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1 Introduction

The standard way we have mostly been interpreting inference rules is bottom-up, read-
ing them from the conclusion to the premises. This is natural for goal-directed search and
decision procedures for the propositional case like loop checking or the contraction-free
sequent calculus. An important example of goal-directed search with a fixed strategy is
logic programming (a la Prolog) with Horn clauses. Forward chaining works in the oppo-
site direction, but can we take it as a basis of a general proof search or decision procedure?
And can we use it as a foundation of a programming language?

In today’s lecture we look at the first question: if we are interested in general theorem
proving (and maybe a decision procedure for the propositional case), can we use forward
inference and saturation in a practical way? The answer is “yes”, which is an insight
originally due to Maslov [1964]. We develop this today for the propositional case, it also
applies equally well to the predicate calculus. Maslov called his approach the “inverse
method” because it works inversely to the way we usually approach proof search. It has
nothing to do with with inversion as a general method for reducing nondeterminism in
proof search.

2 The Problem with Sequent Calculus

When compared to resolution [Robinson, 1965], a great advantage of the inverse method is
that it is a general technique that applies to (cut-free) sequent calculi, while resolution in its
original conception was quite specialized to classical logic. But when looking at the rules of
the sequent calculus, they are fundamentally constructed so as to decompose propositions
reading the rules from the conclusion to the premises. This seems entirely unsuitable for
bottom-up proof construction since we could indefinitely apply a rule such as

Γ =⇒ A Γ =⇒ B

Γ =⇒ A ∧B
∧R

to infer bigger and bigger conjunctions. Proof search would never saturate.
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The Inverse Method L22.2

Maslov’s exploited Gentzen’s insight that in a derivation in the sequent calculus, any
proposition appearing in the derivation is a subformula of our overall goal sequent. Then
we apply a rule such as ∧R only if the A ∧ B is a subformula of our goal! If any se-
quent is only allowed to consist of subformulas, then in the propositional case (without
quantification) there are only finitely many sequents if we treat antecedents as sets (that is,
either implicitly or explicitly apply contraction). There, forward search must saturate in the
propositional case. In the case of predicate logic, if we have a proposition such as ∀x. P (x)
then instances such as P (0), P (s(0)), P (s(s(0))), etc. may appear in backward search, so
the space is still infinite and saturation is not guaranteed. Nevertheless, we can base a
semi-decision procedure on forward inference.

3 Specializing Inference Rules

Actually, Maslov’s insight is a bit more specific than just that a derivation consists only of
subformulas. Each subformula occurrence is destined to only appear either on the left or
right of a sequent, further cutting down on the number of rules we can apply. Sometimes,
this may be called signed subformulas. Since we reserved the positive/negative terminology
for intrinsic properties of the connectives, we just call them left and right subformulas.

In the following example we have marked every subformula with either L or R, de-
pending on whether it might appear on the left or right of the sequent arrow in its deriva-
tion. This process is straightforward, we just have to remember that the implication flips
the sidedness of it first argument. All other connectives just propagate it to the subformu-
las unchanged.

(A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C)

(
R
A

L
⊃ (

R
B

L
⊃

L
C ))

R
⊃ ((

L
A

L
∧

L
B )

R
⊃

R
C )

In this (and the remaining examples) we write A, B, and C for atomic formulas instead
of P , Q and R.

Next, based on these subformula occurrences, we can generate possible instances of
the inference rules that might occur in a derivation of this sequent.

First, we see that each of A, B, and C occur marked as both left and right subformulas.
As such it is possible they might meet in an initial sequent and we generate:

A −→ A
R0(= id)

B −→ B
R1(= id)

C −→ C
R2(= id)

We write Γ −→ A for the rules in the forward sequent calculus and refer to the original
calculus as the backward sequent calculus. We also introduce new names for the specialized
rules. Note that A, B, and C do not stand here for arbitrary propositions, but the specific
A, B, and C in our goal (A⊃ (B ⊃C))⊃ ((A∧B)⊃C). We have named the new rules but
also indicated which more general rules they are specific instances of.

