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Abstract. The design of linear logic programming languages and the-
orem provers opens a number of new implementation challenges not
present in more traditional logic languages such as Horn clauses (Prolog)
and hereditary Harrop formulas (AProlog). Among these, the problem of
efficiently managing the linear context when solving a goal is of crucial
importance for the use of these systems in non-trivial applications. This
paper studies this problem in the case of Lolli [6] (though its results have
application to other systems). We first give a proof-theoretic presenta-
tion of the operational semantics of this language as a resolution calculus.
We then present a series of resource management systems designed to
eliminate the non-determinism in the distribution of linear formulas that
undermines the efficiency of a direct implementation of this system.

1 Introduction

Linear logic [2] views logical assumptions as consumable resources. This allows
elegant and concise formalizations of a number of problems which are difficult to
represent in traditional logics. In particular, many problems centered around the
notion of a state that evolves as a computation proceeds fall into this category.
Consequently, several logic programming languages based on linear logic have
been designed in the last five years [1, 3, 6, 10]. Others are the subject of extensive
research. Each proposal is accompanied by interesting theoretical results that
show its computational relevance, and by numerous examples that prove its
practical significance. However, to our knowledge, usable implementations have
thus far been released only for Lolli [6] and Lygon [3].

Linear logic programming languages offer the implementor new challenges not
present in more traditional logic languages such as Prolog or A\Prolog. Among
these, the efficient management of the linear formulas contained in the context
is of crucial importance for the use of these languages in non-trivial applications.

This issue is particularly simple in Prolog: The only predicates that can
modify the program are the extra-logicals assert and retract, which have
global effect. In languages admitting implications in goals, AProlog [9] and EIf
[13] for example, the use of scoped assumptions causes the program to grow and
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contract like a stack. The matter is more complicated in the case of linear logic
due to the strict rules placed on the use and reuse of assumptions.
The problem is best exemplified by considering the rule for proving G; ® Ga:

Al —>G1 A2—>G2
Al,A2—>G1 ® Go

QR

When the interpreter needs to use this rule during the bottom-up search for a
proof, the assumption set has not already been divided into A; and Aj. The
naive choice is to generate all partitions of the assumption set until a pair Ay, As
with the desired properties is found. This non-deterministic behavior is clearly
a problem since the number of partitions grows exponentially with the number
of assumptions in the context. Considering the frequency with which ® and
other multiplicative connectives occur in practice, an interpreter for a linear
logic programming language based on such a generate-and-test algorithm would
be usable only for toy problems.

In this paper, we will provide a deterministic solution to this problem, as
well as to less apparent issues in context management involving the additive
connectives and constants. We do not treat other sources of non-determinism,
which can be handled according to standard techniques in a logic programming
framework, or that we might want to keep open in a theorem prover. We will fo-
cus our attention on the language Lolli [5, 6], that we used to test the techniques
described below. However, our results have already been applied to a prototype
implementation of a programming language based on Miller’s specification logic
Forum [10], and should apply equally well to implementations of other linear
logic programming languages such as Lygon [3]. It is also possible to adapt these
techniques to the development of theorem provers for linear logic.

We do not provide proofs of the soundness and completeness theorems that
relate the systems presented here. We believe these results are simple enough
to be reconstructed by the reader, who is referred to Hodas’ dissertation [5] for
proofs relevant to the first two systems.

2 Resolution for Linear Hereditary Harrop Formulas

The programming language Lolli [5, 6] is based on the fragment of linear logic
freely generated by the operators T, &, —o, D and V. The connective D is called
intuitionistic implication and is defined as A D B = !A —o B. Positive occur-
rences of 0, 1, @, ®, !, 3 and the syntactic equality among atomic formulas,
a = a’, are also allowed, as they do not invalidate any essential properties of
the language. This extended fragment is called the language of linear hereditary
Harrop formulas (LHHF for short).
The logic of LHHF is conveniently described by sequents of the form:

A = G

where I" and A are multisets of implicitly labelled negative formulas (only T, &,
—o, D and V are allowed as their principal connective) called the intuitionistic
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Fig. 1. R: A Resolution Calculus for LHHF?3.

and the linear context respectively, and together constitute the program. G is a
positive formula called the goal. The formulas in the intuitionistic context are
implicitly preceded by the modal operator !, so that the expression above trans-
lates to the more traditional sequent !I'; A = G. This manner of structuring
the sequents and the use of D retains desirable aspects of the semantics of ! (in
particular formulas in the intuitionistic context can be used arbitrarily many
times), while preventing unwanted behaviors.

