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Abstract

In the Claytronics project, we have used Meld, a logic program-
ming language suitable for writing scalable and concise distributed
programs for ensembles. Meld allows declarative code to be com-
piled into distributed code that can be executed in thousands of
computing units. We are now using Meld to program more tradi-
tional algorithms that run on multicore machines. We made several
modifications to the core language, to the compiler and to the run-
time system to take advantage of the characteristics of the target
architecture. Our experimental results show that the new compiler
and runtime system are capable of exploiting implicit parallelism
in programs such as graph algorithms, neural networks and belief
propagation algorithms.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Logic Programming, Parallel Programming

1. Introduction

In the context of the Claytronics project [1], a new programming
language, called Meld [2], was created to declaratively program
ensembles of modular robots. Ensembles are distributed systems
composed of thousands or millions of processing units that can in-
teract with each other and with the world. Meld makes ensemble
programming easier by employing a declarative style of program-
ming. Meld programs are compiled to fully distributed code and
then run individually on each node.

An ensemble is a highly dynamic and massively distributed
system, where the topology of the processing units can change very
often and faulty units are relatively common. Multicore processors
differ from ensembles by having a static topology, lower fault rates
and by having significantly fewer computing units. Starting from
the point of view of ensembles, we made several modifications to
the Meld language to make it suitable for multicores.

Meld is a logic programming language heavily based on Data-
log and uses the concepts of declarative networking that originated
with P2 [3]. We use structural facts to represent the graph topol-
ogy and to implicitly allow messaging between nodes through rule
splitting so that rules can be executed in a distributed fashion.

In a multicore setting, instead of seeing the distributed system
as a graph of processing units as in Claytronics, we see the dis-
tributed system as a graph data structure, with several threads or
cores working on nodes. In the extreme case, if we have as many
cores as nodes in the graph then we get the 1-to-1 mapping of en-
sembles. We have implemented several programs in Meld such as
graph algorithms and machine learning problems using this anal-
ogy. For example, in a neural network program, each neuron is a
node in the graph data structure and connections between neurons
are represented as structural facts. We implemented a compiler and
a virtual machine that runs on multicore architectures. Our prelim-
inary experimental results show impressive scalability results.

The rest of the paper is organized as follows. First, we present
the syntax and semantics of Meld, followed by how distribution

is achieved through localization. Next, we give an overview of
execution strategies that our virtual machine employs and then we
present scalability results for those strategies. Finally, we close this
paper by discussing current directions of this work.

2. Meld Language

Meld is a forward-chaining logic programming language based on
Datalog. Each program corresponds to a set of logical rules that
work on a database of facts. Facts are an association between a
predicate and a tuple of values. Rules may be decomposed into
head and body. The body indicates the prerequisites needed in
order to instantiate the head. They may include facts from the
database, expression constraints and variable assignments.

Meld programs are evaluated in a bottom-up fashion, that is,
we consider the set of rules and the current database and look for
rules that can be applied to create new facts. This process works by
finding some substitution that satisfies the rule’s body constraints
and facts, and then instantiating the head with this substitution so
that new facts are created and added to the database.

All predicates (and thus facts) are typed. Meld includes basic
types such as floating point numbers and integers, node addresses
and lists of basic types. We have four types of facts: structural
facts to describe an underlying graph model; computation facts to
be used as computational state; action facts which perform some
kind of action outside the logical world; and sensing facts to sense
and represent the outside world. From these, only computation
and structural facts are stored in the database. In the context of
ensembles, action facts force robots to perform actions in the real
world and sensing facts give information about the world (e.g.,
read ambient temperature). In the case of multicores, action facts
perform input/output and sensing facts detect when computation
has finished.

2.1 Distribution

Like in the P2 system [3], facts are distributed across nodes by
forcing the first argument of each predicate to be typed as a node
address. This, in conjunction with structural facts, gives rise to an
underlying graph model where nodes store facts and structural facts
describe the connections between nodes.

Since facts are dispersed through the graph structure, we restrict
rules to local rules and link-restricted rules. Local rules are rules
where facts refer to the same node. Link-restricted rules are rules
where the facts refer to different nodes but those nodes must be
connected using of structural facts (therefore disallowing reference
to arbitrary nodes). We want every rule to be evaluated locally,
therefore we need to split link-restricted rules into smaller rules
that can be evaluated locally, in a process called localization. Such
smaller rules are called communication rules, because they only
partially match the original body and such partial results must be
sent to a connected node, where the rest of the original body can be
matched next.



