
Assignment 7
Propositions as Types

15-814: Types and Programming Languages
Frank Pfenning

Due Tuesday, November 5, 2019

1 Propositions as Types

Task 1 (L14.1, 15 points) One proposition is more general than another if we can instantiate the
propositional variables in the first to obtain the second. For example, A⊃ (B ⊃A) is more general
than A⊃ (⊥⊃ A) (with [⊥/B]), (C ∧D)⊃ (B ⊃ (C ∧D)) (with [C ∧D/A], but not more general
than C ⊃ (D ⊃ E).

For each of the following proof terms, give the most general proposition proved by it. (We
are justified in saying “the most general” because the most general proposition is unique up to the
names of the propositional variables.)

1. λu. λw. λk.w (u k)

2. λw. 〈|(λu.w (` · u)), (λk.w (r · k))|〉

3. λx. (fstx) (sndx) (sndx)

4. λx. λy. λz. (x z) (y z)

Task 2 (L14.2, 15 points) Write out a proof term for each of the following propositions. As you
know from this lecture, this is the same as writing a program of the translated type in our program
language without the use of fixed points.

1. (A ∧ (A⊃⊥))⊃B

2. (A ∨ (A⊃⊥))⊃ (((A⊃⊥)⊃⊥)⊃A)

2 Parametric Polymorphism

Task 3 (L15.1, 10 points) Find closed types τ and σ such that

· ; · ` λx. x [τ]x : σ

ASSIGNMENT 7 DUE TUESDAY, NOVEMBER 5, 2019

Propositions as Types HW7.2

Task 4 (L15.3, 20 points) For each of the following potential isomorphisms, fill in the missing entry
and write down properly typed candidate functions Forth and Back to witness an isomorphism. You
do not need to prove the isomorphism property. On the left side of each candidate isomorphism,
we have a type with only universal quantification and function types. On the right side we have a
type using any of the type constructors from this course (functions, eager products, lazy products,
unit, sum, recursive types, lazy products) but not universally quantified types. We have filled in the
first line for you, and you can find the Forth and Back functions in Section L15.4 (no need to repeat
them).

∀α. α→ α→ α ∼= 1 + 1

(1) ∀α. α→ α ∼=

(2) ∀α. α ∼=

(3) ∼= ρα. (e : 1) + (b0 : α) + (b1 : α)

(4) ∼= nat× nat

The type nat = ρα. (zero : 1) + (succ : α). You may use the functions from Section L15.4 in your
solution to Part 4.

ASSIGNMENT 7 DUE TUESDAY, NOVEMBER 5, 2019

	Propositions as Types
	Parametric Polymorphism

