Lecture Notes on
Recursion

15-814: Types and Programming Languages
Frank Pfenning

Lecture 2
Thursday, September 5, 2019

1 Introduction

In this lecture we continue our exploration of the A-calculus and the repre-
sentation of data and functions on them. We give schematic forms to define
functions on natural numbers and give uniform ways to represent them in
the A-calculus. We begin with the schema of iteration and then proceed the
more complex schema of primitive recursion and finally just plan recursion.

2 The Schema of Iteration

As we saw in the first lecture, a natural number n is represented by a

function 7 that iterates its first argument n times applied to the second:

ngc=g(...(g ¢)). Another way to specify such a function schematically is
——

n times

fo0 = c
fn+1) = g(fn)

If a function satisfies such a schema of iteration then it can be defined in the
A-calculus on Church numerals as

f=X.ngc

which is easy to verify. The class of function definable this way is total (that
is, defined on all natural numbers if c and g are), which can easily be proved

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

L2.2 Recursion

by induction on n. Returning to examples from the last lecture, let’s consider
multiplication again.

times 0 k = 0
times (n + 1)k k + timesn k

This doesn’t exactly fit our schema because £ is an additional parameter.
That’s usually allowed for iteration, but to avoid generalizing our schema
the times function can just return a function by abstracting over k.

times 0 = Xk.0O
times (n+1) = M\k.k+ timesnk

We can read off the constant ¢ and the function g from this schema

c = Mk.zero
= A Ak.plusk (rk)

and we obtain
times = An.n (Ar. k. plus k (r k)) (Ak. zero)
which is more complicated than the solution we constructed by hand

plus = An.\k.nsucck
times' = An.\k.n (plus k) zero

The difference in the latter solution is that it takes advantage of the fact that
k (the second argument to times) never changes during the iteration. We
have repeated here the definition of plus, for which there is a similar choice
between two versions as for times.

In this latter solution, we exploit that (plus k) is a function because plus
starts with two A-abstractions. We could also make the second argument to
plus explicit:

times” = An.Mk.n (\u.plus k u) zero

We observe that plus k and A\u.plus k w always behave the same when
applied to any argument e because

plus k e =g (Au.plus k u) e

More generally, the behavior of e and Au. e u is the same when applied to any
argument ¢’ as long as u ¢ FV(e) (that is, u is not among the free variables of
e, see Section 5). This law is called n-conversion and represents a weak form
of an extensionality principle: two functions should be equal if they return
equals results when applied to the equal arguments.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

Recursion L2.3

3 The Schema of Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the
exponential function, or the “stack” function iterating the exponential.

exp = Ab.Xe.e (times b) (succ zero)
stack Ab. An.n (exp b) (succ zero)

Everything appears to be going swimmingly until we think of a very simple
function, namely the predecessor function defined by

pred O =0
pred (n+1) =

You may try for a while to see if you can define the predecessor function,
but it is difficult. The problem is that we have to go from As. A\z.s(...(s2))
to As. Az.s(...z), thatis, we have to remove an s rather than add an s as was
required for the successor. One possible way out is to change representation
and define 7 differently so that predecessor becomes easy (see Exercise 1).
We run the risk that other functions then become more difficult to define, or
that the representation is larger than the already inefficient unary represen-
tation already is. We follow a different path, keeping the representation the
same and defining the function directly.

We can start by assessing why the schema of iteration does not immedi-
ately apply. The problem is that in

fo = ¢
fn+1) = g(fn)

the function ¢ only has access to the result of the recursive call of f on n, but
not to the number 7 itself. What we would need is the schema of primitive

recursion:
fo = c

fn+1) = hn(fn)

where n is passed to h. For example, for the predecessor function we have
¢ =0and h = Az. A\y. x (we do not need the result of the recursive call, just
n which is the first argument to h).