For instance, in this program that computes connectivity be-
tween nodes, the second path rule is a link-restricted rule:

type path(node, node).
type route edge(node, node).

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

Using localization, we get two new rules, marked here with
”@comm”. Note that communication rules force the transmission of
instantiated head facts from the node where the rule was matched
to other nodes. Localization is thus the crucial aspect that makes
Meld distributed.

path(A, B) :- edge(A, B).
path(A, B) :- __remote(A, B).

__edge(X, Y)@comm :- edge(Y, X).
__remote(A, B)@comm :- __edge(C, A), path(C, B).

2.2 Aggregates

While Meld does not allow negation, it supports the concept of
aggregates. Aggregates can be used to combine several facts into
one aggregated fact by applying a function to a certain argument of
the predicate. Meld supports functions such as min, max and sum.

Due to the distributed nature of Meld, it is sometimes difficult to
know when it is safe to generate an aggregated value. Our compiler
classifies aggregates into two classes: safe aggregates and unsafe
aggregates. Safe aggregates include aggregates that the compiler
knows in which situations they can be generated safely because
we have all the required values. These include aggregates that only
depend on local rules, called local aggregates, and neighborhood
aggregates. Neighborhood aggregates depend on source code anno-
tations that tell the compiler that it is safe to generate the aggregate
when we have all relevant facts produced by all neighboring nodes.
For example, in a PageRank computation we are interested in the
sum of the rank of all neighbors, therefore when we have a rank for
each neighbor then it is safe to compute the sum.

Some aggregates are unsafe because there is not enough local
information available in the node to make a decision. In other situ-
ations, we may have recursive rules and stratification is impossible
just by doing syntactical analysis of the source code. Unsafe aggre-
gates are thus problematic since they may require re-computation
and global synchronization.

2.3 Deletion

Because unsafe aggregates may be computed with the wrong col-
lection of facts, other facts that depend on wrong aggregates may be
computed. If the original collection of facts changes during execu-
tion, we delete every fact that depends on the invalid aggregate and
then use the newly computed aggregate. This process is known as
deletion and works like the creation of new facts, except we mark
derivations as deletions.

3. Parallel Execution

For ensembles, a node in the graph is a single computing unit that
performs communication with other nodes. In the multicore case,
the node is just part of a graph data structure and each core performs
computation on multiple nodes. Our execution model thus consists
in a set of workers and a mapping between workers and nodes in
the graph. In our implementation, a worker is a POSIX thread.

At the node level, each node has a queue of new facts to process
and computation proceeds by taking a fact F' from this queue. Next,
we select all the candidate rules where ' may match and then
we try such rules with F' and the database of facts. When a rule
succeeds, we instantiate all the head facts and we add them to the
node’s queue. With communication rules, facts generated at other

nodes are sent to the corresponding node. This pipelined execution
increases throughput by allowing immediate processing of facts.

In order to make unsafe aggregates deterministic in a parallel
setting, we introduce the concept of computation round. In each
round, we derive facts and safe aggregates and between rounds we
derive unsafe aggregates. Each round proceeds as follows:

e Workers process all regular facts and safe aggregates;

e When worker has no work to do, it enters into the IDLE state
and waits for other workers;

e Once all workers are IDLE, they synchronize using a termina-
tion barrier;

e Unsafe aggregates are generated. If unsafe aggregates were
previously computed incorrectly we derive deletion derivations;

e If new facts are generated, they are inserted into the node’s
queue to be processed during the next round;

e If no new facts were generated, then execution terminates;

3.1 Schedulers

The details of how nodes are assigned to workers is one aspect of
the runtime system that has great impact on parallel performance.
Our virtual machine implements three different schedulers that use
radically different approaches to node scheduling.

3.1.1 Static Division (SD)

The most obvious way to schedule work is to statically divide the
nodes in the graph between the available workers. However, this
division must be done in such a way that it reduces inter-worker
communication and increases intra-worker locality. We explore this
in Section 3.2.

In the SD scheduler, each worker W' has a queue of active nodes
where active nodes owned by W are pushed into to be processed.
An active node is characterized by having new facts on its queue
ready to be processed. Whenever a worker needs to fetch work,
it looks into the queue of active nodes and pops an active node
N. Then, the worker processes facts in the node’s queue until the
queue is empty. A node becomes an inactive node when it has no
more facts to be processed.

