
Lecture Notes on
Synchronous Message-Passing

15-317: Constructive Logic
Frank Pfenning

Lecture 25
Tuesday, April 25, 2023

1 Introduction

In the last lecture we introduced intuitionistic linear logic as a way to capture reasoning
with resources. We presented the logic in the form of a sequent calculus rather than natural
deduction because management of resources (logically, the antecedents) is more explicit
and easier to reason about. Instead of local reductions and local expansions, we used
cut reductions and identity expansion to test the right and left rules for all connectives
for harmony. This directly feeds into the global properties of the admissibility of cut and
identity, which we mentioned but did not formally state or prove.

Natural deduction gave us functional computation via the Curry-Howard correspon-
dence. In this lecture we explore that the linear sequent calculus gives us in terms of com-
putation. It turns out that it is synchronous message-passing. This observation was made
most explicitly in work by Caires and Pfenning [2010] and Caires et al. [2016].

2 Proofs as Processes

In natural deduction, we interpret a derivation as a function from proofs of the hypotheses
to a proof of the conclusion. Introduction rules are constructors, elimination rules are
destructors, and local reduction (which is defined when a destructor meets a constructor)
represents a step of computation.

In linear sequent calculus, we interpret a derivation as a process. The antecedents as
well as the succedent are labeled with channels for the process to communicate along. We
say a process uses (or is a client to) the channels on the left and provides the channel on the
right.

a1 : A1, . . . , an : An︸ ︷︷ ︸
channels used

⊢ c : C︸︷︷︸
provided

Processes are connected by private channels, one side being the provider the other side the

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.2

client. Logically, this corresponds to a cut.

P
∆1 ⊢ x : A

Q

∆2, x : A ⊢ c : C

∆1,∆2 ⊢ c : C
cut

Here, x is the name of the private communication channel. To say it another way, cut cor-
responds to parallel composition of the two proofs with a private communication channel
between them. We have labeled the proof P and Q in anticipation of this naming conven-
tion for processes.

The fact that cut is now essential in creating a configuration of communicating pro-
cesses means that in this sequent calculus we take it as a first-class rule rather than one
that is admissible.

3 Cut Reduction as Communication

Let’s recall from the last lecture one of the two cases of cut reduction for alternative con-
junction.

D1

∆′ ⊢ A1

D2

∆′ ⊢ A2

∆′ ⊢ A1 N A2

NR

E1
∆1, A1 ⊢ C

∆1, A1 N A2 ⊢ C
NL1

∆′,∆1 ⊢ C
cutA1NA2

−→R

D1

∆′ ⊢ A1

E1
∆1, A1 ⊢ C

∆′,∆1 ⊢ C
cutA1

We now label the channels and rename the proofs from D and E to P and Q.

P1

∆′ ⊢ x : A1

P2

∆′ ⊢ x : A2

∆′ ⊢ x : A1 N A2

NR

Q1

∆1, x : A1 ⊢ C

∆1, x : A1 N A2 ⊢ C
NL1

∆′,∆1 ⊢ c : C
cutA1NA2

−→R

P1

∆′ ⊢ x : A1

Q1

∆1, x : A1 ⊢ C

∆′,∆1 ⊢ c : C
cutA1

If we think of the first premise of the cut as P and the second Q, how does the information
flow here? The process P provides an external choice to the client Q. The choice is between
A1 and A2, which are provided by P1 and P2, respectively. The client makes this choice.
In particular Q starts with NL1, which chooses A1. On the right-hand of the reduction we

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.3

see that processes P1 and Q1 now communicate along the same channel x, but this channel
now has type A1.

The information that is transmitted here is a single bit, represented, say, by either fst or
snd. Our notation for these processes is

P = (recv x (fst⇒ P1 | snd⇒ P2))
Q = (send x fst ; Q1)

The semicolon in Q the represents a kind of sequencing of actions: first we send fst along
channel x and then we continue as Q1. The process P receives either fst or snd along x and
branches on what receives. This is rather like a case statement in ML.

