
Lecture Notes on
Sums

15-814: Types and Programming Languages
Frank Pfenning

Lecture 8
Thursday, September 26, 2019

1 Introduction

So far in this course we have introduced only basic constructs that exist in
pretty much any programming language: functions, Booleans, and pairs.
There may be details of syntax and maybe some small semantics differences
such as call-by-value vs. call-by-name, but any such differences can be easily
explained and debated within the framework set out so far.

At this point we have a choice between several different directions in
which we can extend our inquiry into the nature of programming language.

Precision of Types. We can make types more or less precise in what they
say about the program. For example, we might have type containing
just true and another containing just false. At the end of this spectrum
would be dependent types so precise that they can completely specify a
function.

Expressiveness of Types. We can analyze which programs can not be typed
and make the type system accept more programs, as long as it remains
sound.

Computational Mechanisms. So far computation in our language is value-
oriented in that evaluating an expression returns a value, but it cannot
have any effect such as mutating a store, performing input or output,
raising an exception, or execute concurrently.

Level of Dynamics. The rules for computation are at a very high level of
abstraction and do not talk about, for example, where data might be

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.2 Sums

allocated in memory, or how functions are compiled. A language
admits a range of different operational specifications at different levels
of abstraction.

Equality and Reasoning. We have introduced typing rules, but no informal
or formal system for reasoning about programs. This might include
various definitions when we might consider programs to be equal,
and rules for establishing equality. Or it might include a language for
specifying programs and rules for establishing that they satisfy their
specifications. Under this general heading we might also consider
translations between different languages and showing their correct-
ness.

All of these are interesting and the subject of ongoing research in program-
ming languages. At the moment, we do not yet have enough infrastructure
to make most of these questions rich and interesting. So in the next few lec-
tures we will introduce additional types and corresponding expressions to
make the language expressive enough to recover partial recursive functions
over interesting forms of data such as natural numbers, lists, trees, etc.

2 Disjoint Sums

Type theory is an open-ended enterprise: we are always looking to capture
types of data, modes of computation, properties of programs, etc. One
important building block are type constructors that build more complicated
types out of simpler ones. The function type constructor τ1 → τ2 is one
example. Today we see another one: disjoint sums τ1 + τ2. A value of this
type is either a value of type τ1 or a value of type τ2 tagged with the information
about which side of the sum it is. This last part is critical and distinguishes it
from the union type which is not tagged and much more difficult to integrate
soundly into a programming language. We use ` and r as tags or labels and
write ` · e1 for the expression of type τ1 + τ2 if e1 : τ1 and, analogously, r · e2
if e2 : τ2.

Γ ` e1 : τ1

Γ ` ` · e1 : τ1 + τ2
sum/l

Γ ` e2 : τ2

Γ ` r · e2 : τ1 + τ2
sum/r

These two forms of expressions allow us to form elements of the disjoint
sum. To destruct such a sum we need a case construct that discriminates

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.3

based on whether element of the sum is injected on the left or on the right.

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e (` · x1 ⇒ e1 | r · x2 ⇒ e2) : τ
case/sum

Let’s talk through this rule. The subject of the case should have type τ1 + τ2
since this is what we are discriminating. If the value of this type is ` · v1
then by the typing rule for the left injection, v1 must have type τ1. Since the
variable x1 stands for v1 it should have type τ1 in the first branch. Similarly,
x2 should have type τ2 in the seond branch. Since we cannot tell until the
program executes which branch will be taken, just like the conditional in
the last lecture, we require that both branches have the same type τ , which
is also the type of the whole case.

From this, we can also deduce the value and stepping judgments for the
new constructs.

e val
l · e val

val/l
e val
r · e val

val/r

e 7→ e′

l · e 7→ l · e′
step/l

e 7→ e′

r · e 7→ r · e′
step/r

e0 7→ e′0

case e0 (. . . | . . .) 7→ case e′0 (. . . | . . .)
step/case/sum0

v1 val

case (` · v1) (` · x1 ⇒ e1 | . . .) 7→ [v1/x1]e1
step/case/sum/l

v2 val

case (r · v2) (. . . | r · x2 ⇒ e2) 7→ [v2/x2]e2
step/case/sum/r

We have carefully constructed our rules so that the new cases in the
preservation and progress theorems should be straightforward.

Theorem 1 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ

Proof: Before we dive into the new case, a remark on the rule. We can see
that the type of an expression ` · e1 is inherently ambiguous, even if we
know that e1 : τ1. In fact, it will have the type τ1 + τ2 for every type τ2. This
is acceptable because we either use bidirectional type checking, in which

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.4 Sums

case both τ1 + τ2 and ` · e1 are given to use, or we use some form of type
inference that will determine the most general type for an expression.

