
Under consideration for publication in J. Functional Programming 1

A Monadic Analysis of Information Flow
Security with Mutable State

KARL CRARY∗

ALEKSEY KLIGER

FRANK PFENNING
Carnegie Mellon University

(e-mail: {crary,aleksey,fp}@cs.cmu.edu)

Abstract

We explore the logical underpinnings of higher-order, security-typed languages with mu-
table state. Our analysis is based on a logic of information flow derived from lax logic and
the monadic metalanguage. Thus, our logic deals with mutation explicitly, with impurity
reflected in the types, in contrast to most higher-order security-typed languages, which
deal with mutation implicitly via side-effects.

More importantly, we also take a store-oriented view of security, wherein security lev-
els are associated with elements of the mutable store. This view matches closely with
the operational semantics of low-level imperative languages where information flow is
expressed by operations on the store. An interesting feature of our analysis lies in its
treatment of upcalls (low-security computations that include high-security ones), employ-
ing an “informativeness” judgment indicating under what circumstances a type carries
useful information.

Contents

1 Introduction 2
2 Secure Monadic Calculus 4

2.1 Syntax 4
2.2 Static Semantics 6
2.3 Operational Semantics 8

3 Upcalls 10
3.1 An example with unit 10
3.2 A more general example 11
3.3 Informativeness 12

4 Type Safety 14

∗ This material is based on work supported in part by NSF grants CCR-9984812 and CCR-
0121633. Any opinions, findings, and conclusions or recommendations in this publication are
those of the authors and do not reflect the views of this agency.

2 Karl Crary, Aleksey Kliger and Frank Pfenning

5 Non-interference 15
5.1 Equivalence relation 15
5.2 Hexagon lemmas 16
5.3 Non-interference theorem 21

6 Encoding value-oriented secure languages 22
7 Related Work 26
8 Conclusion 27
References 28
A Judgments 29

A.1 Informativeness judgment rules 29
A.2 Typing judgment rules 30
A.3 Equivalent view judgments rules 31

B Evaluation Rules 32
C Proofs 33

C.1 Type safety proof 33
C.2 Structural properties of equivalence 37
C.3 Term Hexagon lemma proof 40
C.4 High Security Step 41

D λREF
SEC well-typed translation proof 43

1 Introduction

Security-typed languages use type systems to track the flow of information within
a program to provide properties such as secrecy and integrity. Secrecy states that
high-security information does not flow to low-security agents, and integrity dually
states that low-security agents cannot corrupt high-security information. In this
paper, we will restrict our attention to secrecy properties. A variety of security-
typed languages have been proposed, and several of them are both higher-order
(i.e., support first-class functions) and provide mutable state (Heintze & Riecke,
1998; Myers, 1999; Pottier & Simonet, 2003; Zdancewic & Myers, 2002).

However, when adopting one of these languages to the Typed Assembly Language
(Morrisett et al., 1999) setting, one faces a tension between the high-level view of
information flowing from the values of sub-terms to the result value of a complete
term and the assembly-language imperative view of instructions operating on a
mutable store. What is needed is a typed calculus in which values have structure
(i.e., like in high level languages) but information flows through the store (i.e., like
in a low-level language).

In this paper, we explore this store-oriented view of information flow: one of the
steps towards a TAL with information flow, we look at a language with a clean
separation between values and computations. A suitable starting point is Moggi’s
monadic metalanguage (Moggi, 1989; Moggi, 1991) and its corresponding logic (via
a Curry-Howard isomorphism).

Our presentation of lax logic is based on that of Pfenning and Davies (2001).
The principal distinctive feature of Pfenning and Davies’s account is a syntactic

A Monadic Analysis of Information Flow Security with Mutable State 3

distinction between terms and expressions, where terms are pure and expressions
are (possibly) effectful. They show that this distinction allows the logic to possess
some desirable properties (local soundness and local completeness) that state in
essence that the logic’s presentation is canonical. Although our work inherits these
properties, they are not particularly important here. However the term/expression
distinction also provides a clean separation between the pure and effectful parts of
our analysis, which greatly simplifies our system.

Our system bears some resemblance to the work of Abadi et al. (1999), who also
use a monadic structure to reason about information flow. However whereas we use
monads in a conventional manner to separate values from computations, they use
a monad to endow values with a security level. It is not clear how to adopt their
work to a low-level setting where the values and operations ought to correspond to
those of a real machine.

A natural question is whether this store-oriented security discipline limits the
expressive power of our account relative to ones based on a value-oriented discipline,
but we show (in Section 6) that it does not.

Overview The static semantics of our analysis is based on two typing judgments,
one for terms (M) and one for expressions (E). Recall that terms are pure and
that security is associated with effects, so the typing judgment for terms makes no
mention of security levels. Thus, the typing judgment takes the form Σ; Γ ` M : A

(where A is a type, Γ is the usual context and Σ assigns a type to the store).
Expressions, on the other hand, may have effects and therefore may interact with

the security discipline. Each location in the store has a security level associated with
it indicating the least security level that is authorized to read that location. Thus,
the typing judgment for expressions tracks the security levels of all locations an
expression reads or writes. Only the reads are of direct importance to the security
discipline (recall that we do not address integrity), but writes must also be tracked
since they provide a means of information flow. The judgment takes the form:
Σ; Γ ` E÷(r,w) A indicating that r is an upper bound to the levels of E’s reads, and
w is a lower bound to the levels of its writes, and also that E has type A. Naturally
we require that r v w, or else E could manifestly be leaking information.

Our language can be seen as a conservative extension to purely functional lan-
guages such as Haskell. Existing terms continue to be type-safe. On the other hand
new effectful code that makes use of the security discipline can be cleanly separated.

In lax logic, expressions are internalized as terms using the monadic type ©A.
Terms of type©A are suspended expressions of type A. Thus, the introduction form
for the monadic type is a term construct, and the elimination form (which releases
the suspended expression) is an expression construct. Similarly, our expressions are
internalized as terms using a monadic type written ©(r,w)A. Since the effects of
the suspended expression will be released when the monad is eliminated, the levels
of those effects must be recorded in the monad type.

Most of the rules in our account follow from the intuitions above. One remaining
novelty deals with the information content of types. Ordinarily, an expression would
be deemed to be leaking information if it were to read from a high-security location,

4 Karl Crary, Aleksey Kliger and Frank Pfenning

use the result of the read to form a value, and pass that value to a low-security
computation. However, that expression would not be leaking information if one
could show that the type of that value contained no information, or contained
information usable only by a high-security computation (who could have performed
the read anyway). Thus the type system contains a judgment ` A ↗ a stating that
the type A contains information only for computations at the level a at least. This
notion of informativeness is essential to accounting for the key issue of upcalls
(low-security computations that include high-security computations).

The remainder of this paper is organized as follows: In Section 2 we present our
basic logical account, including static and dynamic semantics, but omitting the
key issue of upcalls. In Section 3 we extend our account to deal with upcalls. In
Section 5 we state and prove a non-interference theorem. In Section 6 we show that
our store-oriented account provides at least the expressive power of value-oriented
accounts by embedding one value-oriented language into our language. Section 7
discusses some related work, Section 8 offers some concluding remarks.

2 Secure Monadic Calculus

We now describe the syntax, typing rules and operational semantics of our language.
As in other work on information flow, we have in mind an arbitrary lattice (L,v

,t,u,⊥,>) of security levels.

Operation levels To track the flow of information, we classify expressions not only
by the value that they return, but also by the security levels of their effects. In
particular, we keep track of an operation level o = (r, w), for each expression. The
security level r is an upper bound on the security levels of the store locations that
the expression reads, while w is a lower bound on the security level of the store
locations to which it writes.

Since expressions that write at a security level below their read level may ob-
viously be insecure, henceforth we restrict our attention only to operation levels
(r, w) with r v w.

The operation levels have a natural ordering (r, w) � (r′, w′). Given some ex-
pression E, if it reads from level at most r, then it surely reads from level at most
r′, provided that r v r′. Similarly, if it writes at level at least w, then it writes at
level at least w′, provided that w′ v w. That is, operation levels are covariant in
the reads and contravariant in the writes: (r, w) � (r′, w′) iff (r v r′ and w′ v w)

2.1 Syntax

The full syntax of our language is given in Figure 1. The language is split into two
syntactic categories: pure terms M that are evaluated to values V and expressions
E that are executed for effect as part of compuation states S.