One important difference to keep in mind, though, is that the channel x changes type.
When P and Q run in parallel, x has type A1 N A2. After the client makes a choice of fst, x
has type A1. If the client had chosen snd instead, x would have type A2 afterwards.

In order to formalize the dynamics we use multiset rewriting [Cervesato and Scedrov,
2009]. We represent a configuration of communicating processes as multiset of semantic
objects proc P . A rewriting rule matches the left-hand side of a rule against a subset of the
configuration and replaces it by the right-hand side. In this case, the rules are:

proc (recv a (fst⇒ P1 | snd⇒ P2)), proc (send a fst ; Q1) 7→ proc P1, proc Q1

proc (recv a (fst⇒ P1 | snd⇒ P2)), proc (send a snd ; Q2) 7→ proc P2, proc Q2

Communication is synchronous in the sense that both sender and recipient step forward to
a new process as part of the same transition. To make all communication asynchronous we
need the linear semi-axiomatic sequent calculus (SAX) [DeYoung et al., 2020] instead of the
linear sequent calculus from the last lecture.

We also annotate the sequents directly with the proof terms from above, just as we did
for natural deduction. The logical rules then become typing rules. The judgment has the
form

a1 : A1, . . . , an : An ⊢ P :: (c : C)

Here are the rules for external choice.

∆ ⊢ P1 :: (a : A1) ∆ ⊢ P2 :: (a : A2)

∆ ⊢ recv a (fst⇒ P1 | snd⇒ P2) :: (a : A1 N A2)
NR

∆, a : A1 ⊢ Q :: (c : C)

∆, a : A1 N A2 ⊢ send a fst ; Q :: (c : C)
NL1

∆, a : A2 ⊢ Q :: (c : C)

∆, a : A1 N A2 ⊢ send a snd ; Q :: (d : C)
NL2

Before we move on to the other connectives, we consider the cut itself.

4 Cut as Spawn

Cut, when seen as first-class rule, spawns a new process and allocates a fresh channel.

∆1 ⊢ P (x) :: (x : A) ∆2, x : A ⊢ Q(x) :: (c : C)

∆1,∆2 ⊢ (x← P (x) ; Q(x)) :: (c : C)
cut

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.4

where
proc (x:A← P (x) ; Q(x)) 7→ proc P (a), proc Q(a) (a fresh)

We see that P (a) provides channel a and Q(a) is a client to a. We follow the convention there
that P (x) corresponds to P with occurrences of x and P (a) substituted a for x in P (x).

5 Internal Choice

Internal choice A⊕B is just like external choice, except that the roles of provider and client
are reversed.

∆ ⊢ P1 :: (a : A1)

∆ ⊢ send a fst ; P1 :: (a : A1 ⊕A2)
⊕R1

∆ ⊢ P2 :: (a : A2)

∆ ⊢ send a snd ; P2 :: (a : A1 ⊕A2)
⊕R2

∆, a : A1 ⊢ Q1 :: (c : C) ∆, a : A2 ⊢ Q2 :: (c : C)

∆, a : A1 ⊕A1 ⊢ recv a (fst⇒ Q1 | snd⇒ Q2) :: (c : C)
⊕L

Remarkably, the computation rules are exactly like the ones for external choice!

proc (send a fst ; P1), proc (recv a (fst⇒ Q1 | snd⇒ Q2)) 7→ proc P1, proc Q1

proc (send a snd ; P2), proc (recv a (fst⇒ Q1 | snd⇒ Q2)) 7→ proc P2, proc Q2

We have written them in a different order, and also swapped P and Q as names for the
process expressions appearing in the rule.

6 Recursion

As in the step from natural deduction to functional programming, recursion is a bit of
a fly in the ointment. In the case of natural deduction, we analyzed induction and the
corresponding schema of primitive recursion.

For processes, this approach doesn’t quite work because we often think of processes
(like servers) as running indefinitely. On a technical level, recursive types are interpreted
coinductively instead of inductively. For example, they would represent unbounded streams
instead of finite lists. This takes an extensive amount of setup and theory, so instead we just
allow arbitrary recursive types and arbitrary recursively defined processes. Many of these
do not have a counterpart in logic, so we depart from a strict Curry-Howard isomorphism
for the sake of brevity and simplicity.

