
Types in Logic Programming

Frank Pfenning
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA
fp@cs.cmu.edu

Abstract

Types play an increasingly important role in logic programming, in lan-
guage design as well as language implementation. We present various views
of types, their connection, and their role within the logic programming
paradigm.

Among the basic views of types we find the so-called descriptive systems,
where types describe properties of untyped logic programs, and prescriptive
systems, where types are essential to the meaning of programs. A typical ap-
plication of descriptive types is the approximation of the meaning of a logic
program as a subset of the Herbrand universe on which a predicate might
be true. The value of prescriptive systems lies primarily in program devel-
opment, for example, through early detection of errors in programs which
manifest themselves as type inconsistencies, or as added documentation for
the intended and legal use of predicates.

Central topics within these views are the problems of type inference and
type reconstruction, respectively. Type inference is a form of analysis of
untyped logic programs, while type reconstruction attempts to fill in some
omitted type information in typed logic programs and generalizes the prob-
lem of type checking. Even though analogous problems arise in functional
programming, algorithms addressing these problems are quite different in
our setting.

Among the specific forms of types we discuss are simple types, recursive
types, polymorphic types, and dependent types. We also briefly touch upon
subtypes and inheritance, and the role of types in module systems for logic
programming languages.