At first glance it seems at least plausible that we should be able to define
any primitive recursive function using only the schema of iteration. Cer-
tainly, all functions in these two classes are total, as long as the component
functions ¢, g, and h are total.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

L2.4 Recursion

The basic idea in the representation of primitive recursion by iteration
is that we need the recursive call to return not only fn but also n itself!
In other words, in order to eventually get f, we first define a function f
satisfying

f'n=(n,fn)
where (—, —) forms a pair. From such a pair we can extract both n and fn
in order to pass them to h. In more detail:
0 = (0,¢)
[(n+1) = letpair (f'n) Az Ar.(x+1,har))
fn = letpair (f'n) (A\x. Ar.7)

What is letpair! supposed to do? We specify that
letpair <61, 62> k =3 k €1 €9

In other words, letpair applies the continuation £ to the components of its
tirst argument (which should be a pair). If we can define pairs and letpair
then f’ is correctly defined. Formally, we would prove this by induction on
n. First, if n = 0 then

f10 = (0,¢) = (0, f0)

Second
f(n+1) = letpair (f'n) (Az. Ar.(x+1,hxr))
=g letpair (n, fn) (Ax. Ar.(x + 1,hzr)) by induction hypothesis
=3 (n+1,hn(fn)) by reduction for letpair
= (n+1,f(n+1)) by definition of f (n + 1)
It remains to give the definitions of pair (implementing (—, —)) and letpair.

Actually, we will do a little more, also providing explicit projections onto
the first and second components of a pair. But first, we form a pair by
abstracting over a function g applied to both components.

pair = A\x. \y. A\g.gxy

which means that paire; e2 =g Ag. gej e2. To extract the first component
of the pair, we simply apply it to the first projection function! And for the
second component we project onto the second argument.

fst = Ap.p(Az. \y.x) = Ap.p true
snd = Ap.p(Az.\y.y) = A\p.p false

'We called with case in lecture, but in hindsight that seems like a poor choice.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

Recursion L2.5

The letpair function is interesting. Recall that we want
letpair <€1, 62) k =3 k €1 €9
We define
letpair = Ap.\k.pk
which works because
letpair (pair e1 e2) k=g letpair (A\g.geie2) k
=g (Ak.(Ag.gerea)k)k
=B k €1 €2
One further remark here: the right-hand side in the definition of letpair can
be simplified further using n-conversion.
letpair = Ap. \k.pk =, Ap.p

so it is the identity function! Intuitively, a pair is represented by its own de-
structor function, so this destructor (here letpair) is just the identity. Similarly,
if we wanted to define an iterator function

iternfe=f(f...(f ¢)
——
n times
then iter = Am. m will satisfy this equation for Church numerals.
To put this all together, we implement a function specified with
fo = c
fn+1) = hn(fn)

with the following definition in terms of c and h:

pair = Ar.\y.\g.gxy

letpair = Ap.p

I = An.n (Ar. letpair r (Ax. \y. pair (succ z) (h x y))) (pair zero c)
f = M. f'n(Az. \y.y)

Eliminating letpair = Ap. p we obtain the slightly shorter version
pair = Axr.\y.A\g.gxy
I An.n (Ar.r (Az. \y. pair (succ x) (h x y))) (pair zero c)
f = . f'n(Ax. \y.y)
Recall that for the concrete case of the predecessor function we have
c=0and h = Az. \y. x. We obtain

pred = An.n(Ar.r (\x. \y. pair (succ z) x)) (pair zero zero)

pred = An.pred n (Az. \y.y)

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

L2.6 Recursion

4 General Recursion

Schematic function definitions (even at the generality of primitive recursion)
can be restrictive. Let’s consider the subtraction-based specification of a
ged function for the greatest common divisor of strictly positive natural
numbers a,b > 0.

gedaa = a
gedab = ged(a—0b)b ifa>b
gedab = geda(b—a) ifb>a

Why is this correct? First, the result of gcd a b is a divisor of both a and b.
This is clearly true in the first clause. For the second clause, assume c is a
common divisor of a and b. Then there are n and & such thata = n x cand
b=kxec Thena—b= (n—k) x c(defined because a > b and therefore
n > k) so cstill divides both a — b and b. In the last clause the argument is
symmetric. It remains to show that the function terminates, but this holds
because the sum of the arguments to gcd becomes strictly smaller in each
recursive call because a, b > 0.

While this function looks simple and elegant, it does not fit the schema
of iteration or primitive recursion. The problem is that the recursive calls
are not just on the immediate predecessor of an argument, but on the results
of subtraction. So it might look like

fn=hn(f(gn))

but that doesn’t fit exactly, either, because the recursive calls to gcd are on
different functions in the second and third clauses.
So, let’s be bold! The most general schema we might think of is

f=nf

which means that in the right-hand side we can make arbitrary recursive
calls to f. For the gcd, the function ~ might look something like this:

h=Ag.Aa.\b. if (a=0b)a
(if (a>b) (9 (a—0)b)
(g (b—a)b)

Here, we assume functions for testing z = y and > y on natural numbers,
for subtraction x — y (assuming x > y) and for conditionals if b e; ez where
if true e; ex =g ey and if false e ex =g ey (see Exercise 2).