Consider

bits = bits⊕ bits

This represents an infinite stream of bits, where, say, the label fst represents the bit 0 and
snd represents the bit 1. Such an encoding makes examples difficult to write, we allow
general finite labeled sums instead of just the unlabeled binary one. This example above
would be rewritten as

bits = (b0 : bits)⊕ (b1 : bits)

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.5

where b0 and b1 are labels that are exchanged via message passing. The usual unlabeled
same can then be defined by A⊕B ≜ (fst : A)⊕ (snd : B).

Let’s write a transducer that negates every bit in a bit stream.

bits = (b0 : bits)⊕ (b1 : bits)

x : bits ⊢ neg(y, x) :: (y : bits)
neg(y, x) =
recv x (b0⇒ send y b1 ; neg(y, x)

| b1⇒ send y b0 ; neg(y, x))

Negation neg is a recursively defined process with two parameters that stand for channels.
We always put the provided channel first in the list of parameters, just like the channel we
send comes before the message.

We can compose two of these into a “network” of two processes. From endpoint to
endpoint, it just copies bits from the input x to identical bits in the output z (with some
internal delay).

neg2(z, x) =
y:bits← neg(y, x) ;
neg(z, y)

7 Unit and Termination

We assign processes to the unit rules as follows:

· ⊢ send a ⟨ ⟩ :: (a : 1)
1R

Γ ⊢ Q :: (c : C)

Γ, a : 1 ⊢ recv a (⟨ ⟩ ⇒ P) :: (c : C)
1L

As expected, they take complementary action. What is new is the that process that sends
the unit doesn’t have a continuation process, which means that it terminates. So the only
information communicated between these two is that the sending process has terminated.

proc (send a ⟨ ⟩), proc (recv a (⟨ ⟩ ⇒ Q)) 7→ proc Q

Now we can change our example: instead of an infinite stream of bits, we consider a
potentially finite stream of bits terminated by the label e followed by the unit ⟨ ⟩. We can
represent binary numbers in this form with the least significant bit arriving first.

bin = (b0 : bin)⊕ (b1 : bin)⊕ (e : 1)

For example, 6 = (110)2 would represented by the following sequences of messages on
some channel.

b0 · b1 · b1 · e · ⟨ ⟩

We can make the following definitions of zero and successor processes.

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.6

· ⊢ zero(z) :: (z : bin)
zero(z) =
send z e ;
send z ⟨ ⟩

This process will terminate after sending e · ⟨ ⟩.

x : bin ⊢ succ(y, x) :: (y : bin)
succ(y, x) =
recv x (b0⇒ send y b1 ;

fwd y x
| b1⇒ send b0 y ;

succ(y, x)
| e⇒ send y b0 ;

send y e ;
fwd y x)

The new construct fwd c a is the proof term for the (general) identity.

a : A ⊢ fwd c a :: (c : C)
id

It is called forwarding because it forwards any communication attempt on a to c and on c
to a. In order to capture this concisely we can refactor our rules slightly, anticipating that
for c : A ⊸ B and c : A⊗B, the process terms will send a channel of type a along c.

Processes P ::= x:A← P (x) ; Q(x) cut/spawn
| fwd c a id/forward
| send a V ; P̂ send V along a, cont. as P̂
| recv a K receive a V along a and pass it to K

Values V ::= k labels (⊕,N)
| b channels (⊗, ⊸)
| ⟨ ⟩ unit (1)

Continuations K ::= (ℓ⇒ Pℓ)ℓ∈L labels (⊕, N)
| (y ⇒ P (y)) channels (⊗, ⊸)
| (⟨ ⟩ ⇒ P) unit (1)