In any case, these considerations do not affect type preservation. There,
we just need to show that any type τ that e possesses will also be a type of e′

if e 7→ e′. Now, it is completely possible that e′ will have more types than e,
but that doesn’t contradict the theorem.1

The proof of preservation proceeds as usual, by rule on induction on the
step e 7→ e′, applying inversion of the typing of e. We show only the new
cases, because the cases for all other constructs remain exactly as before. We
assume that the substitution property carries over.

Case:

e1 7→ e′1

` · e1 7→ ` · e′1
step/l

where e = ` · e1 and e′ = ` · e′1

· ` ` · e1 : τ1 + τ2 Assumption
· ` e1 : τ1 By inversion
· ` e′1 : τ1 By ind.hyp.
· ` ` · e′1 : τ1 + τ2 By rule

Case: Rule step/r: analogous to step/l.

Case: Rule step/case/sum0: similar to the previous two cases.

Case:

v1 val

case (` · v1) (` · x1 ⇒ e1 | . . .) 7→ [v1/x1]e1
step/case/sum/l

where e = case (` · v1) (` · x1 ⇒ e1 | . . .) and e′ = [v1/x1]e1.

· ` case (` · v1) (l · x1 ⇒ e1 | r · x2 ⇒ e2) : τ Assumption
· ` ` · v1 : τ1 + τ2 and
x1 : τ1 ` e1 : τ , and x2 : τ2 ` e2 : τ for some τ1 and τ2 By inversion
· ` v1 : τ1 By inversion
[v1/x1]e1 : τ By the substitution property

1It is an instructive exercise to construct a well-typed closed term e with e 7→ e′ such that
e′ has more types than e.

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.5

Case: Rule step/case/sum/r: analogous to the previous case.

�

The progress theorem proceeds by induction on the typing derivation, as
usual, analyzing the possible cases. Before we do that, it is always helpful to
call out the canonical forms theorem that characterizew well-typed values.
New here is part (v).

Theorem 2 (Canonical Forms) Assume v val.

(i) If · ` v : τ1→ τ2 then v = λx1. e2 for some x1 and e2.

(ii) If · ` v : bool then v = true or v = false.

(iii) If · ` v : τ1 × τ2 then v = 〈v1, v2〉 for some v1 val and v2 val.

(iv) If · ` v : 1 then v = 〈 〉.

(v) If · ` v : τ1 + τ2 then v = ` · v1 for some v1 val or v = r · v2 for some v2 val.

Proof sketch: For each part, analyzing all the possible cases for the value
and typing judgments. �

Theorem 3 (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e val.

Proof: By rule induction on the given typing derivation.

Cases: For constructs pertaining to types τ1→ τ2, bool, τ1 × τ2, and 1 just as
before since we did not change their rules.

Case:

· ` e1 : τ1

· ` ` · e1 : τ1 + τ2
sum/l

where e = ` · e1.

Either e1 7→ e′1 for some e′1 or e1 val By ind.hyp.

e1 7→ e′1 Subcase
` · e1 7→ ` · e′1 By rule step/l

e1 val Subcase
` · e1 val By rule val/l

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.6 Sums

Case: Typing of r · e2: analogous to previous case.

Case:

· ` e0 : τ1 + τ2 ·, x1 : τ1 ` e1 : τ ·, x2 : τ2 ` e2 : τ

· ` case e0 (` · x1 ⇒ e1 | r · x2 ⇒ e2) : τ
case/sum

where e = case e0 (` · x1 ⇒ e1 | r · x2 ⇒ e2).

Either e0 7→ e′0 for some e′0 or e0 val By ind.hyp.

e0 7→ e′0 Subcase
e = case e0 (` · x1 ⇒ e1 | r · x2 ⇒ e2)
7→ case e′0 (` · x1 ⇒ e1 | r · x2 ⇒ e2) By rule step/case/sum0

e0 val Subcase
e0 = ` · e′0 for some e′0 val
or e0 = r · e′0 for some e′0 val By canonical forms (Theorem 2)

e0 = ` · e′0 and e′0 val Sub2case
e = case (` · e′0) (` · x1 ⇒ e1 | . . .) 7→ [e′0/x1]e1

By rule step/case/sum/l

e0 = r · e′0 and e′0 val Sub2case
e = case (r · e′0) (. . . | r · x2 ⇒ e2) 7→ [e′0/x2]e2

By rule step/case/sum/r

�

3 Sums and Unit

Once we have sums and the unit type from the previous lecture, we can
now define the Boolean type.

bool , 1 + 1

true , ` · 〈 〉
false , r · 〈 〉

if e0 e1 e2 , case e0 (` · x1 ⇒ e1 | r · x2 ⇒ e2)
(provided x1 6∈ FV(e1) and x2 6∈ FV(e2))

The provisos on the last definition are important because we don’t want to
accidentally capture a free variable in e1 or e2 during the translation.

