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1 Introduction

We have resolved one of three questions of how backward chaining on Horn clauses
should be interpreted as a logic programming language, namely subgoal ordering. Clause
selection (including backtracking) and unification remain. We will talk about unification
and how it is implemented in Prolog.

We also start on forward chaining in Section 5, an entirely different computational inter-
pretation of Horn clauses. As the foundation of Datalog, it has found many applications
for tasks such as program analysis, compilation, access control, and many others.

2 Existential Quantification

First, we note that we can eliminate the existential quantifier from the definition of Horn
clauses, although it is certainly useful to explain free logic variables in a query. We can
eliminate it because

(∃x.A(x))⊃B ≡ ∀x. (A(x)⊃B)

is a valid logic equivalence. Based on our scoping conventions, writing it in this way
implies that x does not occur in B. Let’s quickly prove this in the sequent calculus. As
usual, we implicitly apply weakening, dropping proposition from among the antecedents
when they are no longer needed.

a elem ⊢ a elem a elem, A(a) =⇒ A(a)
id

a elem, A(a) =⇒ ∃x.A(x)
∃R

B =⇒ B
id

(∃x.A(x))⊃B, a elem, A(a) =⇒ B
⊃L

(∃x.A(x))⊃B, a elem =⇒ A(a)⊃B
⊃R

(∃x.A(x))⊃B =⇒ ∀x. (A(x)⊃B)
∀Ia
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a elem ⊢ a elem

a elem, A(a) =⇒ A(a)
id

B =⇒ B
id

A(a)⊃B, a elem, A(a) =⇒ B
⊃L

∀x. (A(x)⊃B), a elem, A(a) =⇒ B
∀L

∀x. (A(x)⊃B),∃x.A(x) =⇒ B
∃La

∀x. (A(x)⊃B) =⇒ (∃x.A(x))⊃B
⊃I

So if we have a clause (∃x.G(x))⊃P we can transform it into the equivalent ∀x.G(x)⊃P .
Another interesting observation: if we pick B = ⊥, then the law says

¬∃x.A(x) ≡ ∀x.¬A(x)

Of course, the dual does not hold: we cannot push a negation through a universal quan-
tifier because a proof of ∃x.¬A(x) will have to exhibit a witness for x, while a proof of
¬∀x.A(x) does not.

3 Substitution and Unification

If we ignore existentials, then the only rule for quantification in backward chaining is ∀L.

Γ, [D(t)]
FL−→ P

Γ, [∀x.D(x)]
FL−→ P

∀L

The idea is to simply instantiate the quantifier with a fresh variable X and accumulate and
solve constraints imposed upon X and other variables in the goals and clauses.

Γ, [D(X)]
FL−→ P (X not in P or D(x))

Γ, [∀x.D(x)]
FL−→ P

∀L

Unfortunately, this freshness condition doesn’t turn out to be correct. That’s because we
solve subgoals of G1 ∧G2 independently, but we want X chosen while solving G1 also to
be fresh with respect to G2. Furthermore, when we have multiple subgoals we need to
communicate the substitution created by solving the first one to the second. This has come
up in several examples such as the times judgment for multiplication.

One solution seems to be to use our goal stack judgment because then a later subgoal
G2 is available for us to check. In any case, we need to return a substitution as a result of
computation, so we should incrementally compute is as we are proving the goal.

Slightly differently from what we did in lecture, our new judgment then becomes some-
thing like

θ / Γ, [D]
FL−→ P / θ′

where θ is an input substitution and θ′ is an output substitution. We don’t show the rules
for this judgment, leaving them to a later lecture or as an exercise, so we can focus our
attention on the process of unification itself.
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Terms t ::= c | f(t1, . . . , tn) | x | X
Substitutions θ ::= · | θ, t/X

Note that we distinguish between variables x that are bound by quantifiers and free (logic)
variables X that are subject to substitution.