Terms At the term level, we have variables, unit, booleans and conditional terms,
function abstractions and applications. For simplicity, we did not include a mecha-

A Monadic Analysis of Information Flow Security with Mutable State 5

A, B, C ∈ types ::= 1 | bool | A → B
| refa A | refra A | refwa A
| ©o A

M, N ∈ terms ::= x variables
| ∗ unit
| true | false boolean values
| if M then N1 else N2 conditional
| λx : A.M abstraction
| MN application
| ` store location
| val E suspended expression

E, F ∈ expressions ::= [M] return
| let val x = M in E sequencing
| refa (M : A) store allocation
| !M store read
| M := N store write

Γ ∈ contexts ::= · | Γ, x : A
Σ ∈ store types ::= {} | Σ{` : A}

V ∈ values ::= ∗ | true | false
| λx : A.M | ` | val E

H ∈ stores ::= {} | H{` 7→ V }
S ∈ comp. states ::= (H, Σ, E)

let x = E in F ≡ let val x = val E in F
run M ≡ let val x = M in [x]

Fig. 1. Syntax

nism for defining recursive terms, although the inclusion of such a facility would not
pose a problem. Store locations are also terms, with each location ` having a fixed
security level Level(`). The store associates locations with the values they contain.
A subtyping relation, allows us to treat store cells as either read-write, read-only,
or write-only. The term val E allows expressions to be included at the term level
as an element of the monadic type ©oA. Since terms are pure, a val E does not
execute the expression E, but rather represents a suspended computation.

Expressions The expressions include a trivial return expression [M]. The return
expression has no effect, and simply returns the value to which M evaluates. In
general, when an expression has no read effects, we say its read level is ⊥, and
if an expression has no write effects, we say its write level is >. Accordingly, the
operation level of [M] is (⊥,>). Note that (⊥,>) is the least element in the �
ordering, so our subsumption principle will let us weaken the operation level of [M]
to any operation level.

The sequencing expression let val x = M in F evaluates M down to some val E,
and executes E followed by F . The return value of expression E is bound to the

6 Karl Crary, Aleksey Kliger and Frank Pfenning

variable x in F . If E and F both have operation level o, then so does the sequencing
expression.

We will often write let x = E in F as syntactic sugar for let val x = val E in F ,
and run M for let val y = M in [y].

In addition, there are expressions that allocate, read from, and write to the store.
A read expression !M has operation level (a,>), where a is the security level of the
store location being read, and returns the contents of the store location. Dually, a
write expression M := N has operation level (⊥, a) and updates the store location
with the value of N ; it does not return an interesting value (i.e., it returns unit).

Store allocation refa (M : A) specifies the security level a and type A of the new
store location.

Allocation cannot leak information in our setting. Evidently, it is not a read
operation. Less obviously, it is not a write operation either. With a write, another
expression may learn something about the current computation by observing a
change in the value stored at a particular store location. However, the key to this
scenario is that the same location is mentioned by more than one expression. On the
other hand, allocation creates a new location that is not aliased. Thus, there can be
no implicit flow of information via an allocation expression. As a result, allocation
has operation level (⊥,>). Of course if there were a primitive mechanism in place to
distinguish locations (for example by comparing locations for equality), allocation
would once again be observable.

Although there is not a primitive mechanism for recursion at the level of expres-
sions, recursion can be encoded at the level of expressions using back-patching, see
an example in Section 3.3.

States A computation state is a partially executed program, and consists of a triple
(H,Σ, E) of a store H, a store type Σ and a closed expression E. The store maps
locations to values, and the store type maps locations to the types of those values.

We assume that in a state (H,Σ, E), the store binds occurrences of store locations
` in H and E, and we identify computation states up to level-preserving renaming
of store locations. In addition, as usual, we identify all constructs up to renaming
of bound variables.

2.2 Static Semantics

The type system of our language consists of two main mutually recursive judgments
for typing terms and expressions, and some judgments for typechecking stores, and
computation statesthat are summarized in Table 1. The first judgment Σ; Γ ` M : A

says that the term M has type A in the context Γ, where the store has type Σ. The
jugment for expressions Σ; Γ ` E ÷o A says that E returns a value of type A and
performs only operations within level o. Each rule is given with its rule number,
and the full set of rules appears in Appendix A.2.

We assume that contexts Γ are well-formed, that is, they contain at most one
occurrence of each variable x. We tacitly rename bound variables prior to adding

A Monadic Analysis of Information Flow Security with Mutable State 7

Table 1. Typing judgments

Judgment Meaning

Σ;Γ ` M : A Term M has type A

Σ;Γ ` E ÷o A Expression E has type A
and operation level o

` A ≤ B Type A is a subtype of B

` H : Σ Store H has type Σ

` S ÷o A Computation state S is well-typed

Σ; Γ ` E ÷o A

Σ; Γ ` M : A

Σ; Γ ` [M]÷(⊥,>) A
(29)

Σ; Γ ` M : ©oA Σ; Γ, x : A ` E ÷o A

Σ; Γ ` let val x = M in E ÷o A
(30)

Σ; Γ ` M : A

Σ; Γ ` refa (M : A)÷(⊥,>) refa A
(31)

Σ; Γ ` M : refra A

Σ; Γ ` !M ÷(a,>) A
(32)

Σ; Γ ` M : refwa A Σ; Γ ` N : A

Σ; Γ ` M := N ÷(⊥,a) 1
(33)

Σ; Γ ` E ÷o A o � o′

Σ; Γ ` E ÷o′ A
(34)

Σ; Γ ` E ÷o A ` A ≤ B

Σ; Γ ` E ÷o A
(36)

Fig. 2. Typing rules (expressions).

them to a context to maintain well-formedness. Similarly, we assume that store
types are well-formed, that is, they contain at most one occurrence of each store
location `.

Terms The typing rules for terms are unsurprising for a simply-typed lambda cal-
culus with unit, bool and function types. A store location ` (provided that it is
in dom(Σ)) has type refLevel(`)Σ(`). A computation term val E has the type ©oA,
provided the expression E has type A and operation level o. The rules are given
in Appendix A.2.

Expressions The typing rules for expressions (given in Figure 2) follow our informal
description. Trivial computations have the type of their return value, and operation
level (⊥,>) (rule 29). By rule (30), the sequencing expression let val x = M in E

is well-typed provided both of the sub-computations have the same operation level
(which may require using rule (34) to weaken the operation level of the sub-
computations). Allocation (rule 31) returns a new read/write store location. For

8 Karl Crary, Aleksey Kliger and Frank Pfenning

` A ≤ B

` A ≤ B a v b

` refra A ≤ refrb B
(17)

` B ≤ A b v a

` refwa A ≤ refwb B
(18)

` A ≤ B a v b

` refa A ≤ refrb B
(15)

` B ≤ A b v a

` refa A ≤ refwb B
(16)

` A ≤ B o � o′

` ©oA ≤ ©o′B
(14)

Fig. 3. Selected subtyping rules.

read and write expressions (rules 32 and 33) we only require that the correspond-
ing store location is readable or writable, respectively.

Subtyping Subsumption (rules 28, 36) allows us to weaken the type A of a term
M or an expression E, provided A is a subtype of B. Selected subtyping rules are
given in Figure 3.

Stores and states A store H is well-typed with store type Σ, provided that each
value Vi in the store is well typed under Σ and the empty context, where Σ has the
same domain as H. A computation state (H,Σ, E) is well-typed provided that the
store and the expression are each well-typed with the same store type:

dom(Σ) = {`1, . . . , `n} Σ; · ` Vi : Σ(`i) for 1 ≤ i ≤ n

` {`1 7→ V1, . . . `n 7→ Vn} : Σ
(37)

` H : Σ Σ; · ` E ÷o A

` (H, Σ, E)÷o A
(38)

2.3 Operational Semantics

A computation state is called terminal if it is of the form (H,Σ, [V]). An evaluation
relation S → S′ gives the small-step operational semantics for computation states.
We write S ↓ if for some terminal state S′, S →∗ S′. Since terms are pure and do
not have an effect on the store, their evaluation rules may be given simply by the
relation M → M ′ (no store is required). The entire set of evaluation rules is given
in Appendix B.

We write M [N/x] and E[N/x] for the capture-avoiding substitution of N for x

in the term M or expression E. We write H{` 7→ V } for finite map that extends H

with V at `.
It is instructive to consider how a computation in state

S0 = (H,Σ, let val x = M in F) would evaluate. There are three stages:

1. Letval1 is repeatedly applied until M is evaluated down to a value val E,
S1 = (H,Σ, let val x = val E in F)

2. Letvalval is then applied until the subcomputation (H,Σ, E) is evaluated
to a terminal state (H ′,Σ′, [V]),
S2 = (H ′,Σ′, let val x = val [V] in F)

A Monadic Analysis of Information Flow Security with Mutable State 9

3. Letval substitutes the value V for x in F and computation continues in state
S2 = (H ′,Σ′, F [V/x]).

For the proof of non-interference (specifically for the proof of the Hexagon Lemma),
it will be useful to have the following lemma. It says that if a term evaluates to a
value (or if a computation state evaluates to a terminal state) then the syntactic
subterms (or subexpressions) of the given term (or computation state) will likewise
evaluate to values (or terminal states). That is, our account is call-by-value.

