
Assignment 3
Nontermination

15-814: Types and Programming Languages
Frank Pfenning

Due Tuesday, October 1, 2019

Task 1 (L6.2, 15 points) Consider adding a new expression ⊥ to our call-by-value language (with
functions and Booleans) with the following evaluation and typing rules:

⊥ 7→ ⊥
step/bot

Γ ` ⊥ : τ
bot

We do not change our notion of value, that is, ⊥ is not a value.

1. Does preservation (Theorem L6.2) still hold? If not, provide a counterexample. If yes, show
how the proof has to be modified to account for the new form of expression.

2. Does the canonical forms theorem (L6.4) still hold? If not, provide a counterexample. If yes,
show how the proof has to be modified to account for the new form of expression.

3. Does progress (Theorem L6.3) still hold? If not, provide a counterexample. If yes, show how
the proof has to be modified to account for the new form of expression.

Once we have nonterminating computation, we sometimes compare expressions using Kleene
equality: e1 and e2 are Kleene equal (e1 ' e2) if they evaluate to the same value, or they both diverge
(do not compute to a value). Since we assume we cannot observe functions, we can further restrict
this definition: For · ` e1 : bool and · ` e2 : bool we write e1 ' e2 iff for all values v, e1 7→∗ v iff
e2 7→∗ v.

4. Give an example of two closed terms e1 and e2 of type bool such that e1 ' e2 but not e1 =β e2,
or indicate that no such example exists (no proof needed in either case).

Task 2 (L6.3, 15 points) In our call-by-value language with functions, Booleans, and ⊥ (see Task 1)
consider the following specification of or, sometimes called “short-circuit or”:

or true e ' true
or false e ' e

where e1 ' e2 is Kleene equality from Task 1.

• We cannot define a function or : bool→ (bool→bool) with this behavior. Prove that it is indeed
impossible.

ASSIGNMENT 3 DUE TUESDAY, OCTOBER 1, 2019



Nontermination HW3.2

• Show how to translate an expression or e1 e2 into our language so that it satisfies the
specification, and verify the given equalities by calculation.

Task 3 (L6.4, 30 points) In our call-by-value language with functions, Booleans, and ⊥ (see Task 1)
consider the following specification of por, sometimes called “parallel or”:

por true e ' true
por e true ' true
por false false ' false

where e1 ' e2 is Kleene equality as in Tasks 1 and 2.

1. We cannot define a function por : bool→ (bool→ bool) in our language with this behavior.
Prove that it is indeed impossible.

2. We also cannot translate expressions por e1 e2 into our language so that the result satisfies the
given properties (which you do not need to prove). Instead consider adding a new primitive
form of expression por e1 e2 to our language.

(a) Give one or more typing rules for por e1 e2.

(b) Provide one or more evaluation rules for por e1 e2 so that it satisfies the given specifica-
tion and, furthermore, such that preservation, canonical forms, and progress continue to
hold.

(c) Show the new case(s) in the preservation theorem.

(d) Show the new case(s) in the progress theorem.

(e) Do your rules satisfy single-step determinacy (see Exercise L6.1)? If not, provide a
counterexample. If yes, just indicate that it is the case (you do not need to prove it).

ASSIGNMENT 3 DUE TUESDAY, OCTOBER 1, 2019