Our main judgment for unification is

s
.
= t / θ

Soundness of unification requires that [θ]s = [θ]t, where [θ]s is, as before, our notation for
applying a substitution to the free variables in a term. Equality here is meant to be ordinary
mathematical equality (the two terms are equal), while s

.
= t / θ should be read as “θ is a

unifier for s and t”.
We consider a simple example, without making the substitution explicit.

f(X,X)
.
= f(g(a, Y ), g(Y, a))

We see that for this equation to hold we must have

X
.
= g(a, Y ) and X

.
= g(Y, a)

Therefore g(a, Y )
.
= g(Y, a) which requires Y

.
= a and a

.
= Y . Putting it all together the

final unifying substitution would be

(g(a, a)/X, a/Y )

There are many algorithms for unification, and even more implementations. The one
we show in this lecture is more-or-less Robinson’s original algorithm [Robinson, 1971].
In order to handle terms f(t1, . . . , tn) we write t̄ for a sequence of terms and add a new
judgment to unify sequences s̄ .

= t̄.

c = c / (·)
no rule for c ̸= d

c = d / θ

s̄
.
= t̄ / θ

f(s̄)
.
= f(t̄) / θ

no rule for f ̸= g

f(s̄)
.
= g(t̄) / θ

s
.
= t / θ1 [θ1]s̄

.
= [θ1]t̄ / θ2

(s, s̄)
.
= (t, t̄) / θ2 ◦ θ1 ()

.
= () / (·)

The second to last rule is the trickiest so far. Consider our specification. If s
.
= t / θ1

then [θ1]s = [θ1]t. This may require substitution for some variables that are free in s̄ and t̄.
We therefore apply θ1 to the remaining sequent of terms before unifying them. Measuring
against our spec, we have, from the two premises:

[θ1]s = [θ1]t
[θ2]([θ1]s̄) = [θ2]([θ1]t̄)
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Therefore, the composition [θ2◦θ1]s̄ = [θ2◦θ1]t̄. Moreover, since already [θ1]s = [θ1]t we can
apply a further substitution to its free variables and maintain the equality, so [θ2 ◦ θ1]s =
[θ2][θ1]s = [θ2][θ1]t = [θ2 ◦ θ1]t

Next, we come to the rules for variables. For two equal variables, the empty substitu-
tion is sufficient. When we equate X

.
= Y , we can substitute X for Y or Y for X , as we

wish. The case for constant is also clear, so only functions are somewhat interesting.

X
.
= X / (·)

X ̸= Y

X
.
= Y / (Y/X) X

.
= c / (c/X) c

.
= X / (c/X)

Let’s consider one of the last two remaining cases, since other is symmetric. It is tempting
to conjecture the rule

X
.
= f(t̄) / (f(t̄)/X)

??

But let’s check by applying the substitution to both sides:

[f(t̄)/X]X = f(t̄)
[f(t̄)/X]f(t̄) = f([f(t̄)/X]t̄)

The two are only equal if X does not occur in t̄, usually abbreviated as X ̸∈ t̄. This gives
us our final two rules:

X ̸∈ t̄

X
.
= f(t̄) / (f(t̄)/X)

X ̸∈ t̄

f(t̄)
.
= X / (f(t̄)/X)

The proof that these rules are sound with respect to the specification is not difficult. We
already embedded it in our explanation of the rules. What is more difficult to is that it is
also complete. That is, if there is a unifier the algorithm will find one. The crucial property,
needed for the rule concerning pairs, is the following

Consider s and t such that there is a substitution σ such that [σ]s = [σ]t. Then there
is a substitution θ such that s .

= t / θ and σ = θ′ ◦ θ for some θ′.

This means that any other unifying substitution can be seen as an instance of the one
determined by the rules. In the terminology of the field, we say that if s

.
= t / θ then

θ is a most general unifier of s and t.

4 Unification in Prolog

The so-called occurs-check in the last two rules of unification is omitted by Prolog unless you
call unify_with_occurs_check(s,t). This is because it was deemed to expensive in
the early days of Prolog, so we sacrificed logical correctness to the god of efficiency (never
a good idea, in my opinion).

To understand a little bit better what happens in Prolog, we need to talk about the
term representation. We can think of a variable X as holding a pointer. Initially, when X
is created, it points to itself (perhaps inspired by the identity substitution X/X). When
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it is unified with a term t which is allocated somewhere on the heap, we just change the
pointer to the address of t, which is extremely fast. Doing an occurs-check here would be
an O(n) operation, where n is the size of the term t. That is clearly unacceptable because
in a procedure call such as plus(m, n, W) the occurs-check would require traversing m
and n at each level in the recursion.