Lemma 2.1 (Subterm/Subexpression Termination)
• If (H,Σ, E) ↓ in n steps, then

1. if E = [M] then M →n V

2. if E = let val x = M in F then M →k val E′, (H,Σ, E′) ↓ in m steps and
k + m < n

3. if E = refa (M : A) then M →k V and k < n

4. if E =!M then M →k V and k < n

5. if E = M := N then M →k V1, N →m V2 and k + m < n

• If M →n V then

1. If M = N1N2, then N1 →k V1 and V1N2 →m V1V2 and k + m < n

2. If M = if N1 then N2 else N3 then N1 →k V1 and k < n

Proof
by induction on the number of steps in the evaluation relation, by cases on the last
rule.

Our operational semantics are deterministic up to renaming of store locations:
recall that we consider store locations to be bound by the store in a computation
state. We allow a bound store location ` to be renamed `′, as long as Level(`) =
Level(`′). (Alternately, think of each security level as determining a collection of
store locations; each bound store location may be renamed only to a location within
the same collection.) Determinacy is used in the proof of non-interference.

Lemma 2.2 (Determinacy)
If M → M1 and M → M2 then M1 = M2. If S → S1 and S → S2 then S1 = S2

(upto renaming of store locations).

Proof
by induction on the evaluation relations. By cases on M → M1 (or S → S1).

In each case, by the structure of M (resp., S), there is a single evaluation rule
for M → M2 (resp., S → S2), then by IH.

Since allocation extends the store, the following lemma shows that in any se-
quence of evaluation steps (of a not necessarily well-typed state), the store type
only grows. We use this fact in the HSS Lemma.

10 Karl Crary, Aleksey Kliger and Frank Pfenning

Lemma 2.3 (Store Size)
If (H,Σ, E) →∗ (H ′,Σ′, E′) then Σ′ ⊇ Σ.

Proof
Suffices to show for one step: if (H,Σ, E) → (H ′,Σ′, E′) then Σ′ ⊇ Σ. The multi-
step result follows because ⊇ is reflexive and transitive. We proceed by induction
on the evaluation derivation (H,Σ, E) → (H ′,Σ′, E′), by cases on the last rule in
the derivation.

3 Upcalls

Although the approach discussed so far is secure, it falls short of a practical lan-
guage. There is no way to include a computation that reads from the high-security
store in a larger low security computation. In any program with a high security
read, the read level of the entire program is pushed up. However, many programs
that contain upcalls to high security computations followed by low security code
are secure.

Consider the program let z = P in E where P ÷(>,>) 1 and E has operation
level (⊥,⊥). P does not leak information because 1 carries no useful information,
and P ’s writes are above E’s reading level. Thus we would like to give the entire
program the operation level (⊥,⊥). However the type system we have presented
so far would instead promote the operation level of E and the entire program to
(>,>).

In order to have a logic of information flow, we must offer an account of upcalls.
Indeed, the power to perform high security computations interspersed in a larger
low-security computation is the sine qua non of useful secure programming lan-
guages. We offer a detailed analysis of two cases where upcalls do not violate our
intuitive notion of security. From these examples, we develop a general principle for
treating upcalls — our notion of informativeness — discussed in Section 3.3. We
take up the question of non-interference in Section 5.

3.1 An example with unit

Let E be some expression with type A and operation level (r, w) (recall that this
implies that r v w). In general, E may read values from store locations with
security level below r, write values to store locations with security level at least w,
and return some value of type A.

Suppose that A = 1. In that case, no matter what E does, if it terminates, it must
return ∗. The return value is not informative.1 Any other computation F that may
gain information through the execution of E must be able to read store locations
at security level at least w. But since r v w, F could just directly read any store

1 We are dealing here with weak non-interference: the knowledge that E terminated at all is
deemed not to carry any information.

A Monadic Analysis of Information Flow Security with Mutable State 11

locations that E reads. On the other hand, any computation with operation level
(r′, w′) where w 6v r′ can neither observe E’s effects nor gain any information from
its (uninformative) return value.

As a result, in either case, we can say that E has an effective read level of ⊥ just
as if it had no reads:

Σ; Γ ` E ÷(r,w) 1
Σ; Γ ` E ÷(⊥,w) 1

(∗)

Note that the read level now refers only to informative reads, not all reads.

The new rule allows us to have some high-security computations prior to low
security ones. Suppose Σ; · ` E ÷(>,>) 1, and Σ; x : 1 ` F ÷(⊥,⊥) A for some A.
That is, E is a high-security computation, and F is a low-security one. With the
new rule, the upcall to E, followed by the low-security computation F , can be type
checked using the new rule (∗), E has operation level (⊥,>), which can be weakened
to (⊥,⊥) by rule (34), and thus:

....
Σ; · ` E ÷(⊥,⊥) 1

Σ; · ` val E : ©(⊥,⊥)1
(27)

Σ; x : 1 ` F ÷(⊥,⊥) A

Σ; · ` let val x = val E in F ÷(⊥,⊥) A
(30)

Note that the rule (∗) does not alter the write level of the expression (that is, the
operation level in the conclusion is not (⊥,>)). Such a rule would allow programs
to leak information.

3.2 A more general example

Now consider an expression E with operation level (r, w), but this time, suppose
that E has type refa B for some type B. Are there any situations where E may be
given a different operation level?

Suppose that r v a. In that case, any computation that may read the refa B is
also able to read any store locations that E may read. Again, any computation can
either do what E does itself, or it cannot gain information from E’s return value.

On the other hand, consider the case where r 6v a. The particular value of type
refa B that E returns may carry information from store locations at security level
r. For example, E may return one of two such store locations `1 or `2 from level
a based on some boolean value V from a store location at security level r. In that
case, a computation that reads at security level a may learn something about E’s
reads (at level r) by reading from E’s return value. Since r 6v a, this represents a
violation of secure information flow.

So if E returns a refa B, we can demote its reading level whenever r v a, because
any computation that wishes to make use of that return value would need a read
level of at least r. In other words, a refa B is informative only to computations that
may read at least at some security level (namely a) above r.

This observation suggests a new subsumption rule for expressions that alters the

12 Karl Crary, Aleksey Kliger and Frank Pfenning

` A ↗ a

` A ↗ ⊥
(1)

` A ↗ a b v a

` A ↗ b
(10)

` A ↗ a ` A ↗ b

` A ↗ a t b
(11)

` 1 ↗ a
(2)

` B ↗ a

` A → B ↗ a
(3)

` A ↗ a

` ©(r,w)A ↗ w u a
(4)

` refa A ↗ a
(5)

` A ↗ a

` refb A ↗ a
(6)

` A ↗ a

` refrb A ↗ a
(7)

` refrb A ↗ b
(8)

` refwa A ↗ a
(9)

Fig. 4. Informativeness judgment.

operation level:
Σ; Γ ` E ÷(r,w) A ` A ↗ r

Σ; Γ ` E ÷(⊥,w) A
(35)

where the new informativeness judgment ` A ↗ r formalizes the idea that values
of type A, if they are informative at all, are informative only at level r or above.2

In terms of this new judgment, our earlier observations are that ` 1 ↗ r for any
r, and ` refa A ↗ r whenever r v a.

3.3 Informativeness

We now consider some properties of the new judgment ` A ↗ a (see Figure 4).
Several structural rules (1,10,11) for the judgment are immediate. If A is informative
at all, then it’s informative only at ⊥ or above. Also, if A is informative only at
or above a and if b v a, then A is informative only at or above b. That is, we
may choose to discard some knowledge about when a type is informative. Finally,
suppose A is informative only above a, and A is informative only above b. Then for
any r if values of type A are informative to computations that read at r, we know
that both a v r and b v r. Therefore, for any such r, at b v r. So, A is informative
only above a t b.

With the structural rules in place, we may consider each of the types in our
language. We should keep in mind, that by adding rules to the judgment ` A ↗ a

we increase the expressive power of the language by allowing more programs to be
well-typed. It is always safe to add more restrictive rules in place of more liberal
ones. Below we take the most permissive rules that still maintain non-interference,
although it is not clear in all cases that such flexibility is needed in practice.

A value of type bool is informative for any computation at all, since it may be
trivially analyzed with a conditional. So aside from the structural axiom ` A ↗ ⊥,
there should be no other rules for bool. We would give a similar account of other
types that may be analyzed by branching (e.g., sum types A + B or integers int).

2 Informativeness is closely related to protectedness in DCC (Abadi et al., 1999) and to the
tampering levels of (Honda & Yoshida, 2002). We discuss the relationship in Section 7.

A Monadic Analysis of Information Flow Security with Mutable State 13

Since functions are used by application, a value of type A → B is useful exactly
when B is.

One straightforward rule (5) for references says that a store location is only
informative if we can get at the value within it. There is an additional rule for
references. Even if a computation can read from a store location of type refb A (i.e.,
its read level is above b), only if A is informative at its operation level, can refb A

be informative.
Read-only store locations are useful only to computations that may read from

them. Consequently, by an argument similar to the one for read-write store cells,
they have analogous rules.

