we have a strong intuition that the first premise should be
derived first and then the second, but the rule itself does not express that.

So we would like to transform these rules into an equivalent set so that each rule has
at most one premise. That would then definitively resolve the question. The main idea
is to revise ∧R to have one premise in which we derive G1. But that means we have to
“remember” that G2 still has to be solved after G1 is done. We accomplish this by pushing
G2 only a stack of subgoals. We’ll reuse the an ordered collection of propositions Ω for this
purpose since it makes the ordered nature as explicit as possible.

Goal stacks Ω ::= G · Ω | ϵ

The new judgment for focus on the right is Γ FR−→ [G] · Ω.

Γ
FR−→ [G1] · (G2 · Ω)

Γ
FR−→ [G1 ∧G2] · Ω

∧R

This rule looks almost like a structural rule, but it does in fact eliminate the conjunction so
it is a new version of ∧R. When we succeed (let’s consider the ⊤ case), we still have to go

back and focus on the first thing in Ω. Let’s call this choice right (written Γ
CR−→ Ω), even

though it is really a transition judgment.

Γ
CR−→ Ω

Γ
FR−→ [⊤] · Ω

⊤R

Γ
FR−→ [G] · Ω

Γ
CR−→ G · Ω

FRCR
Γ

CR−→ ϵ
CR

When the goal stack is empty, we succeed. Otherwise, we focus on the goal G on top of
the stack. Interesting here is that ⊤R, usually the end of the derivation, has a premise in
which the goal stack is consulted to see if there are any remaining unsolved subgoals.

Now we have to propagate the goal stack through the remaining rules and examine the
consequences. Sometimes this process of rule engineering succeeds straightforwardly (like
here), and sometimes it points to problems and judgments may have to revised further to
accommodate the interaction of multiple features.

Finishing right focus:

Γ
FR−→ [G(t)] · Ω

Γ
FR−→ [∃x.G(x)] · Ω

∃R
Γ

CL−→ P · Ω

Γ
FR−→ [P] · Ω

CFR

We see that the choice judgment (which we have renamed to choice left Γ CL−→ P · Ω) just
carries an atom on the right, followed by the remaining goal stack Ω. However, it doesn’t
change in any significant way, threading through the goal stack.

D ∈ Γ Γ, [D]
FL−→ P · Ω

Γ
CL−→ P · Ω

FLCL

LECTURE NOTES TUESDAY, APRIL 4, 2023

Goal Stacks L20.4

Left focus is interesting: the identity rule now has a premise because we still have to solve
the goals remaining in the goal stack! In contrast, the ⊃L rule continues focus on G as
before, carrying Ω along. That’s because we want to solve the immediate subgoal G before
any other potential goals in the goal stack.

Γ
CR−→ Ω

Γ, [P]
FL−→ P · Ω

id
Γ

FR−→ [G] · Ω

Γ, [G⊃ P]
FL−→ P · Ω

⊃L
Γ, [D(t)]

FL−→ P · Ω

Γ, [∀x.D(x)]
FL−→ P · Ω

∀L

Scanning the rules on this and the previous page, we see have achieved our goal: all rules
have at most one premise. Subgoal ordering is now explicit. In fact, all the rules have
exactly one premise, except for CR which is the only one that can complete a derivation.

We view the rule FLCL which picks among the clauses in Γ as having a single premise,
although there are many choices on how to apply this rules (one possibility for each D ∈ Γ).

After completing this rule design we can see that the goal stack Ω acts as a continu-
ation, that is, a data structure that prescribes what to do after the current goal has been
successfully solved. Because of that, we call it a success continuation.

3 Soundness of Goal Stacks

As just noted, the rules achieve our goal to make subgoal ordering explicit. But are they
“correct”? For that we need to relate them back to our original backchaining rules. If you
haven’t done this kind of proof before (or even if you have), this is surprisingly tricky to
get just right. Usually, the more straightforward direction is from the new (generally more
complex) version to the earlier (generally simpler) version of the rules. Often this is called
soundness, because the new rules are sound with respect to the earlier ones.