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

Recursion L2.7

The interesting question now is if we can in fact define an f explicitly
when given h so that it satisfies f = h f. We say that f is a fixed point of h,
because when we apply h to f we get f back. Since our solution should
be in the A-calculus, it would be f =3 h f. A function f satisfying such an
equation may not be uniquely determined. For example, the equation f = f
(so, h = Az.x) is satisfied by every function f. For the purpose of this lecture,
any function that satisfies the given equation is acceptable.

If we believe in the Church-Turing thesis, then any partial recursive
function should be representable on Church numerals in the A-calculus, so
there is reason to hope there are explicit representations for such f. The
answer is given by the so-called Y combinator.? Before we write it out, let's
reflect on which laws Y should satisfy? We want that if f = Y h and we
specified that f = h f,sowe get Y h = h (Y h). We can iterate this reasoning
indefinitely:

Yh=h(Yh) =h(h(Yh)=h(h(h(Yh)) =...

In other words, Y must iterate its argument arbitrarily many times.
The ingenious solution deposits one copy of h and the replicates Y h.

Y =M. (Az.h(zx)) (Ax.h(xx))

Here, the application z x takes care of replicating Y h, and the outer applica-
tion of i in h (z x) leaves a copy of h behind. Formally, we calculate

Yh =3 (Az.h(zzx)) (Az.h(zx))
=3 h((Az.h(zz)) (Az.h(zx)))
=3 h(Y h)

In the first step, we just unwrap the definition of Y. In the second step we
perform a 3-reduction, substituting [(Az. h (z x))/z] h (z x). In the third step
we recognize that this substitution recreated a copy of Y h.

You might wonder how we could ever get an answer since

Yh=5h(Yh)=5h(h(Yh)=5h(h(h(Yh)) =...

Well, we sometimes don’t! Actually, this is important if we are to represent
partial recursive functions which include functions that are undefined (have
no normal form) on some arguments. Reconsider the specification f = f as
a recursion schema. Then A = Ag. g and

Yh=Y (Ag.g9) =3 (Ax.(Ag.g) (x2)) (A\z.(Ag. 9) (x) =g (A\z.22) (A\z. 2z x)

For our purposes, a combinator is simply a A-expression without any free variables.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

L2.8 Recursion

The term on the right-hand side here (called §2) has the remarkable property
that it only reduces to itself! It therefore does not have a normal form. In
other words, the function f =Y (Ag. g) = 2 solves the equation f = f by
giving us a result which always diverges.

We do, however, sometimes get an answer. Consider, for example, a
case where f does not call itself recursive at all: f = An.succ n. Then
ho = Ag. An.succ n. And we calculate further

Yhy = Y (Ag.\n.succn)
=5 (Az.(Ag. An.succ n) (zx)) (Az. (Ag. An.succ n) (z x))
=5 (Az. (An.succ n)) (Az. (An.succ n))
=g An.succn

So, fortunately, we obtain just the successor function if we apply S-reduction
from the outside in. It is however also the case that there is an infinite reduction
sequence starting at Y hg. By the Church-Rosser Theorem 1 this means that
at any point during such an infinite reduction sequence we could still also
reduce to An.succ n. A remarkable and nontrivial theorem about the -
calculus is that if we always reduce the left-most/outer-most redex (which
is the first expression of the form (Az. e;) e; we come to when reading an
expression from left to right) then we will definitely arrive at a normal form
when one exists. And by the Church-Rosser theorem such a normal form is
unique (up to renaming of bound variables, as usual).

5 A Few Somewhat More Rigorous Definitions

We write out some definitions for notions from the first two lectures a little
more rigorously.

A-Expressions. First, the abstract syntax.