For write-only store cells refwa A, we have to consider aliasing. One way that a
computation may learn whether two store locations are aliases is by writing a known
value to one of them, and then reading out the value from the other. Because of
subtyping, if a lower-security computation has a store location ` of type refra A, a
value of type refwa A may be informative if the computation can read from (the
seemingly unrelated) `.

It is instructive to consider in detail the problem with write-only store locations
refwa A. Suppose that instead of the rule (9), we had the following rule

` refwa A ↗ b
(incorrect)

That is, the same as the rule for unit: a value of type refwa A is only informative
above some security level b, for any b, i.e. not informative.

The following computation shows that with the incorrect rule, it is possible to
leak high security information (whether the value of secret , a >-security bool, is
true) to a low security computation3:

let x = ref⊥ (false : bool) in

let y = ref⊥ (false : bool) in

let z = (let q = !secret in

[if q then x else y]) in

let = z := true in

run !x
The program lets z alias either x or y depending on the value of secret. The

computation whose value is assigned to z may be subsumed to type refw⊥ bool, and
by the incorrect rule, ` refw⊥ bool ↗ >, so the operation level of that computation
can be dropped to (⊥,>) (and subsumed to (⊥,⊥)). Then by writing a known
value to z, whether we can observe a change in another alias of the same location is
sufficient to learn about secret. We can give the entire computation the operation
level (⊥,>) while it demonstrably returns the high-security value.

Finally, consider the type ©(r,w)A. A value of this type is informative both to
computations that may read at least security level w (that is, the level the suspended
expression writes to), and to computations for which the type A is informative.

3 Recall that let x = E in F is syntactic sugar for let val x = val E in F

14 Karl Crary, Aleksey Kliger and Frank Pfenning

λc : ©(>,>)bool.
val let wref = ref> (val [∗] : ©(⊥,>)1) in

let w = [val (let b = run c in run (if b then val (let w′ = !wref in run w′) else val [∗]))] in
let = wref := w in
run w

Fig. 5. Using rule (35), untilFalse has type ©(>,>)bool →©(⊥,>)1

With informativeness in hand, many more useful terms become well-typed. Con-
sider, for example, the term in Figure 5. The function untilFalse takes as argument
a computation that reads and writes high before returning a boolean, and runs that
computation repeatedly until it returns false. Recursion is accomplished using back-
patching: a store location with a dummy value is allocated and is bound to wref,
recursive calls in the body of the loop dereference wref and run the contents. The
recursive knot is tied by overwriting the contents of wref with the real loop body
w.

Interestingly, although untilFalse takes a high-security computation as an argu-
ment, our type system is able to give it the type ©(>,>)bool →©(⊥,>)1, that is its
return type is a low-security computation. Intuitively, even if c is a high-security
computation, untilFalse c does not leak any information to low-security since any
information gained from c’s return value is used only within the loop. To show
that untilFalse is well-typed, observe that Γ ` let b = run c in run (. . .) ÷(>,>) 1,
and since ` 1 ↗ >, it can be given operation level (⊥,>). The rest of the typing
derivation is straightforward.

4 Type Safety

Our language enjoys the usual type safety property: well-typed computations do
not become stuck. We may show type safety in the usual manner using Preservation
and Progress lemmas.

Lemma 4.1 (Preservation)
If ` S ÷o A and S → S′ then ` S′ ÷o A

Proof by induction on the evaluation relation. Proof given in Appendix C.1.4.

Lemma 4.2 (Progress)
If ` S ÷o A then either S is terminal, or there exists an S′ such that S → S′

Proof by induction on the typing derivation. Proof given in Appendix C.1.4.

Theorem 4.3 (Type Safety)
If ` S and S →∗ S′ then S′ is not stuck.

Proof
By induction on the number of evaluation steps. If S takes zero steps, then by
Progress, it is not stuck. If S takes n+1 steps, then by Preservation it takes a step
to some well-typed state, and so by the induction hypothesis, S′ is not stuck.

A Monadic Analysis of Information Flow Security with Mutable State 15

Table 2. Equivalence judgments

Judgment Meaning

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A Term Equivalence

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A Expression Equivalence

` (H1 : Σ1) ≈U
ζ (H2 : Σ2) Store Equivalence

` S1 ≈ζ S2 ÷o A State Equivalence

5 Non-interference

Fix a security level ζ. We say that a security level is low if it is below ζ, and high
otherwise. Informally, non-interference says that computations that have a low read
level do not depend on values in high security store locations.

The proof is structured similarly to (Zdancewic & Myers, 2002; Zdancewic & My-
ers, 2001b), and other proofs of non-intereference based on relating the operational
behavior of pairs of computations, such as (Pottier & Simonet, 2003). However,
by taking advantage of our informativeness judgment (see below), we can give a
concise definition of the relation between computation states.

Operationally, the low security sub-computations of a program should behave
identically irrespective of the values in the high security store locations. On the
other hand, high security sub-computations may behave differently based on values
in high security store locations. However once a high security sub-computation
completes, the low security behavior should again be identical modulo the parts
of the computation state that are “out of view” of the low security part of the
program.

Formally, we define an equivalence property of computation states such that two
states are equivalent whenever they agree on the “in view” parts of the computation
state. Then, in the style of a confluence proof modulo an equivalence relation (Huet,
1980), we show that this property is preserved under evaluation.

5.1 Equivalence relation

We axiomatize the desired property as a collection of equivalence judgments (on
states, stores, terms and expressions) that are summarized in Table 2.

Stores and States Certainly values in high security store locations are out of view.
Less obviously, some values in the low security locations are out of view as well: if a
low security store location appears only out of view, its value is also out of view. We
parametrize the store equivalence judgment by a set U of in-view store locations.
Two (well-typed) stores are equivalent only if their in view values are equivalent:

16 Karl Crary, Aleksey Kliger and Frank Pfenning

` H1 : Σ1 ` H2 : Σ2

Σ1 � U = Σ2 � U
Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`) for ` ∈ U

` (H1 : Σ1) ≈U
ζ (H2 : Σ2)

(58)

Where the notation Σ � X is the restriction of Σ to just the locations in the set X.

For a pair of computation states, only low security locations that are common
to both computations are in-view. Since allocation does not leak information, it is
possible for two programs to allocate different low security locations while executing
high security sub-computations. However such locations are out of view for the low
security sub-computation.

Pairs of computation states are equivalent if their stores are equivalent on the
in-view locations, and if they have equivalent expressions:

` (H1 : Σ1) ≈dom(H1)∩dom(H2)∩↓(ζ)
ζ (H2 : Σ2) Σ1; Σ2; · ` E1 ≈ζ E2 ÷o A

` (H1,Σ1, E1) ≈ζ (H2,Σ2, E2)÷o A
(59)

Where ↓(ζ) = {` | Level(`) v ζ} is the set of all low security locations.

Terms and Expressions High security sub-computations of a program may return
different values to the low security sub-computations. However, by the upcall rule
(35), the type of those values must be informative only at high security.

Values of a type that is informative only at high security are out of view. As a
result, any two values of such a type are equivalent since two such values vacuously
agree on their in view parts:

Σ1; Γ ` V1 : A Σ2; Γ ` V2 : A ` A ↗ a a 6v ζ

Σ1; Σ2; Γ ` V1 ≈ζ V2 : A
(39)

The remaining rules for term and expression equivalence are congruence rules that
merely require corresponding sub-terms or sub-expressions to be equivalent. They
are listed in Appendix A.3. Some useful structural properties (transitivity, inversion,
functionality, etc) of the equivalence judgment are proved in Appendix C.2.

5.2 Hexagon lemmas

Non-interference will follow as a consequence of a pair of Hexagon Lemmas: one
for terms and one for expressions. We show that by starting with some two related
terms (or expressions) that both take a step, we can find zero or more steps that each
of them could take so that we get back to related states (respectively, expression).

The lemma for terms is summarized in Figure 6, the name “Hexagon Lemma” is
motivated by the shape of this diagram.

A Monadic Analysis of Information Flow Security with Mutable State 17

` M1 ≈ζ M2 : A

	�
�

�
� @

@
@

@R
M ′

1 M ′
2

.............

∗

R 	..
..
..
..
..
..
.

∗

` M ′′
1 ≈ζ M ′′

2 : A

Fig. 6. Informal statement of the Term Hexagon Lemma

Lemma 5.1 (Term Hexagon Lemma)
For all ζ, if Σ1; Σ2; · ` M1 ≈ζ M2 : A and M1 → M ′

1 and M2 → M ′
2 and

M ′
1 ↓ and M ′

2 ↓, then there exist M ′′
1 ,M ′′

2 such that M ′
1 →∗ M ′′

1 , M ′
2 →∗ M ′′

2 ,
Σ1; Σ2; · ` M ′′

1 ≈ζ M ′′
2 : A

The proof is by induction on the given derivation. Most cases are vacuous. In the
cases of function application and if-then-else, proceed by subcases on M1 → M ′

1.
The full proof is given in Appendix C.3.

Roughly speaking, the proof of the Hexagon Lemma for expressions is divided
into two cases depending on whether the sub-expressions of the current pair of
states depend on in-view (v ζ) or out-of-view (6v ζ) locations. In the former case,
the two states execute in lock-step and after each computation step we can show
the resulting states are equivalent. In the latter case, each computation state may
execture arbitrarily many high security steps before continuing on with low-security
computation that is in view of the observer. The following High Security Step lemma
shows that starting with two equivalent stores and executing arbitrary high-security
expressions, the resulting stores are still equivalent for the low-security observer.