One difference we can already notice here is that in the (backward) sequent calculus
we write Γ, A =⇒ A and here we write A −→ A. That’s because we want to have just
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the three axioms rather than possibly exponentially many ones for different version of Γ.
More generally, in backward sequent calculus we read the sequent

Γ =⇒ A We may use Γ in the derivation of A
Γ −→ A We have used Γ in the derivation of A

Then a forward rule for conjunction would be

Γ1 −→ A Γ2 −→ B

Γ1,Γ2 −→ A ∧B
∧R

where we may also immediately contract propositions that occur in both Γ1 and Γ2.
Now back to our example.

(
R
A

L
⊃ (

R
B

L
⊃

L
C ))

R
⊃ ((

L
A

L
∧

L
B )

R
⊃

R
C )

Working from the inside outward, we see a left occurrence of B ⊃ C, so we generate:

? −→ B C −→ ?

?, B ⊃ C −→ ?
R3(= ⊃L)?

We have left question marks where in the original sequent calculus we had Γ and a succe-
dent. So as to avoid a clash of notation, we write γ for an arbitrary succedent and fill in
the question marks as indicated above: if the derivation of each premise requires some
antecedents we have to combine them in the derivation of the conclusion.

Γ1 −→ B Γ2, C −→ γ

Γ1,Γ2, B ⊃ C −→ γ
R3(= ⊃L)

Next, we move on to A⊃ (B ⊃ C), which is also a left subformula.

Γ1 −→ A Γ2, B ⊃ C −→ γ

Γ1,Γ2, A⊃ (B ⊃ C) −→ γ
R4(= ⊃L)

This leaves A ∧B, which is once again a left subformula. It gives us two new rules:

Γ, A −→ γ

Γ, A ∧B −→ γ
R5(= ∧L1)

Γ, B −→ γ

Γ, A ∧B −→ γ
R6(= ∧L2)

Next is the right subformula (A ∧B)⊃ C. At first this looks straightforward:

Γ, A ∧B −→ C

Γ −→ (A ∧B)⊃ C
R7(= ⊃R)

and the same for the whole goal proposition, which is also a right (sub)formula.

Γ, A⊃ (B ⊃ C) −→ (A ∧B)⊃ C

Γ −→ (A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C)
R8(= ⊃R)
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It turns out that in general these last two rules are not sufficient, but they are sufficient
in this example so let’s return to this question in the next section after we see forward
reasoning in action.

We now take rules R0 through R8, discarding all other rules. Essentially, we have
specialized the rules of the sequent calculus to possible left and right subformulas that
could appear in a derivation of our proposed theorem. Here is a summary of the rules:

A −→ A
R0(= id)

B −→ B
R1(= id)

C −→ C
R2(= id)

Γ1 −→ B Γ2, C −→ γ

Γ1,Γ2, B ⊃ C −→ γ
R3(= ⊃L)

Γ1 −→ A Γ2, B ⊃ C −→ γ

Γ1,Γ2, A⊃ (B ⊃ C) −→ γ
R4(= ⊃L)

Γ, A −→ γ

Γ, A ∧B −→ γ
R5(= ∧L1)

Γ, B −→ γ

Γ, A ∧B −→ γ
R6(= ∧L2)

Γ, A ∧B −→ C

Γ −→ (A ∧B)⊃ C
R7(= ⊃R)

Γ, A⊃ (B ⊃ C) −→ (A ∧B)⊃ C

Γ −→ (A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C)
R8(= ⊃R)

Now we can apply the rules in the forward direction, starting with the identity sequents,
until we have reached saturation. Here is a first round of inferences, applying all applicable
R3 through R8 to the initial sequents.

(1) A −→ A (R0)
(2) B −→ B (R1)
(3) C −→ C (R2)

(4) B,B ⊃ C −→ C (R3 2 3)
(5) A ∧B −→ A (R5 1)
(6) A ∧B −→ B (R6 2)

At this point we can make a second round of inferences. Of course, the first round of
inferences still apply, but they give us sequents we already know.