However, consider the clause

plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

The variables X , Y , and Z are implicitly universally quantified and we make a fresh copy
of the clause before we try to unify plus(s(X), Y, s(Z))with a goal plus(m, n, W)
for some terms m and n.

When we unify s(X) with m there is no need for an occurs-check. That’s because X was
just created as a fresh variable, so it cannot occur anywhere in m. The same is true for Y
and Z. In other words, no occurs-check needs to be done at all for this clause.

Next consider the clause

plus(0, Y, Y).

Here, we don’t need any occurs-check for the first occurrence of Y , but when we encounter
the second we cannot simply assign it or avoid unification. Consider, for example,

?- plus(0, X, s(X)).

Clearly, this should fail, but without the occurs-check it will eventually unify X
.
= s(X)

which succeeds in Prolog.
So if we anticipate that plus could be called with arguments that have their own free

variables as second and third arguments, we should rewrite this clause as

plus(0, Y1, Y2) :- unify_with_occurs_check(Y1,Y2).

Now that the head of the clause plus(0, Y1, Y2) no longer contains any repeated vari-
ables, Prolog will just assign them to the corresponding terms in the goal. Sound unifica-
tion will then fail as appropriate.

There is another important case where Prolog unification is sound, namely when we
know in a unification problem such as X = t that t has no free variables. This is of-
ten known because many Prolog programs only run correctly when certain arguments to
predicates are known to be ground. Unfortunately, in standard Prolog there is no way to
declare this property and have it checked for correctness before running a query, although
some implementations support so-called mode declarations and static checks.

5 Saturation

We now move on to a new subject, namely the idea of using inference rules for Horn
clauses, interpreted from the top down, as a kind of logic program. Why is this even
reasonable? Consider a very simple set of two rules:

even 0

even x

even (s (sx))
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If we tried to use that in the top-down direction we would start with even 0, then learn
even (s (s 0)), and so on. This process would never terminate.

As a different style of example, let’s consider reachability in a directed graph. We can
specify this with

edge x y

path x y
edge1

path x y path y z

path x z
trans

As we saw in recitation, these rules do not make a good backward-chaining (that is, Prolog)
logic program because it will not terminate on many graphs.

However, given an edge relation we can run these rules in the forward direction to
compute paths. Here is an example evolution of our knowledge, given the first two facts.

edge a b given
edge b c given
path a b by rule edge1
path b c by rule edge1
path a c by rule trans

At this point we can of course still apply some rules, but they will always result in facts
we already know. We say the database of facts is saturated. So in forward-chaining proof
construction computation stops when the database is saturated. We can then query the
saturated database, for example, to find out if path a c (which succeeds) or path a a (which
fails, because paths here don’t include self-loops). The facts are just looked up—there is no
further computation besides that.

The problems posed by termination in backward chaining and forward chaining are
quite different. In backward chaining we have to make sure a measure on some ground
terms get smaller in recursive calls. In forward chaining we typically show termination by
showing that the collection of facts that could potentially in the database is finite. For ex-
ample, in the program for computing paths, there are at most n2 facts of the form path x y
if there are n vertices. Therefore saturation has to terminate. In many cases we can char-
acterize asymptotic complexity from the form of the rules, using some fascinating meta-
complexity theorems [Ganzinger and McAllester, 2001, 2002].

6 Forward Chaining

In a surprising twist, we can obtain logic programming using top-down inference from
Horn clauses by giving all atomic predicates positive polarity [Andreoli, 1992, Chaudhuri
et al., 2008]. As for backward chaining, we start by simply specializing the focusing rules
for Horn clauses in Figure 1.

Due to the usual interpretation of quantifiers as creating fresh logic variables instead
guessing terms t, the identity rule should unify the two sides instead of testing for equality.

The computational behavior is further constrained as follows:

(1) In the rule CFL, where we transition from left focus to a choice sequent, we actually fail
when P ∈ Γ, that is, when the new antecedent P is already known. This is expressed
in the rule CFL′. With logic variables, we fail if P is an instance of some fact Q with
variables.