Inactive nodes may become active nodes in two situations: (1)
if a fact is generated by a local rule and (2) if a communication rule
forces a new fact to be sent to the inactive node. When the node is
made active, it goes back to the queue of active nodes. Event (1) is
only made possible by the worker that owns the node, while event
(2) can be made possible by either the owner or some other worker,
therefore each queue of active nodes needs synchronization during
the push operation.

Finally, if the queue of active nodes is empty, the corresponding
worker enters into the IDLE state, where it waits for the other
workers to become IDLE or for one of its nodes to become active.

3.1.2 Dynamic Division (DD)

Similarly to SD, in DD we also start with a static division of nodes
across workers, however we allow nodes to change owners through
work stealing to improve load balancing. Each worker has the same
queue of active nodes as before and processes active nodes in the
exact same way. However, when workers enter into the /DLE state,
a worker may select a random worker to steal nodes from.

The disadvantage of DD when compared to SD, is that the queue
of active nodes now needs to be synchronized both during push and
pop operations.

3.1.3 Dynamic Division Without Ownership (DDWO)

DDWO can be seen as an extreme instance of the DD scheduler.
Here, instead of workers having a more or less stable set of nodes,
nodes have no owner at all. There is only one queue of active



nodes from where all the workers can pop and push nodes. There
is no work stealing, since workers can perform computation in any
node of the graph, thus decreasing intra-worker locality. However,
the costs of selecting a random worker to steal work from are
nonexistent and workers can start work immediately as soon as
there is some active node in the system.

3.2 Graph Clustering

The method used to distribute nodes in the schedulers SD and
DD is important. In order to reduce communication costs between
threads, we need to avoid firing communication rules between
nodes that are located in different threads. Ideally, we should group
closer nodes into clusters and then assign a cluster to a worker.

All the structural facts that describe the graph structure need
to be written as Meld axioms so that the compiler can reconstruct
the graph and build the corresponding clusters. Since the num-
ber of workers used is arbitrary, we simply give each node a spe-
cific ordering address from O to /N, where N is the number of
nodes in the graph. This allows an efficient computation of each
node’s worker just by looking at its address. For example, to de-
termine if node n was assigned to worker W, we compare W to
min(n/(N/T), N — 1), where T is the number of workers.

The clustering method used is the breadth-first algorithm. We
pick an arbitrary node in the graph and assign it the address 0,
then we mark all its neighbors to be processed next to define their
ordering as 1, ..., N — 1. This is done recursively until all nodes
have been visited.

4. Experimental Results

We have implemented four main algorithms': Belief Propagation
(Fig. 1), which performs image de-noising using naive loopy be-
lief propagation; Neural Network (Fig. 2), which trains a neural
network using back-propagation to recognize some letters from the
alphabet; All-Pairs (Fig. 3), to compute the shortest path between
all pairs of nodes in the graph representing the 500 biggest airports
in the USA?; and PageRank (Fig. 4), that computes the rank of
webpages”.

The Belief Propagation program shows an almost linear speedup
for the three schedulers. In this program, each node exchanges mes-
sages with their neighbors and each node does an equal amount of
work. Moreover, the graph structure is a matrix, therefore the com-
putation can be efficiently distributed statically, which makes SD
and DD perform very similarly. In all the others benchmarks, SD
does not perform very well since the graph structure is not regular.

In the Neural Network program, DDWO shows the biggest
relative advantage over the other schedulers. The computational
pattern in this program may be decomposed into two phases: (1)
training data is sent from the input layer to the output layer, and
(2) weight adjustments between neurons is then performed from
the output layer to the input layer. If we also take into account that
the number of neurons is small, graph clustering can greatly affect
SD and DD. As the number of cores used increases, the number of
neurons assigned per core gets smaller, which makes DDWO more
efficient than DD, since we remove the costs of work stealing.

For the All-Pairs program, we observe slightly lower speedups
than the other benchmarks. However, this is expected since this
program is the only one that uses unsafe aggregates, therefore
it requires more barrier operations between several computation
rounds. In the PageRank program, only SD performs badly, but this
is due to the irregular nature of the graph used.

TAll programs are accessible here: https://github.com/flavioc/
meld/tree/master/benchs/progs/sources/

2 Dataset obtained from http://toreopsahl.com/datasets/

3Dataset obtained from http://www.cs.toronto.edu/ tsap/
experiments/download/download.html
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Figure 1: Scalability for the Belief Propagation program.
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Figure 2: Scalability for the Neural Network program.
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Figure 3: Scalability for the All Pairs program.
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Figure 4: Scalability for the PageRank program.