One complication in this lemma is that evaluation of two distinct computation
states S1, S2 may inadvertently allocate the same store location ` for distinct pur-
poses. However we will show that for each such `, we may choose an element of the
α-equivalence class of S1 or S2 such that all such accidental sharing is eliminated.

Lemma 5.2 (High Security Step (HSS))
Given (H1,Σ1, E1) and (H2,Σ2, E2) such that

• ` (H1 : Σ1) ≈U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ),

• Σi; · ` Ei ÷oi
Ci for some oi = (ri, wi), Ci with wi 6v ζ for i = 1, 2,

and if (H1,Σ1, E1) →∗ (H ′
1,Σ

′
1, E

′
1) and (H2,Σ2, E2) →∗ (H ′

2,Σ
′
2, E

′
2) then

• ` (H ′
1 : Σ′

1) ≈U
ζ (H ′

2 : Σ′
2)

• and moreover U = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)

Proof

18 Karl Crary, Aleksey Kliger and Frank Pfenning

1. By Regularity of Equivalence, ` (Hi : Σi) for i = 1, 2
2. By Lemma C.21, for i = 1, 2:

• ` (Hi : Σi) ≈Ui

ζ (H ′
i : Σ′

i) where Ui = dom(Σi) ∩ ↓(ζ)

3. By Regularity, ` H ′
i : Σ′

i for i = 1, 2
4. Note also that U ⊆ Ui for i = 1, 2
5. Consider an arbitrary ` ∈ U

(a) Since ` (H1 : Σ1) ≈U
ζ (H2 : Σ2), Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : A,

(b) Evidently, also ` ∈ Ui

(c) And since, for i = 1, 2, ` (Hi : Σi) ≈Ui

ζ (H ′
i : Σ′

i), we have Σi; Σ′
i; · `

Hi(`) ≈ζ H ′
i(`) : A.

(d) Therefore, by symmetry and transitivity, Σ′
1; Σ

′
2; · ` H ′

1(`) ≈ζ H ′
2(`) : A

6. So, by rule (58), ` (H ′
1 : Σ′

1) ≈U
ζ (H ′

2 : Σ′
2)

7. Now consider a new set U ′ = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)
8. Since Σ′

i ⊇ Σi, so U ′ ⊇ U

9. Suppose ` ∈ U ′ \ U

(a) Since ` ∈ U ′, ` ∈ dom(Σ′
i) for i = 1, 2

(b) Since ` 6∈ U , then ` 6∈ dom(Σi) for at least one of i = 1 or i = 2
(c) Suppose ` 6∈ dom(Σ1) (the other case is similar)
(d) Choose a fresh store location `′ 6∈ dom(Σ′

1) ∪ dom(Σ′
2) with Level(`′) =

Level(`), and systematically rename ` with `′ in (H ′
1,Σ

′
1, E

′
1).

(e) Evidently we have an element of the α-equivalence class of (H ′
1,Σ

′
1, E

′
1)

where ` 6∈ dom(H ′
1)

10. So U ′ = U , and the conclusion of the lemma follows.

We may now show a hexagon lemma for expressions.

Lemma 5.3 (Hexagon Lemma)
For all ζ, if o = (r, w) with r v ζ, and if

• ` S1 ≈ζ S2 ÷o C

• S1 → S′1, S2 → S′2
• S′1 ↓, S′2 ↓

then there exist S′′1 , S′′2 such that

• S′1 →∗ S′′1 , S′2 →∗ S′′2
• · ` S′′1 ≈ζ S′′2 ÷o C

Proof
By Inversion on ` S1 ≈ζ S2 ÷o C, we have

• S1 = (H1,Σ1, E1), S2 = (H2,Σ2, E2)
• ` (H1 : Σ1) ≈U

ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)
• Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C

Now we proceeed, by induction on the derivation of Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C,
by cases on the last rule in the derivation. In each case we exhibit the appropriate
S′′i = (H ′′

1 ,Σ′′
1 , E′′

1), S′′2 = (H ′′
2 ,Σ′′

2 , E′′
2). We show several representative cases below.

A Monadic Analysis of Information Flow Security with Mutable State 19

• Case
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(r′,w) C ` C ↗ r′

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(⊥,w) C
(51)

By pattern matching, r = ⊥
Consider two subcases: either r′ v ζ or r′ 6v ζ. The former case follows by the
induction hypothesis. In the latter case, we appeal to the HSS lemma:

1. Since r′ v w, then w 6v ζ

2. Since S′i ↓, (Hi,Σi, Ei) →+ (H ′′
i ,Σ′′

i , [Vi]) for some S′′i = (H ′′
i ,Σ′′

i , [Vi]) for
i = 1, 2

3. Therefore we can apply HSS to get

— ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

— U = dom(H ′′
1) ∩ dom(H ′′

2) ∩ ↓(ζ)

4. By repeatedly applying Preservation, Σ′′
i ; · ` [Vi]÷(r′,w) C for i = 1, 2

5. And by various typing rules, Σ′′
1 ; Σ′′

2 ; · ` [V1] ≈ζ [V2]÷o C

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : A

Σ1; Σ2; · ` refa (M1 : A) ≈ζ refa (M2 : A)÷(⊥,>) refa A
(55)

By pattern matching, Ei = refa (Mi : A), o = (⊥,>), C = refa A

There are two possible evaluation rules for (H1,Σ1, E1) → (H ′
1,Σ

′
1, E

′
1)

— Subcase Ref1 follows eventually from the Term Hexagon Lemma.
— Subcase Ref: M1 value, H ′

1 = H1{`1 7→ M1}, Σ′
1 = Σ1{`1 : A}, E′

1 = [`1],
where `1 6∈ dom(H1), Level(`1) = a

1. By Equivalent Values (Lemma C.19), M2 is a value since M1 is

2. Only Ref rule is applicable to (H2,Σ2, E2) → (H ′
2,Σ

′
2, E

′
2): H ′

2 =
H2{`2 7→ M2}, Σ′

2 = Σ2{`2 : A}, E′
2 = [`2], where `2 6∈ dom(H2),

Level(`2) = a

3. Consider two subcases now, either a v ζ or a 6v ζ. In the former case
we want both states to allocate the same fresh location (that will be
in-view to the observer), in the latter case we want the locations to be
distinct (and thus out of view):

– Subcase a v ζ

(a) Since in both S′1 and S′2, `1 and `2 are freshly allocated, we may
α-vary S′1, S

′
2 such that `1 = `2 = ` for an appropriate `

(b) Then Level(`) = a, ` 6∈ dom(H1) ∪ dom(H2)

(c) Let S′′i = (Hi{` 7→ Mi},Σi{` : A}, [`]) for i = 1, 2

(d) The result follows since the freshly allocated location is (by con-
struction) in the set U ′′ = U ∪ {`} of common locations between
S′′1 and S′′2 , and it contains equivalent values.

– Subcase a 6v ζ

In this case the newly allocated locations `1, `2 are not in the
common set of S′′1 and S′′2 since they have high security levels.

20 Karl Crary, Aleksey Kliger and Frank Pfenning

Furthermore Σ1{`1 : A}; Σ2{`2 : A}; · ` `1 ≈ζ `2 : refa A, since
` refa A ↗ a and a 6v ζ. The result follows.

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : refra C

Σ1; Σ2; · `!M1 ≈ζ !M2 ÷(a,>) C
(56)

By pattern matching, Ei =!Mi, o = (r, w) = (a,>). Recall that a = r v ζ

There are two applicable rules for (H1,Σ1, E1) → (H ′
1,Σ

′
1, E

′
1)

— Subcase Bang1 follows by the Term Hexagon Lemma
— Subcase Bang: M1 = `1, H ′

1 = H1, Σ′
1 = Σ1, E′

1 = [H1(`1)]

1. By Equivalent Values (Lemma C.19), M2 is a value since M1 is.

2. The single applicable evaluation rule for (H2,Σ2, E2) → (H ′
2,Σ

′
2, E

′
2)

is Bang: M2 = `2, H ′
2 = H2, Σ′

2 = Σ2, E′
2 = [H2(`2)]

3. Let S′′i = (Hi,Σi, [Hi(`i)]) for i = 1, 2

4. So it only remains to show that Σ1; Σ2; · ` Hi(`1) ≈ζ H2(`2) : C

5. By Equivalent Term Inversion on Σ1; Σ2; · ` `1 ≈ζ `2 : refra C, there
are two possibilities:

– Either Σi; · ` `i : B and ` B ≤ refra C and ` B ↗ b and b 6v ζ

It follows by a series of inversions that B is either refrb′ B′ or refb′ B′

and in either case ` B′ ↗ c for some c 6v ζ. That is, the computa-
tions are dereferencing locations whose contents are not informative
to a ζ-observer. The result follows.