Hodas and Miller discuss a proof system, £, for LHHF based on sequents
of this form [6]. They also prove the soundness and completeness of £ with
respect to the usual rules for linear logic restricted to the language of LHHF'.
Most importantly, they proved that LHHF possesses the necessary computa-

3 In this and all subsequent proof systems, the right introduction rule for universal
quantification is assumed to carry the usual proviso that the introduced constant
does not appear free in the lower sequent. Similarly, the variable z does not appear
free in a in rule Vg .



tional properties to be considered an abstract logic programming language [11].
In particular, every proof in £ can be transformed into an equivalent proof that
consults the program only when the goal formula is atomic (thus proofs are
goal-directed [11]), and at that point selects and operates upon a single program
formula in order to proceed with the derivation (thus proofs are focused [1]).
Proofs with both properties are called uniform. Hodas and Miller capture this
behavior in the system £’ which eliminates the left-hand rules of the logic in
favor of a single rule for backchaining.

In Fig. 1 we present a new resolution system, called R, for LHHF. This system
is different from but equivalent to the system L’. It is easy to show that the
judgment I'; A = @ is provable in R if and only if the sequent I'; A — G is
provable in £’.

The rules in the bottom section of Fig. 1 describe how to reduce non-atomic
goal formulas. They stem from the right introduction rules of linear logic, and
are essentially identical to the right rules for £’ [6]. R differs from £’ in the
treatment of atomic goal formulas. In order to solve these goals, Hodas and
Miller rely on the function || - ||, which converts a formula in the program to
a (possibly infinite) set of clauses, each defining a single ground atom. Here,
we embed the process of clause selection and elaboration into the proof system
itself, giving it a more syntactic and operational flavor.

When the goal formula a is atomic (Fig. 1 center), a program formula D is
selected from either the intuitionistic context (rule !d,.) or from the linear context
(rule d,). In either case, it is passed to the formula decomposition judgment

D > a\G

(Fig. 1, top) together with the atomic formula a in order to extract a goal formula
G which is equivalent to D in a sense to be explained below. At this point, the
computation proceeds by solving GG. Note that when d, is used, D is removed
from the context so that it may not be used again subsequently.

Program formulas can be seen as partial definitions of the atomic propositions
or predicate symbols that can appear in a goal position. In Horn logic, each
program clause G D a participates in the definition of a single atom (a). When
we admit free uses of conjunction, a single program formula can partially define
several atomic formulas; for example G D (a1 A az) takes part in the definition
for two distinct atoms (a; and az). When selecting a program formula D from
the context in order to solve an atomic goal a, we would like to transform D
into an equivalent clause of the form G —oa, that can be immediately used to
reduce the problem of proving a to that of solving G. This is essentially what is
achieved by the formula decomposition judgment D > a\ G.

3 A Resource Consumption Calculus for LHHF

The resolution calculus presented in the last section does not commit to any
strategy in order to split the linear context when processing multiplicative goals
from the bottom up. The non-determinism involved in this open choice can be
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Fig. 2. RM;i: A Resource Management System for LHHF

computationally harmful unless we devise a sound and complete method to split
the linear context deterministically. Let us restate the problem in terms of the
proof system just described. The resolution rule for the connective ® is as follows:

F;A1:>G1 F;A2:>G2
I's Ay, Ay = G ® Ga
——

A

S

In order to solve the goal G; ® G2, we need to split the original linear context A
into Ay and Ay such that G can be solved using the resources in A; and G2 can
be solved using the resources in As. Since intuitionistic formulas are reusable, I’
is copied to the two premisses. Assume that A contains n formulas. Then there
are 2" possible splits. In the worst case, finding a workable split (or determining
that none exists) will require trying them all.