Variables x
Expressions e 1= Azr.e|ejex|x

Az. e binds x with scope e. In the concrete syntax, the scope of a binder Az is
as large as possible while remaining consistent with the given parentheses
so y (Az. z z) stands for y (Az. (x z)). Juxtaposition e; e; is left-associative so
e1 e e3 stands for (61 62) es.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

Recursion L2.9

We define FV(e), the free variables of e with

FV(z) = {z}
FV(Az.e) = =FV(e)\{z}
FV(€1 62) = FV(el) U FV(GQ)

Renaming. Proper treatment of names in the A-calculus is notoriously
difficult to get right, and even more difficult when one reasons about the
A-calculus. A key convention is that “variable names do not matter”, that is, we
actually identify expressions that differ only in the names of their bound variables.
So, for example, A\z. A\y. x z = A\y. Az.y 2 = Au. Aw. u z. The textbook defines
fresh renamings [Har16, pp. 8-9] as bijections between sequences of variables
and then a-conversion based on fresh renamings. Let’s take this notion for
granted right now and write e =, €’ if e and €’ differ only in the choice of
names for their bound variables and this observation is important. From
now on we identify e and €’ if they differ only in the names of their bound
variables, which means that other operations such as substitution and /-
conversion are defined on a-equivalence classes of expressions.

Substitution. We can now define substitution of €’ for = in e, written [¢/ /z]e,
following the structure of e.

[€//x]|x = ¢

[€/x]y =y fory # x
[€/x](Ay.e) = Xy.[e'/z]e provided y & FV(¢)
[€//x](ere2) = ([¢'/aler) ([¢//x]e2)

This looks like a partial operation, but since we identify terms up to a-
conversion we can always rename the bound variable y in [¢//z](\y. €) to
another variable that is not free in ¢’ or e. Therefore, substitution is a total
function on a-equivalence classes of expressions.

Now that we have substitution, we also characterize a-conversion as
Az.e =4 Ay.[y/x]e provided y ¢ FV(e) but as a definition it would be
circular because we already required renaming to define substitution.

Equality. We can now define /- and n-conversion. We understand these
conversion rules as defining a congruence, that is, we can apply an equation
anywhere in an expression that matches the left-hand side of the equality.
Moreover, we extend them to be reflexive, symmetric, and transitive so

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

L2.10 Recursion

we can write e =g ¢’ if we can go between e and ¢’ by multiple steps of
(B-conversion.

f-conversion (\z.e)e’ =z [¢'/x]e
n-conversion Ar.ex =, e provided x ¢ FV(e)

Reduction. Computation is based on reduction, which applies 5-conversion
in the left-to-right direction. In the pure calculus we also treat it as a congru-
ence, that is, it can be applied anywhere in an expression.

p-reduction (Az.e)e’ —p [¢//x]e

Sometimes we like to keep track of length of reduction sequences so we
write e —7% ¢’ if we can go from e to ¢’ with n steps of 3-reduction, and
e —} ¢ for an arbitrary n (including 0).

Confluence. The Church-Rosser property (also called confluence) guaran-
tees that the normal form of a A-expression is unique, if it exists.

Theorem 1 (Church-Rosser [CR36]) If e —>; e and e —>g ey then there
exists an e’ such that e; —>}§ e’ and ey —>g e

Exercises

Exercise 1 One approach to representing functions defined by the schema
of primitive recursion is to change the representation so that 7 is not an
iterator but a primitive recursor.

0 = As.)\z.2
n+1l = Xs.dz.sm(nsz)

1. Define the successor function succ (if possible) and show its correct-
ness.

2. Define the predecessor function pred (if possible) and show its correct-
ness.

3. Explore if it is possible to directly represent any function f specified
by a schema of primitive recursion, ideally without constructing and
destructing pairs.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

Recursion L2.11

Exercise 2 We know we can represent all functions on Booleans returning
Booleans once we have exclusive or. But we can also represent the more
general conditional if with the requirements

z'ftrue €1 e2 = €1
iffalse €1 €2 = €9

Give a definition of if in the A-calculus and verify (showing each step) that
the equations above are satisfied using S-conversion.

Exercise 3 Recall the specification of the greatest common divisor (gcd) from
this lecture for natural numbers a, b > 0:

gcd a a a
gedab = ged(a—0b)b ifa>b
gedab = geda(b—a) ifb>a

We don’t care how the function behaves if a = 0 or b = 0.

Define gcd as a closed expression in the A-calculus over Church numerals.
You may use the Y combinator we defined, and any other functions like succ,
pred, etc. from this lecture and if from Exercise 2, but you have to define other
functions you may need such as subtraction or arithmetic comparisons.

Analyze how your function behaves when one or both of the arguments
a and b are 0.

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472—482, May
1936.

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES THURSDAY, SEPTEMBER 5, 2019

	Introduction
	The Schema of Iteration
	The Schema of Primitive Recursion
	General Recursion
	A Few Somewhat More Rigorous Definitions