– Or `1 = `2 = ` where Level(`) = b v ζ,
and ` refb Σ1(`) ≤ refra C and Σ1(`) = Σ2(`). This case follows
since ` is in the common set of Σ1,Σ2 and since the stores are
equivalent.

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : refwa A Σ1; Σ2; · ` N1 ≈ζ N2 : A

Σ1; Σ2; · ` M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

By pattern matching, Ei = Mi := Ni, o = (r, w) = (⊥, a), C = 1
There are three applicable rules for (H1,Σ1, E1) → (H ′

1,Σ
′
1, E

′
1). If the rule

was Assn1 or Assn2, the result follows from the Term Hexagon Lemma.
Otherwise, the rule was Assn, and we have: M1 = `1, N1 value, H ′

1 =
H1{`1 7→ N1}, Σ′

1 = Σ1, E′
1 = [∗]

1. By Equivalent Values (Lemma C.19), M2, N2 are values since M1, N1 are.
2. The only applicable evaluation rule for (H2,Σ2, E2) → (H ′

2,Σ
′
2, E

′
2) is

Assn, and we have: M2 = `2, H ′
2 = H2{`2 7→ N2}, Σ′

2 = Σ2, E′
2 = [∗]

3. Let S′′i = (Hi{`i 7→ Ni},Σi, [∗]). It suffices to show that the updated stores
are still equivalent.

4. By Equivalent Term Inversion on Σ1; Σ2; · ` `1 ≈ζ `2 : refwa A, there are
two possibilities:

— Either Σi; · ` `i : B and ` B ≤ refwa A, ` B ↗ b and b 6v ζ

A Monadic Analysis of Information Flow Security with Mutable State 21

By Subtyping Inversion, either B = refwb′ B′ or B = refb′ B′ and in
either case ` A ≤ B′ and a v b′

– If B = refwb′ B′, then it eventually follows from inversions that
Level(`i) 6v ζ, and so the `i are not in the common set U of locations,
and the result follows.

– If B = refb′ B′

(a) By Subtyping Inversion, B′ = Σi(`i) and b′ = Level(`i) for i =
1, 2

(b) By Informativeness Inversion, b v b′ t c and ` B′ ↗ c for some c

(c) Since b 6v ζ, either b′ 6v ζ or c 6v ζ

(d) If b′ 6v ζ, we can use the same argument as the previous subcase:
B = refwb′ B′.

(e) So instead suppose b′ v ζ; it must be the case that c 6v ζ.

(f) Consider `1 (the argument for `2 is symmetric)

(g) Evidently Level(`1) = b′ v ζ, so suppose `1 ∈ U (if not, same
argument as previous subcase)

(h) If `1 = `2 then the situation is the same as the next subcase
(`1 = `2 = `, ...) below; so suppose `1 differs from `2

(i) So `1 ∈ dom(Σ2) = dom(H2)

(j) By heap typing inversion, Σ2; · ` H2(`1) : Σ2(`1)

(k) Since `1 ∈ U , Σ2(`1) = Σ1(`1) = B′

(l) By rule (39), Σ1; Σ2; · ` N1 ≈ζ H2(`1) : Σ1(`1)

(m) Therefore for all ` ∈ U , Σ′′
1 ; Σ′′

2 ; · ` H ′′
1 (`) ≈ζ H ′′

2 (`) : Σ′′
1(`)

(n) So by rule (58), ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

— Or `1 = `2 = ` and Level(`) v ζ and Σ1(`) = Σ2(`), and ` refLevel(`) Σ1(`) ≤
refwa A

We can show that ` is in the common set U of locations; the result
follows by a straightforward derivation.

5.3 Non-interference theorem

By repeatedly applying the Hexagon Lemma, we can prove a non-interference result.
We show that starting with some initial store H (well-typed with store type Σ) and
an expression to execute E with a free variable x, if we plug in different values V1, V2

for x, then provided that the in-view parts of V1, V2 are equivalent, we expect that
if the resulting programs (H,Σ, E[V1/x]), (H,Σ, E[V2/x]) run to termination, the
resulting terminal states will be equivalent on their in view parts.

Theorem 5.4 (Non-interference)

22 Karl Crary, Aleksey Kliger and Frank Pfenning

If ` H : Σ and Σ;x : A ` E ÷(r,w) B and if Σ;Σ; · ` V1 ≈r V2 : A then if
(H,Σ, E[V1/x]) →∗ S1 and (H,Σ, E[V2/x]) →∗ S2 and both S1, S2 are terminal,
then ` S1 ≈r S2 ÷(r,w) B

Proof
By reflexivity and Functionality (see Appendix C.2), we can show that

Σ; Σ; · ` E[V1/x] ≈r E[V2/x]÷(r,w) B

By repeated application of the Hexagon Lemma, the two computations evaluate to
equivalent terminal states. Since the operational semantics are deterministic, those
terminal states are S1 and S2, respectively.

6 Encoding value-oriented secure languages

Our account differs substantially from prior secure programming languages where
each value has a security level. In such languages, terms are classified by security
types: pairs of an ordinary type and a security level. The type system ensures that
each term is assigned a security level at least as high as the security level of the
terms contributing to it. In our account only the store provides security. A natural
question is whether we sacrifice expressive power in comparison to value-oriented
secure languages.

We will show that our language is at least as expressive by showing how to embed
several value-oriented secure languages in our account. The embeddings are not only
type correct, but also preserve security properties of the source languages.

When a computation analyzes a value of a datatype by cases, each arm — by
virtue of control flow — gains information about the subject of the case expression.
In a purely functional setting, that additional information may only be used to
compute the return value of the expression. Thus it suffices to require the return
type of each arm (and thus the entire case expression) to be at least as secure as
the case subject.

On the other hand, in an imperative setting, information gained via control-flow
may leave an expression non-locally (e.g., via a write to the store). As a result, it
becomes necessary to track such implicit flows of information. Secure imperative
languages use a so-called program counter security level, pc, as a lower bound on
the information that a computation may gain via control flow. Consequently, the
results and effects of each expression must be at least as secure as any information
gained via control flow.

In contrast to value-oriented secure programming languages, in our account we
expect that case analysis is at the term level, and thus the arms of the case term
do not have side-effects. We show that our approach is at least as expressive as
imperative value-oriented secure languages.

We consider the language λREF
SEC (summarized in Figure 7) of Zdancewic (2002).

In addition to unit and boolean types, it has function types that are annotated
with a lower bound on the write effects of the function body, and store locations.
The base values of λREF

SEC are annotated with a security level inside expressions.

A Monadic Analysis of Information Flow Security with Mutable State 23

t ∈ types ::= 1 | bool | s1
pc−→ s2 | ref s

s ∈ security types ::= (t, a)
bv ∈ base values ::= ∗ | true | false | ` | λ[pc]x : s.e
e ∈ expressions ::= x | bva | if e1 then e2 else e3 | e1e2 | ref (e : s)) | !e | e := e′

Fig. 7. λREF
SEC Syntax

Σ; Γ ` bv : t

Σ; Γ ` ∗ : 1 Σ; Γ ` true : bool Σ; Γ ` false : bool Σ; Γ ` ` : Σ(`)

Σ; Γ, x : s[pc] ` e : s′

Σ; Γ ` λ[pc]x : s.e : s
pc−→ s′

Σ; Γ ` bv : t′ ` t′ ≤ t

Σ; Γ ` bv : t

Fig. 8. λREF
SEC base value typing.

The typing rules for λREF
SEC are given by a pair of mutually recursive judgments

for base values and expressions, given in Figures 8 and 9.
The following key property is maintained by the λREF

SEC typing judgment. Intu-
itively, it captures the idea that the value of an expression is at least as secure as
the information that the expression gains via implicit information flow.

Lemma 6.1
If Σ; Γ[pc] ` e : (t, a) then pc v a.

The proof of this fact appears as Lemma 3.2.1 in Zdancewic (2002).

Encoding In order to emulate the sealing behavior of value-oriented languages in our
store-oriented discipline, we embed source-language values of security type s = (t, a)
into read-only refs in our language s = refra t.

