
Constructive Logic (15-317), Spring 2023
Recitation 5

Clogic Staff

February 22, 2023

1 Rule Induction and Programming Languages Dynamics

In lecture on Thursday, we discussed the dynamic of programming languages and how there is
some difference between logic and these dynamics. Several theorems were brought up that are
important to prove about programming languages. Here, we look at progress. The statement of
the theorem is as follows:

If M : A then either M −→ M ′ or M value (but not both).

While doing the entire proof would take a long time, lets look at the cases of the progress proof
involving implication as well as disjunction to get practice with rule induction. As a reminder,
the dynamics for terms involving implication are the following:

M −→ M ′

M N −→ M ′ N

M value

M N −→ M N ′

N value

(λx.M)N −→ [N/x]M (λx.M) value

While the typing rules (statics) involving implication are:

M : A⊃B N : A

M N : B
⊃E

x : A
x

....
M : B

λx.M : A⊃B
⊃Ix

The dynamics involving disjunction are the following:

M value

inl M value
1

M value

inr M value
2

1

M −→ M ′

inl M −→ inl M ′ 3
M −→ M ′

inr M −→ inr M ′ 4

M −→ M ′

case(M,x.N, y.P) −→ case(M ′, x.N, y.P)
5

M value

case(inl M,x.N, y.P) −→ [M/x]N
6

M value

case(inr M,x.N, y.P) −→ [M/y]P
7

The typing rules (statics) involving disjunction are the following:

M : A

inl M : A ∨B
∨I1

M : B

inr M : A ∨B
∨I1

M : A ∨B

x : A
x

....
N : C

y : B
y

....
P : C

case(M,x.N, y.P)
∨Ex,y

Solution:

⊃E

We prove this by induction. IH: the statement of the theorem.
By assumption we have M N : B
By inversion we have ∃A s.t.

D1

M : A⊃B
D2

N : A

M N : B

By IH on D1 we have 2 cases.
Case 1. M is a value of the form λx.W

By IH on D2 we again have 2 cases.

Case 1a. N is a value. Then exactly 1 one dynamics rule applies, and we get that

M N = λx.W N −→ [N/x]W

Case 1b. N −→ N ′. Then exactly 1 one dynamics rule applies, and we get that

M N = λx.W N −→ λx.W N ′

Case 2. M steps to some M ′. Only one dynamics rule applies and we get that

M N −→ M ′ N

2

⊃Ix

Only 1 rule applies when we have a term of the form λx.M which states that λx.M is a value.

∨I1 (∨I2 is analogous)

We prove this by induction. IH: the statement of the theorem.
By assumption we have inl M : A ∨B
By inversion we have:

D
M : A

inl M : A ∨B

By IH on D we get two cases.
Case 1. M is a value. Then applying rule 1 yields inl M is a value
Case 2. M −→ M ′. Then apply rule 3, and we get inl M −→ inl M ′

∨Ex,y

We prove this by induction. IH: the statement of the theorem.
By assumption we have case (M,x.N, y.P) : C
By inversion we have

D
M : A ∨B

x : A
E1

N : C

y : B
E2

P : C

case(M,x.N, y.P) : C
∨Ex,y

By IH on D We have 2 cases.
Case 1. M is a value. Two options

M is inl M1 or inr M1. These cases are analogous so just doing the inl case.

Then by inversion, we get M1 is a value.

Applying rule 6, we get case (inl M1, x.N, y.P) −→ [M1/x]N

Case 2, M −→ M ′. Applying rule 5 gives us case(M,x.N, y.P) −→ case(M ′, x.N, y.P).

2 Primitive Recursion

In lecture, several recursive definitions were given. For example, pred was given as

pred(n) ≜ R(n, 0, x.r.x)

plus was given as

plus(n) ≜ R(n, λk.k, x.r.λk.s(r k))

3

mult was given as

mult(n) ≜ R(n, λk.0, x.r.λk.plus(r k) k)

Here we aim to construct a few more.
Task 2. Define a recursive definition for factorial being allowed to use any of the definitions
above.
Solution: First, we see we want fact(0) = 1 and fact(n+ 1) = mult(n+ 1, fact(n))
converting this into a recursive definition:

fact(n) ≜ R(n, s(0), x.r.mult s(x) r)

Task 3. Define a recursive definition for subtraction being allowed to use any of the definitions
above.
Solution: First, we have n − 0 = n and n − (k + 1) = (n − k) − 1. So we have sub(n, 0) = n
and sub(n, (s(k)) = pred(sub(n, k)) Note that unlike the previous cases, the recurance is on the
second argument not on the first.
converting this into a recursive definition:

sub(k) ≜ R(k, λn.n, x.r.λn.pred(r n))

4

	Rule Induction and Programming Languages Dynamics
	Primitive Recursion