This problem was given a deterministic solution by Hodas and Miller in [6]
in what they called the I/O model of execution for Lolli. We will instead use the
name resource management system and refer to this deduction system as RM;.

The rule above, ®,, attempts to split the context A at a stage when the
resources needed to prove the two subgoals G; and G2 are completely unknown.
However, if the original goal is to succeed, all resources not used to prove G
will be used to solve G2, and vice versa. The key idea behind the resource
consumption model is, therefore, to upgrade the passive role of goal formulas as



resource users to the more active role of resource consumers. Under this view, we
will give one of the subgoals, G; say, the whole linear context A; it will consume
part of it and return the remaining portion A, to be used by Gy.%

This basic idea is formalized in Fig. 2 by means of judgments of the form:

[; AN\ A° = @

where A is the linear part of the context that is given as input in order to solve
G. In general, G will be just one of the subgoals produced during the derivation
of a top-level goal A. The proof of G will consume part of A’ and return the
portion it did not use as the output context A, that will need to be consumed by
some other subgoal derived from A. Clearly the output context for the original
overall goal A should be empty. Indeed, the soundness and completeness theorem
for resource consumption states that I'; A = G is derivable if and only if
I'; A\ - = @ is derivable, where “” represents the empty context. The proof
of this statement, as well as for similar results concerning subsequent systems,
follows by straightforward generalization and simple induction. An important
invariant of RM, as well as of the enhanced versions to be introduced, is that,
when the judgment I'; AT\ A® = @ is derivable, the output context A© is
always a submultiset of the input context A’.

In their original paper, Hodas and Miller write this judgment I{G}O, with
G being the goal formula, and I and O being the input and the output contexts
respectively [6]. The main difference with respect to our judgment is that in their
presentation I and O are lists of items that can be either program formulas or the
special constant del. This is very close to their original Prolog implementation
of LHHF. Here A’ and A© are instead multisets of formulas. This is consistent
with the resolution judgment presented in Sect. 2, and permits easier proofs
of soundness and completeness. We also make use of the clause decomposition
judgment in place of the special predicate pickr which they appeal to.

When considering the judgment I'; AT\ A® = G, we adopt a computa-
tional point of view in which the schematic variables I', A’ and G are given as
input to the rules, while A€ is returned as an output value from the resolution
of the goal. This is consistent with a left-to-right subgoal selection strategy, that
we adopt as well. Note, however, that the rules themselves do not commit to
this operational interpretation. Rather, they are fully declarative.

We will not discuss this system in detail since it is isomorphic to the one
presented by Hodas and Miller. We will simply point out a few features that will
be relevant to the discussion of the refinements we present below.

The resolution rules for the equality test (rule I,.) and for the multiplicative
unit (rule 1,) require an empty linear context, i.e. solving these goals does not
consume resources. In RM; we model this behavior by returning as output the
same context these rules received as input. In a similar fashion, the exponential
| expects its subgoal to be solvable in an empty linear context. Therefore, rule

4 This change in perspective corresponds to the shift from data-oriented to object-
oriented programming, and fits well with a common view held in the linear logic
community of goals as active processes.



l-m, passes the empty linear context to its premiss and returns the whole input
context as output. In this rule and elsewhere, we write an output context that
must be empty due to global invariants as “_”. We use “-” for the empty context
in other circumstances, e.g. when the emptiness of a context needs to be checked
to match a rule, or when setting an input context to empty.

In the resolution system, T succeeds as a goal in any linear context. We
model this behavior by allowing this formula to consume an arbitrary portion
A of its input context.

The operational behavior of additive conjunction & requires that we solve
both subgoals G; and G5 in the same linear context. This is modelled in RM;
by giving the original input context to both G; and G3, and expecting them
to return the same output context, A, that will be the output context of the
compound formula G1 & Gy (rule &y, ).