A slight complication arises in the translation of ref types ref s since our language

Σ; Γ[pc] ` e : s

Σ; Γ, x : s[pc] ` x : s t pc

Σ; Γ ` bv : t

Σ; Γ[pc] ` bva : (t, a t pc)

Σ; Γ[pc] ` e : s′ ` s′ ≤ s

Σ; Γ[pc] ` e : s

Σ; Γ[pc] ` e1 : (bool, a)
Σ; Γ[pc t a] ` e2 : s
Σ; Γ[pc t a] ` e3 : s

Σ; Γ[pc] ` if e1 then e2 else e3 : s

Σ; Γ[pc] ` e1 : (s′
pc′−−→ s, a)

Σ; Γ[pc] ` e2 : s′

pc t a v pc′

Σ; Γ[pc] ` e1e2 : s t a

Σ; Γ[pc] ` e : s

Σ; Γ[pc] ` (ref (e : s)) : (ref s, pc)

Σ; Γ[pc] ` e : (ref s, a)

Σ; Γ[pc] `!e : s t a

Σ; Γ[pc] ` e1 : (ref (t, b), a) Σ; Γ[pc] ` e2 : (t, b) a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc)

Fig. 9. λREF
SEC expression typing.

24 Karl Crary, Aleksey Kliger and Frank Pfenning

Σ; Γ ` bv : t ⇒ M

Σ; Γ ` ∗ : 1 ⇒ ∗ Σ; Γ ` true : bool ⇒ true Σ; Γ ` false : bool ⇒ false

Σ; Γ ` ` : Σ(`) ⇒ `

Σ; Γ, x : s1[pc] ` e : s2 ⇒ E

Σ; Γ ` λ[pc]x : s1.e : s1
pc−→ s2 ⇒ λx : s1.val E

Σ; Γ ` bv : t′ ⇒ E ` t′ ≤ t

Σ; Γ ` bv : t ⇒ E

Fig. 10. λREF
SEC base value encoding.

associates a security level with ref cells, but λREF
SEC does not. In value-oriented se-

curity languages, the contents of ref cells have a security level, however. So we use
the security level a of the contents t as the security level of the ref cell itself in our
translation: ref (t, a) = refa (t, a).

In a λREF
SEC function of type s

pc−→ s′ the program counter annotation pc is a con-
servative approximation of the information gained by the body of the function.
Therefore, values written by the body must have security level at least pc. Thus,
the corresponding writes in the translation must have write level at least pc. Con-
sequently, the corresponding translated type for a function is s →©(⊥,pc) s′.

The encoding for λREF
SEC expressions is given by a pair of judgments Σ; Γ ` bv :

t ⇒ M and Σ; Γ[pc] ` e : s ⇒ E, shown in Figures 10 and 11. We assume that
the metavariable y stands for variables in our calculus that do not appear in λREF

SEC

programs.

Type-correctness In order to show that our proposed encoding preserves typing,
we first have to establish the following facts. The first shows that our encoding
judgments agree with λREF

SEC typing judgments; the second shows that the encoding
preserves subtyping.

Lemma 6.2
1. If Σ; Γ ` bv : t ⇒ M then Σ; Γ ` bv : t

2. If Σ; Γ ` e : s ⇒ E then Σ; Γ ` e : s

Proof
By induction on the given derivations. Observe that in each case, the rules of the
encoding judgment have the same premises as the corresponding typing rules.

Lemma 6.3 (Subtyping Translation)
1. If ` t′ ≤ t then ` t′ ≤ t

2. If ` s′ ≤ s then ` s′ ≤ s

Proof
Both parts simultaneously, by induction on the given derivation.

A Monadic Analysis of Information Flow Security with Mutable State 25

Σ; Γ[pc] ` e : s ⇒ E

Σ; Γ, x : s[pc] ` x : s t pc ⇒ [x]

Σ; Γ ` bv : t ⇒ M

Σ; Γ[pc] ` bva : (t, a t pc) ⇒ refatpc (M : t)

Σ; Γ[pc] ` e1 : (bool, a) ⇒ E1 Σ; Γ[pc t a] ` e2 : s ⇒ E2 Σ; Γ[pc t a] ` e3 : s ⇒ E3

Σ; Γ[pc] ` if e1 then e2 else e3 : s ⇒
let y = E1 in
let y′ = !y in
run(if y′ then val E2 else val E3)

Σ; Γ[pc] ` e1 : (s′
pc′−−→ s, a) ⇒ E1 Σ; Γ[pc] ` e2 : s′ ⇒ E2 pc t a v pc′

Σ; Γ[pc] ` e1e2 : s t a ⇒

let y1 = E1 in
let y2 = E2 in
let y′1 = !y1 in
run (y′1y2)

Σ; Γ[pc] ` e : s ⇒ E

Σ; Γ[pc] ` ref (e : (t, a)) : (ref (t, a), pc) ⇒ let y = E in

refa (y : (t, a))

Σ; Γ[pc] ` e : (ref s, a) ⇒ E

Σ; Γ[pc] `!e : s t a ⇒ let y = E in let y′ = !y in !y′

Σ; Γ[pc] ` e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] ` e2 : (t, b) ⇒ E2 a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc) ⇒

let y1 = E1 in
let y2 = E2 in
let y′1 = !y1 in
let = y′1 := y2 in
refpc (∗ : 1)

Σ; Γ[pc] ` e : s1 ⇒ E ` s1 ≤ s2

Σ; Γ[pc] ` e : s2 ⇒ E

Fig. 11. λREF
SEC expression encoding.

Finally, we need to extend our type-translation to store types

Σ, ` : s = Σ, ` : s

We are now ready to show type-correctness.

Theorem 6.4 (Well-typed Translation)
1. If Σ; Γ ` bv : t ⇒ M then Σ; Γ ` M : t

2. If Σ; Γ[pc] ` e : s ⇒ E then Σ; Γ ` E ÷(⊥,pc) s

The proof is by simultaneous induction on the given derivations. The full proof
is available in Appendix D.

Non-interference Of course a type correct (but insecure) embedding could be con-
structed by ignoring the security levels of the source and placing everything at level
⊥. We wish to show that the embedding is actually secure. To do so, we show that
an instance of non-interference for λREF

SEC is preserved by our translation.

Theorem 6.5 (λREF
SEC non-interference)

26 Karl Crary, Aleksey Kliger and Frank Pfenning

Suppose Σ0;x : (t, a)[b] ` f : (bool, b) ⇒ F where a 6v b, and suppose that H,Σ are
such that Σ ⊇ Σ0, and ` H : Σ. If Σ; · ` `i : refra t for i = 1, 2 and if there exist
H1,H2,Σ1,Σ2, V1, V2 such that

(H ′,Σ′, F [`i/x]) →∗ (Hi,Σi, [Vi])

for i = 1, 2, then Vi = `′i and H1(`′1) = H2(`′2) as booleans.

Proof
1. From the type-correctness of the translation, and since the argument loca-

tions `i are out of view, by the non-interference theorem we conclude that
` (H1,Σ1, [V1]) ≈b (H2,Σ2, [V2]) ÷(b,b) refrb bool

2. By inversion and by Regularity (Lemma C.14) and Canonical Forms (Lemma
C.5), each Vi must be some store location `′i ∈ dom(Σi) and furthermore
Σ1; Σ2; · ` V1 ≈b V2 : refrb bool

3. By inversion on the latter equivalence(Lemma C.15), each Σi(`′i) must either
be out of view, or `′1 = `′2 with Level(`′i) v b. But since Σi(`′i) must be a
subtype of refrb bool, it cannot be out of view for a b-observer.

4. Therefore, `′1 = `′2 are in the set of in-view locations U = dom(Σ1)∩dom(Σ2)∩
↓(b), and by inversion on the store equivalence ` (H1 : Σ1) ≈U

ζ (H2 : Σ2),
the values in the respective stores must, in turn, be equivalent Σ1; Σ2; · `
H1(`′1) ≈b H2(`′2) : bool

5. Since bool is informative at any security level, by inversion, it must be the
case that H1(`′1) = H2(`′2).

7 Related Work

There is a large body of existing work on type systems for secure information flow.
Volpano, Smith and Irvine (1996) first showed how to formulate an information
flow analysis as a type system. An excellent survey by Sabelfeld and Myers (2003)
outlines the key ideas in the design of secure programming languages.

Our account is most related to the Dependency Core Calculus (Abadi et al.,
1999). Like our language, DCC uses a family of monads to reason about information
flow. However in DCC, terms of monadic type are used to seal up values at a security
level. In our account, monads are used in a more traditional role as a means of
threading state through a program. Central to DCC is the notion of protectedness
of a type at a security level. If T is protected at a then T is at least as secure as a.
This is closely related to our notion of informativeness.

When viewed through the lens of the encoding of (a pure subset of) λREF
SEC , the

two relations serve the same purpose, ensuring that a computation’s output is at
least as secure as its inputs. In DCC, this is done directly. In our account, this
occurs indirectly: to access a value carrying information only at a particular level,
a computation must adopt a read level at least as high. (However, our account
also offers the facility — not employed in the λREF

SEC embedding — not to seal all
computations’ return values in order to obtain a ⊥ effective read level).