(7) A,B,A⊃ (B ⊃ C) −→ C (R4 1 4)

(8) A ∧B,B,A⊃ (B ⊃ C) −→ C (R5 7)
(9) A,A ∧B,A⊃ (B ⊃ C) −→ C (R6 7)

(10) B,A⊃ (B ⊃ C) −→ (A ∧B)⊃ C (R7 8)
(11) A,A⊃ (B ⊃ C) −→ (A ∧B)⊃ C (R7 9)
(12) A ∧B,A ∧B,A⊃ (B ⊃ C) −→ C (R6 9) or (R5 10)

We see that (10) and (11) are essentially dead ends and won’t help us, but (12) (which can
be deduced two ways) is interesting. We usually implicitly contract that two copies of any
formula (here A ∧B), which gives us

(12′) A ∧B,A⊃ (B ⊃ C) −→ C (contract (12))
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And this point R7 followed by R8 can complete the derivation.

(13) A⊃ (B ⊃ C) −→ (A ∧B)⊃ C (R7 12
′)

(14) −→ (A⊃ (B ⊃ C))⊃ ((A ∧B)⊃ C) (R8 13)

This may also be the fully saturated database if we always treat the antecedents as sets,
that is, fully contract them.

4 Soundness and Completeness of the Forward Sequent Calculus

As mentioned above, our forward sequent calculus isn’t quite correct. In order to debug it,
we state its soundness and completness theorem and see where a problem might arise. For
these theorems, we do not yet restrict the rules to left/right subformulas, which we take
as a second step. The rules for the forward sequent calculus are collected in Figure 1. For
now, we consider propositions without falsehood, so that ⊥L drops out and the succedents
γ are always a singleton.

Theorem 1 (Soundness of Forward Sequent Calculus) If Γ −→ A then Γ =⇒ A.

Proof: By rule induction on the structure of the given derivation. There are no surprises.
To make the backwards rule applicable we have to routinely apply weakening. 2

The corresponding conjecture, namely that Γ −→ A if Γ =⇒ A fails. Already the
identity rule shows the problem: we have B,A =⇒ A but not B,A −→ A (only A −→ A).
To repair this we remember that Γ −→ A only records the antecedents that were needed in
a particular proof of A, while there may be unused antecedents in Γ =⇒ A. To bridge this
gap we generalize our theorem to:

Theorem 2 (Completeness of Forward Sequent Calculus) If Γ =⇒ A then Γ′ −→ A for
some Γ′ ⊆ Γ.

Proof: By rule induction on the structure of the given derivation D. We show a couple of
cases.
Case:

D =
Γ, P =⇒ P

id

Then

P −→ P
id

and {P} ⊆ (Γ, P )

Case:

D =

D1

Γ, B ⊃ C =⇒ B
D2

Γ, B ⊃ C,C =⇒ A

Γ, B ⊃ C =⇒ A
⊃L
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Then
IH(D2)

Γ2 −→ A

for some Γ2 ⊆ (Γ, B ⊃ C,C). We distinguish two subcases.

Subcase: C ̸∈ Γ2. Then Γ2 ⊆ (Γ, B ⊃ C) and IH(D2) satisfies the desired property.

Subcase: C ∈ Γ2 so Γ2 = (Γ′
2, C). Then we construct

IH(D1)

Γ1 −→ B

IH(D2)

Γ′
2, C −→ A

Γ1,Γ
′
2, B ⊃ C −→ A

⊃L

where Γ1 ⊆ (Γ, B ⊃ C) and Γ′
2 ⊆ (Γ, B ⊃ C). Therefore (Γ1,Γ

′
2, B ⊃ C) ⊆

(Γ, B ⊃ C) and the constructed derivation satisfies the desired property. Note
that by reasoning about sets we implicitly apply contraction.

Case:

D =

D′

Γ, B =⇒ C

Γ =⇒ B ⊃ C
⊃R

By the induction hypothesis we get

IH(D′)

Γ′ −→ C

for some Γ′ ⊆ Γ. Again, we distinguish two subcases.

