Constructive Logic (15-317), Spring 2023 Recitation 3

CLogic Staff (Instructor: Frank Pfenning)

February 8, 2023

1 Review: Verifications & Uses

Task 1. Prove the following: $(A \land B) \supset (B \land A) \uparrow$

$$\frac{\overline{A \land B \downarrow}}{B \downarrow} \stackrel{u}{\land E_2} \quad \frac{\overline{A \land B \downarrow}}{A \downarrow} \stackrel{u}{\land E_1} \stackrel{u}{\land E_1} \stackrel{u}{\land E_1} \stackrel{d}{\land E_1} \stackrel{d}{\: E_1}$$

2 Sequent Calculus

Task 2. Prove the following judgement: $\implies (A \land B) \supset (B \land A)$

$$\frac{\overline{A \land B, A, B \Longrightarrow B} id(0)}{A \land B, A, B \Longrightarrow A} id(1)} \xrightarrow{A \land B, A, B \Longrightarrow B \land A} \land R$$

$$\frac{A \land B, A, B \Longrightarrow B \land A}{A \land B, A \Longrightarrow B \land A} \land L2(1)$$

$$\frac{A \land B, A \Longrightarrow B \land A}{A \land B \Longrightarrow B \land A} \land L1(0)$$

$$\frac{A \land B \Longrightarrow B \land A}{\Rightarrow} (A \land B) \supset (B \land A)} \supset R$$

Note that the order of applying $\wedge L1$ and $\wedge L2$ can be reversed in this example.

3 Presentations of Constructive Logic

Theorem 1 (Completeness of Sequent Calculus). If D_1 true, ..., D_n true $\vdash C$ true, then $D_1, ..., D_n \Longrightarrow C$.

The completeness of sequent calculus can be interpreted as asserting that anything we can show in ND can also be proven using SC.

The converse is also true:

Theorem 2. If $D_1, ..., D_n \Longrightarrow C$, then $D_1 \downarrow, ..., D_n \downarrow \vdash C \uparrow$.

The proof proceeds by induction on the derivation of $D_1, ..., D_n \Longrightarrow C$.

Task 3. Prove the $\wedge R$ case.

Recall the two rules of interest in this case:

$$\frac{\Delta \Longrightarrow A \quad \Delta \Longrightarrow B}{\Delta \Longrightarrow A \wedge B} \wedge R$$

$$\frac{\Gamma \vdash A \uparrow \quad \Gamma \vdash B \uparrow}{\Gamma \vdash A \land B \uparrow} \land I$$

Suppose $\Delta = D_1, ..., D_n$.

By the induction hypothesis, we know $D_1 \downarrow, \ldots, D_n \downarrow \vdash A \uparrow$.

Similarly, we know $D_1 \downarrow, \ldots, D_n \downarrow \vdash B \uparrow$.

With these two, we can show $D_1 \downarrow, \ldots, D_n \downarrow \vdash A \land B \uparrow$.

Task 4. Prove the $\lor L$ case.

$$\frac{\Delta, A \lor B, B \Longrightarrow C \quad \Delta, A \lor B, A \Longrightarrow C}{\Delta, A \lor B \Longrightarrow C} \lor L$$

Let $\Gamma = D_1 \downarrow, \ldots, D_n \downarrow, A \lor B \downarrow$

$$\frac{\Gamma \vdash A \lor B \downarrow \quad \Gamma, A \downarrow \ \vdash C \uparrow \quad \Gamma, B \downarrow \ \vdash C \uparrow}{\Gamma \vdash C \uparrow} \lor E$$

By the induction hypothesis, $D_1 \downarrow, \ldots, D_n \downarrow, A \lor B \downarrow, A \downarrow \vdash C \uparrow$ Symmetrically, $D_1 \downarrow, \ldots, D_n \downarrow, A \lor B \downarrow, B \downarrow \vdash C \uparrow$ The first judgement can be shown by identity. So, $D_1 \downarrow, \ldots, D_n \downarrow, A \lor B \downarrow \vdash C \uparrow$