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.7

Using 1 we can define other types. For example

option τ = τ + 1

represents an optional value of type τ . Its values are ` · v for v : τ (we have
a value) or r · 〈 〉 (we have not value of type τ).

A more interesting examples would be the natural numbers:

nat = 1 + (1 + (1 + · · ·))
0 = ` · 〈 〉
1 = r · (` · 〈 〉)
2 = r · (r · (` · 〈 〉))
succ = λn. r · n

Unfortunately, “· · ·” is not really permitted in the definition of types. We
could define it recursively as

nat = 1 + nat

but supporting this style of recursive type definition is not straightforward.
So natural numbers, if we want to build them up from simpler components
rather than as a primitive, require a unit type, sums, and recursive types.

4 The Empty Type

We have the singleton type 1, a type with two elements, 1 + 1, so can we
also have a type with no elements? Yes! We’ll call it 0 because it will satisfy
that 0 + τ ∼= τ . There are no constructors and no values of this type, so the
e val judgment is not extended.

If we think of 0 as a nullary sum, we expect there still to be a destructor.
But instead of two branches it has zero branches!

Γ ` e0 : 0

Γ ` case e0 () : τ

Computation also makes some sense with a congruence rule reducing the
subject, but the case can never be reduced.

e0 7→ e′0

case e0 () 7→ case e′0 ()

Progress and preservation extend somewhat easily, and the canonical forms
property is extended with

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.8 Sums

(vi) If · ` v : 0 then we have a contradiction.

The empty type has somewhat limited uses precisely because there is no
value of this type. However, there may still be expression e such that · ` e : 0
if we have explicitly nonterminating expressions. Such terms can appear
the subject of a case where they reduce forever by the only rule. We can also
ask, for example, what would be functions from 0→ 0. We find:

λx. x : 0→ 0
λx. case x () : 0→ 0
λx.⊥ : 0→ 0

where ⊥ is introduced in Exercise L6.1.

5 More Isomorphisms

One of the properties that is easy to check is that τ + σ ∼= σ + τ . But is 0 the
unit of +? We want to check that τ + 0 ∼= τ .

Forth = λs. case s (` · x⇒ x | r · y ⇒ case y ())
Back = λx. ` · x

We have two properties to check. The first is that for all v : τ + 0 we have
Back (Forth v) = v. By the canonical forms theorem, either v = ` · v1 for a
value v1 : τ , or v = r · v2 for v2 : 0. But the latter is impossible, so we only
have to check the first case.

Back (Forth v)
= Back (Forth (` · v1))
= Back ((λs. case s (` · x⇒ x | r · y ⇒ case y ())) (` · v1))
7→ Back (case (` · v1) (` · x⇒ x | . . .))
7→ Back v1
= (λx. ` · x) v1
7→ ` · v1
= v

In other other direction, assume we have v : τ . We reason

Forth (Back v)
= Forth ((λx. ` · x) v)
7→ Forth (` · v)
= (λs. case s (` · x⇒ x | r · y ⇒ case y ())) (` · v)
7→ case (` · v) (` · x⇒ x | . . .)
7→ v

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.9

An example we considered in lecture was τ × 0 ∼= 0.

Forth = λp. case (〈x, y〉 ⇒ y)
Back = λz. case z ()

First, we want to check that Back ◦ Forth = λp. p, which means that for every
value v : τ × 0 we have Back (Forth v) = v. But, by the canonical forms
theorem applied twice, there is no value of type τ × 0 so this equation holds
vacuously. And similarly for the other direction. In essense τ×0 ∼= 0 because
both types are empty (and we have well-typed functions going between
them).

We can speculate some other isomorphism, based on an kind of arith-
metic interpretation of the types. For example, × might distribute over
+:

τ × (σ + ρ)
?∼= (τ × σ) + (τ × ρ)

Some strange ones pop up if we think of σ→ τ as τσ. The reason to even
conjecture this is because we have already checked that ρ→ (σ → τ) ∼=
(ρ× σ)→ τ which could be written as (τσ)ρ ∼= τσ×ρ.

2→ τ
?∼= τ × τ

1→ τ
?∼= τ

0→ τ
?∼= 1

While odd, these are not ridiculous. Consider the first one, and recall that
1 + 1 ∼= bool. In one direction, we can apply the given function to true and
false to obtain two values, in other direction we can set the given values
as result of the function on true and false, respectively. Do these functions
constitute an ismorphism?

A key aspect of considering these will be to more precise about the
notion of equality between values and expressions.