Subcase: B ∈ Γ′ so Γ′ = (Γ′′, B). Then we construct

IH(D′)

Γ′′, B −→ C

Γ′′ −→ B ⊃ C
⊃R

Subcase: B ̸∈ Γ′. At this point we are stuck, because we cannot deduce Γ′ −→ B⊃C.
So we need another rule in the forward sequent calculus that does not require
the proposition B to be used in the derivation of C. With such a rule we can
then construct:

IH(D′)

Γ′ −→ C

Γ′ −→ B ⊃ C
⊃R′

2
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So the conclusion is that we should have two forms of the ⊃R rule in the forward
sequent calculus. There was some concern during lecture that we might generate an in-
ordinate number of rules, but it turns out there are at most two rules for any left/right
subformula. So there are O(n) rules altogether. The bottleneck overall, then, is not the
number of rules, but the number of sequents that may be derived before either saturation
is reached or the goal sequent is deduced.

5 Subsumption

Let’s try the rules from the previous section in the example

L
A

R
⊃ (

L
B

R
⊃

R
A )

Only A occurs as both a left and right subformula, so we only have one specialized identity
rule. In addition, we have four rules for implication.

A −→ A
R0

Γ, B −→ A

Γ −→ B ⊃A
R1

Γ −→ A

Γ −→ B ⊃A
R2

Γ, A −→ B ⊃A

Γ −→ A⊃ (B ⊃A)
R3

Γ −→ B ⊃A

Γ −→ A⊃ (B ⊃A)
R4

We deduce
(1) A −→ A (R0)

(2) A −→ (B ⊃A) (R2 1)

(3) · −→ A⊃ (B ⊃A) (R3 2)
(4) A −→ A⊃ (B ⊃A) (R3 2)

We see that at saturation, (3) is what we wanted to prove. We also see that (3) is strictly
stronger than (4) because we can obtain (4) from (3) by weakening. We say that (3) sub-
sumes (4). We can always delete a subsumed sequent from our database of sequents be-
cause any inference that could be done with the subsumed sequent can also be done with
the subsuming one, leading to equal or stronger results.

6 Inversion

We can use inversion as well as general focusing to streamline the forward inference sys-
tem and improve the process of generating specialized rules. This is the basis of the Imogen
theorem prover for intuitionistic propositional calculus McLaughlin and Pfenning [2008,
2009]. We show here only a small example that doesn’t require any additional metatheo-
retic proof for its correctness. When given a goal sequent we first apply inversion until we
reach a choice sequent. Then we proceed as before.
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Let’s try this on
=⇒ ((A ∨B)⊃ C)⊃ (A⊃ C) ∧ (B ⊃ C)

Applying inversion multiple times gives us the goal sequents

(A ∨B)⊃ C,A =⇒ C
(A ∨B)⊃ C,B =⇒ C

We now analyze the first one; the second one is symmetric.

(
R
A

R
∨

R
B )

L
⊃

L
C ,

L
A =⇒

R
C

We see that only A and C occur as both left and right subformulas, so an identity sequent
B =⇒ B could not occur in a backwards derivation. So we generate only

A −→ A
R0

C −→ C
R1

Working again from the insider out, we have A ∨B as a right subformula so we generate

Γ −→ A

Γ −→ A ∨B
R2

Γ −→ B

Γ −→ A ∨B
R3

Finally, the implication yields

Γ1 −→ A ∨B Γ2, C −→ γ

Γ1,Γ2, (A ∨B)⊃ C −→ γ
R4

Now we can start forward inference. Since we may actually derive a stronger sequent that
the goal sequent, according to Theorem 4 we have to derive

Γ −→ C such that Γ ⊆ ((A ∨B)⊃ C,A)

We saturate rather quickly:

(1) A −→ A (R0)
(2) C −→ C (R1)

(3) A −→ A ∨B (R2 1)

(4) A, (A ∨B)⊃ C −→ C (R3 3)

Here, (4) is just what we were trying to derive and we succeed.
Inversion was significant in cutting the overhead of building and applying the rules.

7 Naming Subformulas

The way we have written the rules so far requires a considerable amount of checking equal-
ity between propositions. In order to avoid this significant overhead we can assign unique
names to left/right subformulas and generate rules using these names.
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We illustrate this using the reverse of the previous example:

((A⊃ C) ∧ (B ⊃ C))⊃ ((A ∨B)⊃ C)

First, we apply inversion to arrive at

A⊃ C,B ⊃ C,A ∨B =⇒ C

then we name subformulas (that don’t already have names) and label them.