The rule for multiplicative implication (—o,,, ) requires some attention. Let
A be the original input context. In order to process this connective, we need to
augment A’ with the antecedent D of the implication. Let A© be the context
returned after solving its consequent G. We can return A€ as the output of the
proof of D —o G only if we are sure that the newly added instance of D does
not appear in A9. This is because this D must be consumed during the proof
of G. We enforce this constraint by writing A! as A, A? and passing A, A9, D
as the input context to the premiss of the rule. By expecting A© as the output
of the whole subproof, we assert that A, D represents the portion of the input
context that is consumed while proving G. No such complications are needed for
the rule dealing with intuitionistic implication since its assumption is added to
the intuitionistic context.

4 Removing Non-Determinism from the Treatment of T

While the resource management policy enforced by system RM; removes the
most serious cause of non-determinism present in the resolution system R, it
is not yet fully deterministic. This is due to the operational semantics of the
logical constant T. As presented in rule T,,,,, this goal is allowed to consume
any portion A of its input context. If it contains n formulas, we are left with 2™
possible output contexts A that might be passed to the remaining computation.

Hodas and Miller initially underestimated the importance of this issue [6].
However the subsequent development of sample applications to accompany the
first public release of Lolli showed this problem to be critical in practice. The so-
lution we describe is adapted from Hodas’ dissertation [5], and was incorporated
into that implementation.

Roughly speaking, the idea is that once a T has been encountered, the re-
maining subgoals do not need to consume all of their input context since the
unused formulas could be “pumped back” to the place in the proof tree where
T was first seen. That is, T should not actively consume resources on its own;
rather, it should give permission to later goals to ignore resources which other-
wise would have to be consumed.



We obtain this behavior by adding an extra parameter to the resource man-
agement judgments of RM;. We now use sequents of the form:

;AN A° =, @

where v is a boolean-valued flag (the T-flag as Hodas called it, or slack indicator
as we will often refer to it) to be considered as another output argument of the
resolution of the goal G. Whenever v = 0, the resolution of G uses exactly the
resources in A’ — A©. If instead this flag has the value 1, G uses Al — A9 for
sure, but may also absorb part or all of the output context AC. In this case,
we say that AC is the slack of that branch of the proof tree. When v = 0, the
computation has no slack.

Due to the limited space available, we do not present the full system, which
we call RMs. We will however describe some of its most critical rules.

The main changes with respect to RM; concern the rules that close the
proof trees, and the binary rules. Rules I,,,, and 1,,,,:

IT'T)’LQ 17’7’)’L2

riANAl =g a=a I ANAT =4 1
both pass their linear context as the output context for the remainder of the
computation, since neither can consume any resources. These rules set the T-
flag to 0 since no occurrence of T is encountered during the proof of either 1 or
the equality test. In contrast, when T is processed as a goal in rule T,,,,:

DANAT = T e
it passes its input context as output too, but raises the T-flag, indicating that
it can be considered to have consumed some of those resources if that proves
necessary. The subsequent computation will use this information for context
management.

Rule &, is split into four rules in RMsz. Each rule handles one possible
combination of T-flags returned by the two premisses. If no T was encountered
while solving either Gy or Gy (rule &img), then the context is managed as in
the previous system and the T-flag for the proof of the compound goal G; & G2
is set to 0.

When exactly one of the two premisses sets the slack indicator, then the
behavior of the rule is determined by the other premiss. Consider for example
the case where the left premiss sets the T-flag (the other case, rule &§m2, is
symmetrical). We have the following rule:

I AI\Al,AO = G4 I AI\AO =0 Go &2
I AN AC = G1 &Gy rma

Let A be the portion of the context used while proving Go (clearly, AT = A A©).
Since both G; and G2 must consume the same portion of the context, the proof
of G can use part of A but no formula from A©. However, it does not need to
consume explicitly all the formulas in A, because, unlike G, its slack indicator



is set. We can therefore write the output context of Gy as A, A9, where A;
is the actual slack of this branch of the proof tree, and is some submultiset of
A. The T-flag for the proof of G & G4 is set to 0: since both premisses must
consume the same resources and G5 cannot take up slack, the composed goal
cannot have any slack. For the same reason, the output context of Gy & G4 is
AC.