In this case, the key is that if we have Γ
CR−→ Ω then we can prove all the goals in Ω. For

this we have to map the stack back to a proposition.∧
(ϵ) = ⊤∧
(G · Ω) = G ∧

∧
Ω

We also notice that we have four judgments, so our theorem has four parts. We encourage
you to try to formulate your own theorem and induction before consulting our proof.

Theorem 1 (Soundness of Goal Stacks)

(1) If Γ CR−→ Ω then Γ
FR−→ [

∧
Ω]

(2) If Γ CL−→ P · Ω then Γ
C−→ P and Γ

FR−→ [
∧
Ω]

(3) If Γ FR−→ [G] · Ω then Γ
FR−→ [G] and Γ

FR−→ [
∧
Ω]

(4) If Γ, [D]
FL−→ P · Ω then Γ, [D]

FL−→ P and Γ
FR−→ [

∧
Ω]

Proof: By simultaneous rule induction the given derivation D in parts (1)–(4). We assume
we are given a derivation D and have to construction two derivations in each part. We
show a few cases; the others are similar.

LECTURE NOTES TUESDAY, APRIL 4, 2023

Goal Stacks L20.5

Case (1):

D =

D′

Γ
FR−→ [G] · Ω

Γ
CR−→ G · Ω

FRCR

Then we construct
IH3(D′)

Γ
FR−→ [G]

IH3(D′)

Γ
FR−→ [

∧
Ω]

Γ
FR−→ [G ∧

∧
Ω]

∧R

Case (3):

D =

D1

Γ
FR−→ [G1] · (G2 · Ω)

Γ
FR−→ [G1 ∧G2] · Ω

∧R

Then we construct

IH3(D1)

Γ
FR−→ [G1]

IH3(D1)

Γ
FR−→ [G2 ∧

∧
Ω]

Γ
FR−→ [G2]

INV

Γ
FR−→ [G1 ∧G2]

∧R
and

IH3(D1)

Γ
FR−→ [G2 ∧

∧
Ω]

Γ
FR−→ [

∧
Ω]

INV

Here, INV refers to a use of inversion: if the premise is derivable then there is only
a single rule that matches the conclusion (here ∧R). In each case, we use one of the
two premises that must have a derivation.

Also, because the induction hypothesis gives us two different derivations, it simul-

taneously justifies Γ FR−→ [G1] and Γ
FR−→ [G2 ∧

∧
Ω].

Case (4):

D =

D′

Γ
FR−→ [G] · Ω

Γ, [G⊃ P]
FL−→ P · Ω

⊃L

Then we construct

IH3(D′)

Γ
FR−→ [G]

Γ, [G⊃ P]
FL−→ P

⊃L
and

IH3(D′)

Γ
FR−→ [

∧
Ω]

LECTURE NOTES TUESDAY, APRIL 4, 2023

Goal Stacks L20.6

2

Corollary 2 If Γ FR−→ [G] · ϵ then Γ
FR−→ [G].

Proof: From Theorem 1, part (3) for Ω = ϵ. 2

4 Completeness of Goal Stacks

The proof in the other direction is often more complicated, or at least more difficult to
arrive at the correct induction hypothesis. Again, we encourage you to try to come up
with before looking at our proof.

The insight is the following. If we have, for example, Γ FR−→ [G] in the backward chain-

ing system, then we should have Γ FR−→ [G]·ϵ in the goal stack system. This will however we

insufficient to prove since goals stacks will accumulate during a derivation. So if Γ FR−→ [G],

under which circumstances can we actually derive Γ
FR−→ [G] ·Ω? We can do that if we also

know Γ
CR−→ Ω! That’s because, intuitively. Γ FR−→ [G] ·Ω will first derive G, bottom up, and

then switch to deriving Ω.
Taking this into all three parts we get the following theorem. We can also see that it is

(almost) the reverse of soundness.