L1 =
R
A

L
⊃

L
C

L2 =
R
B

L
⊃

L
C

L3 =
L
A

L
∨

L
B

All of A, B, and C (as the succedent in the original sequent) appear as left and right sub-
formulas, so we start with

A −→ A
R0

B −→ B
R1

C −→ C
R2

For L1, L2, and L3 we generate the following rules:

Γ1 −→ A Γ2, C −→ γ

Γ1,Γ2, L1 −→ γ
R3

Γ1 −→ B Γ2, C −→ γ

Γ1,Γ2, L2 −→ γ
R4

Γ1, A −→ γ Γ2, B −→ γ

Γ1,Γ2, L3 −→ γ
R5

Now rule applications are more easily checked. Our goal sequent is

L1, L2, L3 −→ C

We saturate as follows.
(1) A −→ A (R0)
(2) B −→ B (R1)
(3) C −→ C (R2)

(4) A,L1 −→ C (R3 1 3)
(5) B,L2 −→ C (R4 2 3)

(6) L1, L2, L3 −→ C (R5 4 5)

8 Adding Falsehood1

1not covered in lecture
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The ⊥L rule raises a new question. We might think it should be

⊥ −→ γ
⊥L

The question is what should γ be? We certainly do not want to allow all right subformulas.
Instead, we allow the succedent to be empty, leading to the syntax

Succedent γ ::= A | ·

Then we have

⊥ −→ ·
⊥L

We further extend our notion of subsumption.

(Γ −→ γ) ≤ (Γ′ −→ γ′) if Γ ⊆ Γ′ and γ ⊆ γ′

The soundness and completeness theorems are updated as below, with analogous proofs.

Theorem 3 (Soundness of Forward Sequent Calculus with Falsehhood)

(i) If Γ −→ A then Γ =⇒ A

(ii) If Γ −→ · then Γ =⇒ C for any C

Theorem 4 (Completeness of Forward Sequent Calculus with Falsehoo)
If Γ =⇒ A then Γ′ −→ γ′ for some Γ′ and γ′ with (Γ′ −→ γ′) ≤ (Γ −→ A).

You can find the complete set of rules for the forward sequent calculus in Figure 1.
The ∨L rule is a bit unusual because either of the two premises could have an empty
succedent. So we take the union and make sure it is either empty (both premises have
empty succedent) or a singleton (the succedents of the premises agree, or one of them is
empty).

9 Summary

We have developed the inverse method that works by forward inference starting from iden-
tity sequents. This is feasible because we can specialize all inference rules to those on left
and right subformulas of our goal sequent.

There are many optimizations and other considerations for predicate calculus, but the
inverse method is remarkably robust [Voronkov, 1992, Degtyarev and Voronkov, 2001].
This is because, fundamentally it is based on the subformula property of the (cut-free)
sequent calculus.

Backward and forward proof search each have their own strengths and weaknesses.
Backward search has to backtrack, and it is difficult to learn from the failure of a given at-
tempt. When loop-checking, then loops can only be formed on a single branch, which lim-
its reuse. Forward search avoids some of these problems, but it might generate many se-
quents that could not be reached by backward search. So the size of the generated database
of sequence and the time to process it all is a limiting factor.

Both approaches benefit from important proof-theoretic properties such as inversion
and focusing.
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P −→ P
id

Γ1 −→ A Γ2 −→ B

Γ1,Γ2 −→ A ∧B
∧R

Γ, A −→ γ

Γ, A ∧B −→ γ
∧L1

Γ, B −→ γ

Γ, A ∧B −→ γ
∧L2

Γ, A −→ B

Γ −→ A⊃B
⊃R1

Γ −→ B

Γ −→ A⊃B
⊃R2

Γ, A −→ ·
Γ −→ A⊃B

⊃R3

Γ1 −→ A Γ2, B −→ γ

Γ1,Γ2, A⊃B −→ γ
⊃L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ1, A −→ γ1 Γ2, B −→ γ2

Γ1,Γ2, A ∨B −→ γ1, γ2
∨L∗

· −→ ⊤
⊤R

⊥ −→ ·
⊥L

Figure 1: Forward sequent calculus (antecedents sets, succedents singletons or empty)
(*) γ1, γ2 either empty or a singleton
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