In the final case, if both premisses return their T-flag set to 1, both subgoals
allow arbitrary slack. Therefore, we set the T-flag for the proof of the compound
formula, since in this case any excess resources can be “pumped back” to both
premisses. The output context for the compound goal is the intersection of the
output contexts returned by each of the premisses: since both branches must end
up having consumed the same resources, only what is not used in either branch
can be forwarded. This yields the following rule:

F,AI\A? = G4 F,AI\Ag =1 G &
FANAYNAY =1 GikGy

Slack handling in the rule for multiplicative conjunction is quite simple since
resources are allowed to flow freely from one premiss to the other. We set the
T-flag if either subgoal allows slack. The overall output context is the linear
context returned after proving the right premiss.

Finally, the rule for ! resets the T-flag regardless of whether T has been
encountered while solving its subgoal or not. Since the output context must
coincide with the input context in this rule, there is no place for any slack.

It is important to note that RM; and RM; improve the efficiency of the
resolution system R in two different ways. The proofs obtainable in RM; are in
one to one correspondence with the derivations we could achieve with R. RM;
improves the efficiency of proof-search by pruning from the search space branches
corresponding to unsuccessful splits of the linear context. In contrast, the system
RMs actually collapses some proofs by identifying successful derivations that
differ only on the distribution of unused assumptions among various occurrences
of T. For example, consider an attempt to solve the goal a oca—-o0a—o (T ® T)
in the empty context. There are eight distinct proofs in RM; corresponding
to the different ways of dividing the consumption of the a’s between the two
occurrences of T, but there is only one proof in RMo.

5 Improving the Treatment of Additive Conjunction

The system RM presented in the last section achieves determinism in context
management in the sense that no arbitrary context splitting choices remain.
Nevertheless, a close examination of the rules reveals that some serious efficiency
and completeness problems still remains. In particular, the rules concerning &
are unsatisfactory. The problem is already present in RM;, where we had the
following rule:

I ANA° = G T AN\ A9 = Gy
F;AI\AO:> Gl&GQ

&rml



Assuming a sequential execution for the two premisses, this rule requires that we
first solve G obtaining, say, an output context AY. Then G5 will be proved and
return the output context AS. At this point, and only at this point, we check
that AP and A9 are equal.

Even though this test can be done efficiently (for example by having a bit
vector where each position records whether the corresponding resource has been
used), we may end up rejecting many pairs of proofs before finding a pair that
consumes the same set of resources. At best this is inefficient. At worst, when
a proof of G4 proceeds down a divergent path that it might avoid with better
pruning, it leads to added incompleteness in the system. Further, in a language
with a notion of side-effect (such as screen output), an avoidable failed proof
may nevertheless produce a recordable effect.

Consider the following example, written using Lolli’s concrete syntax:

test :- (a & b), c. Y Comma is syntax for multiplicative conjunction
LINEAR c. % This goes in the linear context

a.

b :- c, write "Some Output". % Fails, but prints

According to the current execution model, the goal ‘?- test’ is solved by first
proving a (without consuming any linear resources), then attempting to prove b.
The clause for this goal is selected and its body attempted. The linear resource c
is consumed, the message is printed, and b succeeds. At this point, the resources
consumed while solving a and b are compared and the conjunction fails since
the latter conjunct used ¢ while the former did not. This causes the failure of
the original query. Clearly, it would be preferable for the attempt to solve b to
fail as soon as c is accessed, so that the message is never printed.’

In order to recognize more quickly those failures caused by the second goal
incorrectly accessing resources unused by the first, we could modify the rule
&m, as follows:

I ANAC = Gy T AT - A9\ = G,
F;AI\AO:> Gl&GQ

&/

In this rule, we give G5 exactly the portion of the linear context that it can
use and expect the empty context as an output. In this way, the resources not
consumed by G are inaccessible to G; this achieves our purposes.