Theorem 3 (Completeness of Goal Stacks)

(1) If Γ FR−→ [G] and Γ
CR−→ Ω then Γ

FR−→ [G] · Ω

(2) If Γ, [D]
FL−→ P and Γ

CR−→ Ω then Γ, [D]
FL−→ P · Ω

(3) If Γ C−→ P and Γ
CR−→ Ω then Γ

CL−→ P · Ω

Proof: By simultaneous rule induction on the first given derivation D in parts (1)–(3) and
arbitrary E . We are given two derivations D (which varies from part to part) and E which

derives Γ R−→ Ω. We show a few representative cases. The others are similar.

Case (1):

D =

D1

Γ
FR−→ [G1]

D2

Γ
FR−→ [G2]

Γ
FR−→ [G1 ∧G2]

∧R
and

E
Γ

CR−→ Ω

This is in some sense the trickiest case. We need to construct a derivation of Γ FR−→
[G1∧G2]·Ω and therefore of Γ FR−→ [G1]·(G2 ·Ω). But we cannot immediately apply the

induction hypothesis on G1, because we first need to get a derivation of Γ CR−→ G2 ·Ω.

LECTURE NOTES TUESDAY, APRIL 4, 2023

Goal Stacks L20.7

But we can get this from the induction hypothesis! So we construct:

D1

Γ
FR−→ [G1]

D2

Γ
FR−→ [G2]

E
Γ

CR−→ Ω

Γ
FR−→ [G2] · Ω

IH1(D2, E)

Γ
CR−→ G2 · Ω

FRCR

Γ
FR−→ [G1] ∧ (G2 · Ω)

IH1(D1,)

Γ
FR−→ [G1 ∧G2] · Ω

∧R

Case (2):

D =

D′

Γ
FR−→ [G]

Γ, [G⊃ P]
FL−→ P

⊃L
and

E
Γ

CR−→ Ω

Then we construct
IH1(D′, E)

Γ
FR−→ [G] · Ω

Γ, [G⊃ P]
FL−→ P · Ω

⊃L

Case (2):

D =
Γ, [P]

FL−→ P
id

and

E
Γ

CR−→ Ω

Then we construct
E

Γ
CR−→ Ω

Γ, [P]
FL−→ P · Ω

id

2

5 Prolog Implementation

You can find the straightforward Prolog implementation of the goal stacks in Listing ??.
Code that also includes examples is in goalstack.pl.

LECTURE NOTES TUESDAY, APRIL 4, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/20-goalstack/goalstack.pl

Goal Stacks L20.8

mem(Dcopy, [D | Gamma]) :- copy_term(D, Dcopy).
mem(Dcopy, [_ | Gamma]) :- mem(Dcopy, Gamma).

unify(P,Q) :- unify_with_occurs_check(P,Q).
% unify(P,P). % Prolog, but logically unsound

chooseR(Gamma, []).
chooseR(Gamma, [G|Omega]) :- focusR(Gamma, G, Omega).

focusR(Gamma, and(G1,G2), Omega) :- focusR(Gamma, G1, [G2|Omega]).
focusR(Gamma, atom(P), Omega) :- chooseL(Gamma, atom(P), Omega).

chooseL(Gamma, atom(P), Omega) :-
mem(D, Gamma),
focusL(Gamma, D, atom(P), Omega).

focusL(Gamma, atom(Q), atom(P), Omega) :-
unify(Q,P),
chooseR(Gamma, Omega).

focusL(Gamma, imp(G,atom(Q)), atom(P), Omega) :-
unify(Q,P),
focusR(Gamma, G, Omega).

Listing 1: Metainterpreter for Horn clauses using goal stacks

LECTURE NOTES TUESDAY, APRIL 4, 2023

	Introduction
	Continuations as Stacks of Goals
	Soundness of Goal Stacks
	Completeness of Goal Stacks
	Prolog Implementation