6 Some Derived Notation

Once we know that the sum is associative and commutative with unit 0 we
can introduce a derived notation that is useful for practical purposes: rather
than just using labels ` and r for a binary sum, we can allow a finite set L of
labels (think of them as strings) and write

(`1 : τ1) + · · ·+ (`n : τn)

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.10 Sums

where each summand is marked with a distinct label. We also write this is
as ∑

`∈L
(` : τ`)

The 0 arises from L = ∅ and we might define

bool = (true : 1) + (false : 1)
option τ = (none : 1) + (some : τ)
order = (less : 1) + (equal : 1) + (greater : 1)

nat = (zero : 1) + (succ : nat)
list τ = (nil : 1) + (cons : τ × list τ)

Of course, to make sense of the last two we will need to introduce recursive
types.

This generalized form of sum also comes with a generalized constructor
(allowing any label of a sum) and case expression (requiring a branch for
each label of a sum). We may introduce a more formal syntax at a future
time.

7 Summary

We present a brief summary of the language of types and expressions we
have defined so far.

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 | τ1 + τ2 | 0
Expressions e ::= x | λx. e | e1 e2 (→)

| 〈e1, e2〉 | case e0 (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e0 (〈 〉 ⇒ e′) (1)
| ` · e | r · e | case e0 (` · x1 ⇒ e1 | r · x2 ⇒ e2) (+)
| case e0 () (0)

Functions.

Γ, x2 : τ2 ` e1 : τ1

Γ ` λx2. e1 : τ2→ τ1
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.11

λx. e val
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

v2 val

(λx. e1) v2 7→ [v2/x]e1
beta

Products.

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
pair

Γ ` e : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
case/pair

e1 val e2 val

〈e1, e2〉 val
val/pair

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

e1 val e2 7→ e′2

〈e1, e2〉 7→ 〈e1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/case/pair0

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x2][v2/x2]e3
step/case/pair

Unit.

Γ ` 〈 〉 : 1
unit

Γ ` e0 : 1 Γ ` e′ : τ
Γ ` case e0 (〈 〉 ⇒ e′) : τ

case/unit

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

L8.12 Sums

〈 〉 val
val/unit

e0 7→ e′0

case e0 (〈 〉 ⇒ e1) 7→ case e′0 (〈 〉 ⇒ e1)
step/case/unit0

case 〈 〉 (〈 〉 ⇒ e1) 7→ e1
step/case/unit

Sums.
Γ ` e1 : τ1

Γ ` ` · e1 : τ1 + τ2
sum/l

Γ ` e2 : τ2

Γ ` r · e2 : τ1 + τ2
sum/r

Γ ` e0 : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2) : τ
case/sum

e val
` · e val

val/l
e val
r · e val

val/r

e 7→ e′

l · e 7→ l · e′
step/l

e 7→ e′

r · e 7→ r · e′
step/r

e0 7→ e′0

case e0 (. . . | . . .) 7→ case e′0 (. . . | . . .)
step/case/sum0

v1 val

case (` · v1) (` · x1 ⇒ e1 | . . .) 7→ [v1/x1]e1
step/case/sum/l

v2 val

case (r · v2) (. . . | r · x2 ⇒ e2) 7→ [v2/x2]e2
step/case/sum/r

Zero.
Γ ` e0 : 0

Γ ` case e0 () : τ
case/zero

e0 7→ e′0

case e0 () 7→ case e′0 ()
step/case/zero0

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

Sums L8.13

Exercises

Exercise 1 Intuitively it should be clear that 1 6∼= 1 + 1 because 1 has one
element and 1 + 1 has two. Prove that they are not isomorphic according to
our definition of isomorphism between types.

Exercise 2 Exhibit the functions Forth and Back witnessing the following
isomorphisms. You do not need to prove that they constitute an ismorphism,
just show the functions. We remain here in the pure language of Section 7
where every function is terminating.

(i) τ × (σ + ρ) ∼= (τ × σ) + (τ × ρ)

(ii) 2→ τ ∼= τ × τ

(iii) 1→ τ ∼= τ

(iv) 0→ τ ∼= 1

(v) (σ + ρ)→ τ ∼= (σ→ τ)× (ρ→ τ)

Exercise 3 Many of the type isomorphisms follow arithmetic equalities,
interpreting τ + σ as addition, τ × σ as multiplication, and τ → σ as expo-
nentiation στ (see Exercise 2).

But there are also differences. In arithmetic, we have an additive in-
verse −a such that a + (−a) = 0. Prove that there can be no general type
constructor −τ such that τ + (−τ) ∼= 0.

LECTURE NOTES THURSDAY, SEPTEMBER 26, 2019

	Introduction
	Disjoint Sums
	Sums and Unit
	The Empty Type
	More Isomorphisms
	Some Derived Notation
	Summary