LECTURE NOTES THURSDAY, APRIL 6, 2023



Unification L21.7

Horn clauses D ::= ∀x.D(x) | G⊃ P | P
D− ::= ∀x.D(x) | G⊃ P

Goals G ::= P | G1 ∧G2 | ∃x.G(x)

Choice. For the choice left rule FLC, D− cannot be an atom, because atoms are positive.

D− ∈ Γ Γ, [D−]
FL−→ G

Γ
C−→ G

FLC
Γ

FR−→ [G]

Γ
C−→ G

FRC

Right Focus.

Γ, P
FR−→ [P ]

id
(no rule if P ̸∈ Γ)

Γ
FR−→ [P ]

Γ
FR−→ [G1] Γ

FR−→ [G2]

Γ
FR−→ [G1 ∧G2]

∧R
Γ

FR−→ [G(t)]

Γ
FR−→ [∃x.G(x)]

∃R

Left Focus.

Γ
FR−→ [G] Γ, [P ]

FL−→ G

Γ, [G⊃ P ]
FL−→ G

⊃L
Γ, P

C−→ G

Γ, [P ]
FL−→ G

CFL
Γ, [D(t)]

FL−→ G

Γ, [∀x.D(x)]
FL−→ G

∀L

Left Focus with Saturation. Replace CFL with CFL′

P ̸∈ Γ Γ, P
FL−→ G

Γ, [P ]
FL−→ G

CFL′
(no rule if P ∈ Γ)

Γ, [P ]
FL−→ G

Figure 1: Forward chaining
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(2) In the choice rules, we always try all possible ways to focus on the left. Only if all
of them fail (either because they don’t apply or the conclusion is already among the
antecedent) do we focus on the right. This will either succeed or fail outright—it does
not call back to the choice or left focus judgments.

We walk through an example to see how this represents logical inference. Consider

Γ0
C−→ R

for Γ0 = (P, P ⊃Q, (P ∧Q)⊃R)

We can try to left focus on P ⊃Q and on (P ∧Q)⊃ R. Focusing on the latter will fail, but
let’s see how:

P ∈ Γ0

Γ0
FR−→ [P ]

id
fails, since Q ̸∈ Γ0

Γ0
FR−→ [Q]

Γ0
FR−→ [P ∧Q]

∧R
...

Γ0, [R]
FL−→ R

Γ0, [(P ∧Q)⊃R]
FL−→ R

⊃L

Γ0
C−→ R

FLC

Since the first subgoal of ⊃L fails, we don’t consider the second one. It would eventually
succeed.

But we can successfully focus on P ⊃Q as follows:

P ∈ Γ0

Γ0
FR−→ [P ]

id

...

Γ0, Q
FL−→ R

Γ0, [Q]
FL−→ R

CFL′

Γ0, [P ⊃Q]
FL−→ R

⊃L

Γ0
C−→ R

FLC

Now that we have added Q to our antecedents we can successfully focus on (P ∧ Q) ⊃ R
since P is already present. In the abstract system of forward chaining, we could also focus
again on P ⊃Q, but in the presence of saturation we would fail since Q ∈ (Γ0, Q).

To summarize the first two phases of focusing:

Γ0, Q,R
C−→ R

...

Γ0, Q
C−→ R

...

Γ0
C−→ R

At this point, computationally, left focusing on any proposition in Γ0 would fail since it
woulc only add either Q or R, both of which we already have among the antecedents. The
antecedents (representing our database of facts) are saturated.
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So we attempt to focus on the succedent R, which closes the computation immediately.

Γ0, Q,R
FR−→ [R]

id

Γ0, Q,R
C−→ R

FRC

...

Γ0, Q
C−→ R

...

Γ0
C−→ R

If we think of these as “big steps”, each is essentially forced. Ultimately, in this case, there
is just one derivation of the conclusion.

Even though the order of steps may vary, if all facts are ground (no free variables), then
the saturated database is unique even if the order of the focusing steps may differ. For
example, consider

P, P ⊃Q,P ⊃R
C−→ R

In the saturated database we will have Q and R, regardless of which we infer first.
In the next lecture we will explore forward chaining logic programming further.
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