This change will not, however, help the system to detect failures caused by
the second conjunct failing to consume resources that the first conjunct does
use. To see how this becomes an issue, consider another Lolli program:

test :- (a, c) & b.
LINEAR a. % This goes in the linear context
LINEAR c. % This goes in the linear context

b :- ¢ & (write "Some Output", c). % Fails, but prints

5 Even in a Prolog-based implementation, where the constraint on the output contexts
is enforced by unification rather than an after-the-fact check, the same problem
occurs if we replace the body of the rule for b with ¢, write "Some Output", true.

10



If we execute the query ‘?- test’ the system will first solve the goal to the
left of the additive conjunction by consuming a and then c. At this point it
will attempt to prove b. Since the left conjunct has used all of the resources
in the input context, b can and must use them all as well (so there is no new
restriction added by the change to the rule for & we just described). The rule for
b is selected, and its left conjunct is solved using just c. At this point, since the
right conjunct can only use ¢ but the overall proof of b was supposed to use both
a and c, we know enough to fail. Unfortunately, the system will not recognize
this situation and will print the message. The resource ¢ will then be consumed
and the proof of b will succeed, having consumed c. Only when checking that all
the resources passed to b have been used, will the system finally recognize the
failure, and cause the original query to fail.

In order to obtain the desired behavior, we modify the form of our judgment
to include three input contexts on the left of the arrow:

;AN\ A° =, G

In this judgment (which also features the slack indicator of RMs) the input
linear context is logically divided into two parts: the strict context = that must
be entirely consumed during the resolution of the goal G, and the non-strict
context A’ whose contents might be consumed while solving G. Thus = will be
managed like the linear context in the system R; only A’ may transmit unused
resources to the output A9, as in RM,. The rules defining the semantics of this
judgment are represented in Fig. 3; they constitute the system RMs3. We will
now briefly describe their principal characteristics.

First, since we have split the linear context, we need to provide two separate
rules for accessing a linear formula when the goal is atomic (rules d},,,, and d?,,,.).
The rules for the equality judgment and for proving the goal 1 are straightfor-
ward (rules I, and 1,.,,): since neither is allowed to consume any resources,
the strict context (which contains resources that must be consumed) must be
empty; the non-strict context is passed over unmodified as output. In contrast,
the rule for T deletes whatever portion of the strict context it is provided with,
and forwards as output its non-strict context, while setting the T-flag to indicate
that the output is now slack (rule T, ).

The rules for & are more complicated. In order to solve the goal G; & G2
with respect to the linear context =; A!, we first solve G in Z; A, obtaining
the output context A’ (remember, = must be entirely consumed). Two different
courses of action are now possible, depending on the value of the slack indicator:

1. If this flag was not set (rule &},,,), G2 must consume everything that has
been used by G, i.e. 5 as well as AT — A’ These two components are
packaged together into the strict context of the judgment for G5. Since this
goal is not allowed to consume any other resources, it is given an empty
non-strict context.

2. If the resolution of GG; has encountered an occurrence of T and slack is
admitted (rule &7,,,), G2 must still consume every resource used by Gy (i.e.
Z, AT — A"), but is also allowed to access the resources not used by this goal

11
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Fig. 3. RMs3:An Improved Resource Management System for LHHF.

(A7), therefore, we supply this as the non-strict context for the proof of Gs.
The output context and slack indicator for this second premiss then provide
the corresponding values for the lower sequent.

When solving a goal of the form G; ® Ga, the strict context = must be
consumed by either G; or Gs. Since the first of these subgoals may use an
arbitrary part of 5 as well as some portion of the non-strict context A, we
put both = and A’ in the non-strict context of G and leave the strict context
empty. As with &, how to solve G depends on the value of the T-flag.
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1. If no slack is allowed (rule ®;,,, ), G2 must consume whatever portion of the
original strict context Gy did not use, and may consume some formulas in Al
that were not already consumed by G;. Therefore, we restore the remainder
of Z and A’ to the strict and non-strict contexts of the judgment for Go,
respectively. To do this we take the intersection of these multisets with the
output context A’ of G.

2. If the slack indicator was set by the proof of Gy (rule ®%m3), all the strict
resources in the original = can be “pumped back” to GG; in the case that G4
does not use them. Therefore we call this goal with an empty strict context
and the output context of Gy, A’, as its non-strict context. We must be
careful, however, not to return strict resources from = as part of the output
context of G; ® G2, since they are presumed to have been consumed by the
slack consumer in G;. Therefore we intersect the context returned by Go
with the original non-strict input context A of the composed goal.

