Constructive Logic (15-317), Spring 2023 Recitation 12

April 26,2023

1 Linear logic

Task 1. Prove that the following judgement is not derivable in linear sequent calculus.

$$\cdot \longrightarrow A \multimap B \multimap A$$

Solution. This is the only possible derivation.

$$\frac{A, B \longrightarrow A}{A \longrightarrow B \longrightarrow A} \longrightarrow R$$

$$\frac{A \longrightarrow B \longrightarrow A}{A \longrightarrow B \longrightarrow A} \longrightarrow R$$

However, we get stuck here, because no further rules can be applied. Therefore, the original judgement is not provable.

Task 2. Recall the linear sequent cut.

Theorem 1 (Linear sequent cut). If $\Gamma_1 \longrightarrow A$ and $\Gamma_2, A \longrightarrow C$, then $\Gamma_1, \Gamma_2 \longrightarrow C$.

Provide a counter example to show why the following cut theorem is incorrect in linear sequent calculus.

If
$$\Gamma \longrightarrow A$$
 and $\Gamma, A \longrightarrow C$, then $\Gamma \longrightarrow C$.

Solution. Assume A is some atom, and $\Gamma = A$, $C = A \otimes A$. Clearly both $A \longrightarrow A$ and $A, A \longrightarrow A \otimes A$ are derivable. However, $A \longrightarrow A \otimes A$ is not.

Task 3. Prove the left commuting case $(\otimes L/*)$.

Solution. Assume the following derivations.

$$\frac{\mathcal{D}_1}{\Gamma_1, A_1, A_2 \longrightarrow A} \otimes L \qquad \underset{\Gamma_2, A}{\mathcal{E}} \longrightarrow C$$

Apply I.H. on \mathcal{D}_1 and \mathcal{E} with principal formula A, we have $\Gamma_1, \Gamma_2, A_1, A_2 \longrightarrow C$. Use $\otimes L$, to derive $\Gamma_1, \Gamma_2, A_1 \otimes A_2 \longrightarrow C$.

2 Linear application

Blocks World is a class of scenarios in which there is a table, some number of blocks which can be stacked on top of each other, and a robotic arm which can pick up and move blocks. The following atomic predicates are used:

- a. ontable(x) means that the block x is sitting directly on the table.
- b. on(x, y) means that the block x is directly on top of the block y.
- c. clear(x) means that the block x does not have anything on top of it.
- d. *empty* means that the robotic arm's hand is empty.
- e. holds(x) means that the robotic arm's hand is holding x.

Task 4. Write out the following axioms in linear logic.

- a. The robot can place a block x on the table directly.
- b. The robot can place a block x directly on block y.
- c. The robot can pick a block x from the table directly.
- d. The robot can pick a block x from the top of block y.

Solution.

- a. $\forall x.holds(x) \multimap ontable(x) \otimes clear(x) \otimes empty$
- b. $\forall x. \forall y. clear(y) \otimes holds(x) \longrightarrow on(x, y) \otimes clear(x) \otimes empty$
- c. $\forall x.ontable(x) \otimes clear(x) \otimes empty \multimap holds(x)$
- d. $\forall x. \forall y. on(x, y) \otimes clear(x) \otimes empty \multimap clear(y) \otimes holds(x)$