Optional Process P̂ ::= ϵ | P

proc (send c V ; P̂), proc (recv c K) 7→ proc P̂ , proc (V �K)
proc (ϵ) 7→ ·

proc (send a V ; P̂), proc (fwd c a) 7→ proc (send c V ; P̂)

proc (fwd c a), proc (send c V ; P̂) 7→ proc (send a V ; P̂)

k � (ℓ⇒ Pℓ)ℓ∈L = Pk (k ∈ L)
b � (y ⇒ P (y)) = P (b)
⟨ ⟩ � (⟨ ⟩ ⇒ P) = P

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.7

8 Multiplicative Connectives

Finally, we come to the multiplicative connectives A ⊸ B and A ⊗ B. Viewed from the
provider, the first receives a channel of type A while the second sends a channel of type
A. In this, we slightly change the rules of our sequent calculus. It is certainly not essential
(see [Caires and Pfenning, 2010]) but it makes the operational reading simpler.

∆, x : A ⊢ P (x) :: (b : B)

∆ ⊢ recv b (x⇒ P (x)) :: (b : A ⊸ B)
⊸R

∆, b : B ⊢ Q :: (c : C)

∆, a : A, b : A ⊸ B ⊢ send b a ; Q :; (c : C)
⊸L

∆ ⊢ P :: (b : B)

∆, a : A ⊢ send b a ; P :: (b : A ⊸ B)
⊗R

∆, x : A, b : B ⊢ P (x) :: (c : C)

∆, b : A⊗B ⊢ recv b (x⇒ P (x)) :: (c : C)
⊗L

The computation rules for these are already covered in the previous section.

9 An Implementation of a Queue Server

As a synthesizing example we use a queue with elements of some arbitrary type A. The
interface is specified by the following type.

queueA = (enq : A ⊸ queueA)
N (deq : (none : 1)⊕ (some : A⊗ queueA))

We specify two processes: one for the empty queue, and one for the queue holding an
element. For the queue holding an element we assume it also is the client to the remainder
of the queue.

· ⊢ empty(q) :: (q : queueA)

empty(q) =
recv q (enq⇒ recv q (x⇒ t← empty(t) ;

elem(q, x, t)
| deq⇒ send q none ; send q ⟨ ⟩)

x : A, t : queueA ⊢ elem(q, x, t) :: (q : queueA)

elem(q, x, t) =
recv q (enq⇒ recv q (y ⇒ send t enq ; send t y ;

elem(q, x, t))
| deq⇒ send q some ; send q x ;

fwd q t)

10 The Rast Language

The language for synchronous message passing we developed here has been implemented
in the Rast language [Das and Pfenning, 2020b,c]. It has a number of additional features,
specifically work and span analysis for parallel programs.

LECTURE NOTES TUESDAY, APRIL 25, 2023

Synchronous Message-Passing L25.8

We did not state here the usual progress and preservation theorems for this language
(in the presence of recursion). Corresponding theorems can be found in the literature (see,
for example, [Das and Pfenning, 2020a]).

References

Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Proceedings of the 21st International Conference on Concurrency Theory (CONCUR 2010),
pages 222–236, Paris, France, August 2010. Springer LNCS 6269.

Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. Special Issue on
Behavioural Types.

Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Information and Computation, 207(10):1044–1077, October 2009.

Ankush Das and Frank Pfenning. Session types with arithmetic refinements. In I. Konnov
and L. Kovács, editors, 31st International Conference on Concurrency Theory (CONCUR
2020), pages 13:1–13:18, Vienna, Austria, September 2020a. LIPIcs 171.

Ankush Das and Frank Pfenning. Rast: Resource-aware session types with arithmetic
refinements. In Z. Ariola, editor, 5th International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2020), pages 33:1–33:17. LIPIcs 167, June 2020b. System
description.

Ankush Das and Frank Pfenning. Rast, a language for resource aware session types, 2020c.
URL https://bitbucket.org/fpfenning/rast/src/master/rast/.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus.
In Z. Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June 2020. LIPIcs 167.

LECTURE NOTES TUESDAY, APRIL 25, 2023

https://bitbucket.org/fpfenning/rast/src/master/rast/

	Introduction
	Proofs as Processes
	Cut Reduction as Communication
	Cut as Spawn
	Internal Choice
	Recursion
	Unit and Termination
	Multiplicative Connectives
	An Implementation of a Queue Server
	The Rast Language