The rule dealing with linear implication takes advantage of the strict context
to simplify the task of managing the new assumption (rule —o,,, ). Since D must
be used while proving G, it is simply put into the strict context of this subgoal.
The rules for D, !, @, and the quantifiers display no interesting new features.

The system R.M3 provides a satisfactory solution to all the resource man-
agement problems we discussed in the previous sections. Unfortunately, it does
so at a rather high price since most of its rules involve complex operations on the
context (exhaustive tests on the status of one of the contexts, shuffling formulas
from the strict to the non-strict context or vice versa, etc.). Furthermore, the
order in which assumptions are made must be preserved so that the programmer
can predict in which sequence clauses are tried when solving atomic goals.

Thus we store the intuitionistic, strict and non-strict assumptions in a com-
mon data structure, differentiating the role of each formula by means of a tag.
Further, when a formula is consumed, it is generally more efficient to mark it
as such (rather than actually delete it) in order to facilitate backtracking. In
this type of implementation, each time we perform a test to check, for instance,
if the strict context is empty, we have to visit all the formulas present in all
contexts. Similar costs are incurred when we perform operations like taking the
intersection of two contexts.

We have achieved a substantial improvement in performance by maintaining
additional information about the program, in particular the number of formulas
present in the strict and non-strict contexts. Then, checking the emptiness of
the strict context reduces to an inexpensive arithmetic comparison, for example.

The rules for handling the tensor still perform a relatively expensive opera-
tion, since they must move the contents of the strict context into the non-strict
context unless the former is initially empty. We can eliminate this overhead for
nested occurrences of ® by requiring this connective to be parsed as a left as-
sociative operator. In this way, the topmost occurrence of ® will undergo the
shuffling process. But, since all inner occurrences appear in the left conjunct (G
in rules ®im3), they will be proved with an empty strict context, avoiding any
additional shuffling.
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The techniques presented in this section have been applied into an enhanced
version of the ML interpreter for Lolli. The declarative nature of the rules makes
these same ideas applicable to implementations based on other programming
paradigms. In particular, the original Prolog prototype for Lolli [6] can be easily
adapted to take advantage of these observations.

6 Conclusions and Related Work

The issue of efficient context management has proved to be crucial for the use
of linear logic programming languages in non-trivial applications. In this paper,
we have presented a general technique that not only eliminates sources of non-
determinism deriving from naive context management, but also permits early
recognition of certain failure situations. We have implemented these ideas in
the interpreter for a forthcoming release of the language Lolli. Tests showed a
general improvement in performance and in some examples arbitrary speed-ups.
We also achieved convergence for some previously non-terminating programs.
The determinism also simplifies the programmer’s task: Despite the apparent
complexity of RMjs it is relatively straightforward to predict the operational
behavior of programs and avoid inefficient generate-and-test situations.

To our knowledge, the only other authors who have been concerned with the
issue of efficiency in context management for linear logic programming languages
are the designers of Lygon. In a recent publication [4], they build on the work of
Hodas and Miller and independently develop a system with the characteristics of
Hodas’ efficient handling of T. They do not, however, present a notion equivalent
to our strict context, and make no mention of techniques akin to our linear
formula counters to reduce the overhead at the implementation level.

Our analysis was motivated primarily the goal of building an efficient inter-
preter, but should also be applicable to the design of compilers which, of course,
will ultimately be necessary for the execution of large programs. We expect
that compilation techniques developed for Prolog [8] and AProlog [7, 12] may be
combined with our methods.

The results described in the paper can be applied to other programming lan-
guages based on linear logic. Hodas and Polakow have extended the system RM3
to Miller’s specification logic Forum [10] and have based a prototype implemen-
tation on it. These techniques should extend just as easily to implementations of
Lygon [3, 4] and other linear languages. Finally, since Forum is complete for all
of classical linear logic, they are also clearly applicable to the design of theorem
provers.
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