5. Current Work

One of the issues in the current Meld design is the problem of state.
We have been able to solve some of those problems by detecting
sets of rules with a stage argument, that is, rules where the second
argument of each predicate corresponds to the current iteration
level. For example, all the programs in the previous section, except
the All-Pairs, perform iterative refinements by indexing facts by
the iteration number. Inspired by XY-stratification [4], we detect
XY cliques and then insert delete operations to delete facts in older
iterations, thus reducing the memory usage of such programs.



While the previous method solves memory issues, it is still awk-
ward to express stateful programs in Meld. We are currently inves-
tigating how to model state directly in the language by leaving the
limitations of classical logic and moving to a more expressive log-
ical foundation. Our current direction is to use linear logic [5]. By
using the resource interpretation of linear logic in a distributed con-
text, we hope to implement new classes of algorithms in a declar-
ative high-level manner. A (non-distributed) example of a logic
programming language with a bottom-up semantics is provided by
LolliMon [6]. LolliMon also integrates backward chaining for lo-
cal, deterministic programs, which may make sense in our context.

We have also considered using temporal logic as our logical
foundation. The language Dedalus [7], for instance, uses time as
a source of mutability, where facts not derived in the next time step
are considered as being “deleted”. A disadvantage of the temporal
approach is the so-called frame problem: when time changes, we
need to forward everything that is supposed to remain unchanged
to the next moment in time by using frame axioms. This can be
cumbersome and can make programs much less modular. In linear
logic, the frame axioms are unnecessary because the corresponding
property is an intrinsic property of the logic itself.

type route edge(node, node).

type source(node) .

type sink(node, int).

type linear pluggedIn(node, node).
type linear unplugged(node).

type linear load(node, float).

unplugged (Sink) :- !sink(Sink, _).
load(Source, 0) :- !source(Source).

pluggedIn(Sink, Source),

load(Source, 01dAmt + Amt) :-
unplugged (Sink),
!'sink(Sink, Amt),
'edge(Sink, Source),
!'source(Source),
load(Source, 01dAmt).

pluggedIn(Sink, NewSource),
load(0ldSource, 0ldSourceAmt - Amt),
load (NewSource, NewSourceAmt + Amt) :-
pluggedIn(Sink, 0ldSource),
ledge(Sink, NewSource),
load(0ldSource, 0ldSourceAmt),
0ldSourceAmt > 1,
load (NewSource, NewSourceAmt),
!sink(Sink, Amt),
NewSourceAmt + Amt < OldSourceAmt || rand().

terminate() :- proved(pluggedIn) > MAX_ITERATIONS.

Figure 5: Power Grid problem in Linear Meld.

A potential application of linear logic are randomized and ap-
proximation algorithms. In approximation algorithms, we want an
approximate result that is much faster to compute than the optimal
result. Some examples are the asynchronous PageRank [8] and cer-
tain classes of belief propagation algorithms such as SplashBP [9].
An example of a randomized algorithm is presented in Fig. 5. This
program solves the power grid problem, where we have a set of
sinks and a set of sources and we want to connect each sink to
a source in such a way that no source is overloaded. We first de-
rive a linear fact unplugged for each sink and load fact for each
source to mark the load as 0. Then, the third rule randomly picks
a source for each sink, thus consuming the initial unplugged fact.
The fourth rule selects an overloaded source and switches one of the
connected sinks to a different source in order to reduce the source’s
load. This rule is applied several times and the program will con-
verge to a state where the load is equally distributed. Finally, we
use the proved sensing fact to detect if the pluggedIn fact has

been derived enough times already (the program could run forever)
and a terminate action fact may be generated to halt execution.

Our intuition tells us that linear logic is suitable for these kinds
of problems. However, many issues are still left to be investigated.
For example, how can we stratify linear logic programs in the
presence of aggregates? And how can resources navigate efficiently
through the graph structure?

6. Conclusions

‘We have presented Meld, a bottom-up logic programming language
inspired by the principles of declarative networking, where rules
are restricted to enable distribution in an underlying graph model.
Meld has been applied successfully in extreme distributed systems
such as ensembles. From this starting point, we have modified Meld
for multicore architectures. The basic idea is to view execution as
multiple threads performing computation on a graph data structure.

We have implemented algorithms such as Belief Propagation,
Neural Networks and PageRank and have measured the scalability
of our runtime system. The experimental results show impressive
scalability performance even when using a relatively large number
of cores. Currently, we are trying to extend Meld with linear logic
in order to increase the applicability of the language for more
interesting and real-world programs, particularly randomized and
approximation algorithms.
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