A Monadic Analysis of Information Flow Security with Mutable State 27

The definitions of protectedness and informativeness are the same on the standard
type operators, but do not include the idiosyncratic cases: our language has no
analog of DCC’s monad, nor does DCC contain references or a traditional (i.e.,
effects-oriented) monad. Moreover, if it did, we conjecture that DCC’s definition for
these would be somewhat different from ours. Nevertheless, the similarity between
the two suggests that our account might be profitably combined with DCC to
produce a language capable of expressing security in both value-oriented and store-
oriented fashions.

A further similarity exists between the tampering levels of Honda and Yoshida (2002)
and informativeness. They work in a concurrent setting of a typed π-calculus, and
the tampering level of a process represents the least security level that may observe
the effects of a process of a given type. They present a calculus in the style of (Smith
& Volpano, 1998) extended with local variables, reference types and higher-order
procedures and a translation of it into their typed process calculus. Much of the
complexity of their language stems from tracking the action set of a command, that
is, the references (conflated with program variables) that a command may read or
write. Our language may be seen as a restatement of their language in a more
conventional monadic style. In the setting of (Honda & Yoshida, 2002), our upcall
rule (exploiting the informativeness judgment) would correspond to leaving out the
information that a command read from some variables from its action set whenever
the command does not tamper below a certain security level.

Harrison et al. (2003) observed that monads and monad transformers may be
used to separate pieces of the state with different security levels, thus ensuring
a kind of non-interference via properties of the state monad transformer. However
their system does not statically rule out insecure flows when computations at differ-
ent security levels are combined. Instead, the system dynamically prevents security
leaks by channeling communication between computations at different security lev-
els through a trusted kernel.

8 Conclusion

We give an account of secure information flow in the context of a higher-order
language with mutable state. Moreover, motivated by a low-level store-oriented
view of computation, we arrive at a view of security based on lax logic. Rather
than sealing values at a security level, we instead associate security with the store.
A family of monadic types is used to keep track of the effects of computations. To
account for upcalls, we classify the informativeness of types at particular security
levels.

Since we treat terms apart from the effectful expressions, our approach can
straightforwardly encompass additional type constructors. The question of how to
account for additional effects requires further work. From the point of view of non-
interference, effects introduce the possibility of different behavior from seemingly
related expressions. We expect that by further refining the monadic type to restrict
the behavior of related terms, we may be able to account for effects such as I/O or
non-local control transfers.

28 Karl Crary, Aleksey Kliger and Frank Pfenning

Certain complications beyond those discussed in this paper remain in developing
a typed assembly language that tracks information flow. One problem to be dealt
with is the re-use of registers between low-security and high-security computations.
Any mutation of a register by a high security computation could potentially be
observed once it returns to a low-security caller. As a result it is necessary to exploit
informativeness to ensure that the contents of registers are not informative to the
caller. We conjecture that informativeness in conjunction with linear continuations
(2002) will prove invaluable to the design of a secure TAL.

Our formulation of the monadic language is in the style of Pfenning and Davies (2001).
One avenue of future work is to study whether there is a formulation of information
flow in a modal logic that decomposed our monad into the possibility and necessity
modalities.

Incorporating concurrency is another direction for future work. Smith et al. (1998)
show that in a language with parallel composition, allowing loops to depend on
high-security locations leads to security leaks. Their solution is to disallow such
loops outright. Since looping can be simulated in our account via back-patching
in combination with informativeness (see Section 3.3), it is not clear how to adopt
their solution to (a concurrent extension of) our approach. Zdancewic (2002) ob-
serves that insecure concurrent programs exhibit race conditions on low-security
locations. He shows that if alias information is used to disallow such data races,
a non-interference result can be established. We expect that his approach may be
adopted to our setting.

A general open problem in the area of secure programming languages is how to
devise a type system for a language with declassification operations. Declassification
occurs when a low-security computation makes use of a high-security value, but in
a way such that the information gained from the high-security value is deemed an
acceptable leak. Recently, Zdancewic and Myers (2001a) showed how to characterize
so-called robust declassification in programs such that an attacker may observe
the declassified values, but may not exploit them to gain additional high-security
information. Zdancewic (2003) then gives a type system for robust declassification.
Since declassification is fundamentally an operation, we conjecture that our store-
oriented viewpoint could be meshed with Zdancewic and Myers to provide a logic
of declassification.

References

Abadi, Mart́ın, Banerjee, Anindya, Heintze, Nevin, & Riecke, Jon G. 1999 (Jan.). A core
calculus of dependency. Pages 147–160 of: Twenty-sixth ACM symposium on principles
of programming languages.

Harrison, William, Tullsen, Mark, & Hook, James. 2003 (June). Domain separation by
construction. Foundations of computer security workshop(FCS’03).

Heintze, Nevin, & Riecke, Jon G. 1998 (Jan.). The SLam calculus: Programming with
secerecy and integrity. Pages 365 – 377 of: Twenty-fifth ACM symposium on principles
of programming languages.

Honda, Kohei, & Yoshida, Nobuko. 2002 (Jan.). A uniform type structure for secure

A Monadic Analysis of Information Flow Security with Mutable State 29

information flow. Pages 81–92 of: Twenty-ninth ACM symposium on principles of pro-
gramming languages.

Huet, Gérard. (1980). Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4), 797 – 821.

Moggi, Eugenio. (1989). Computational lambda-calculus and monads. Pages 14–23 of:
Fourth IEEE symposium on logic in computer science.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and computa-
tion, 93, 55–92.

Morrisett, Greg, Walker, David, Crary, Karl, & Glew, Neal. (1999). From System F to
typed assembly language. ACM transactions on programming languages and systems,
21(3), 527–568. An earlier version appeared in the 1998 Symposium on Principles of
Programming Languages.

Myers, Andrew C. 1999 (Jan.). JFlow: Practical mostly-static information flow control.
Pages 228–241 of: Twenty-sixth ACM symposium on principles of programming lan-
guages.

Pfenning, Frank, & Davies, Rowan. (2001). A judgmental reconstruction of modal logic.
Mathematical structures in computer science, 11(4), 511–540.

Pottier, François, & Simonet, Vincent. (2003). Information flow inference for ML. ACM
transactions on programming languages and systems, 25(1), 117–158.

Sabelfeld, Andrei, & Myers, Andrew C. (2003). Language-based information-flow security.
IEEE journal on selected areas in communications, 21(1), 5 – 19. special issue on Formal
Methods in Security.

Smith, Geoffrey, & Volpano, Dennis. (1998). Secure information flow in a multi-threaded
imperative language. Twenty-fifth ACM symposium on principles of programming lan-
guages, 355 – 364.

Volpano, Dennis, Smith, Geoffrey, & Irvine, Cynthia. (1996). A sound type system for
secure flow analysis. Journal of computer security, 4(3), 167–187.

Zdancewic, Steve. (2002). Programming languages for information security. Ph.D. thesis,
Department of Computer Science, Cornell University, Ithaca, New York.

Zdancewic, Steve. 2003 (Mar.). A type system for robust declassification. Nineteenth
mathematical foundations of programming semantics. Electronic Notes in Theoretical
Computer Science.

Zdancewic, Steve, & Myers, Andrew C. (2001a). Robust declassification. Pages 15 – 23
of: Fourteenth IEEE computer security foundations workshop.

Zdancewic, Steve, & Myers, Andrew C. (2001b). Secure information flow and CPS. Pages
46 – 61 of: Tenth european symposium on programming. Lecture Notes in Computer
Science, vol. 2028. Springer-Verlag.

Zdancewic, Steve, & Myers, Andrew C. (2002). Secure information flow via linear contin-
uations. Higher order and symbolic computation, 15(2-3), 209–234.

A Judgments

` A ↗ a

A.1 Informativeness judgment rules

` A ↗ ⊥ (1) ` 1 ↗ a
(2)

` B ↗ a

` A → B ↗ a
(3)

30 Karl Crary, Aleksey Kliger and Frank Pfenning

` A ↗ a

` ©(r,w)A ↗ w u a
(4) ` refb A ↗ b

(5)
` A ↗ a

` refb A ↗ a
(6)

` A ↗ a

` refrb A ↗ a
(7) ` refrb A ↗ b

(8) ` refwa A ↗ a
(9)

` A ↗ a b v a

` A ↗ b
(10)

` A ↗ a ` A ↗ b

` A ↗ a t b
(11)

A.2 Typing judgment rules

` A ≤ B

` A ≤ A
(12)

` A ≤ A′ ` B′ ≤ B

` A′ → B′ ≤ A → B
(13) ` A ≤ B o � o′

` ©oA ≤ ©o′B
(14)

` A ≤ B a v b

` refa A ≤ refrb B
(15)

` B ≤ A b v a

` refa A ≤ refwb B
(16)

` A ≤ B a v b

` refra A ≤ refrb B
(17)

` B ≤ A b v a

` refwa A ≤ refwb B
(18)

Σ; Γ ` M : A

Σ; Γ ` x : Γ(x)
(19)

Σ; Γ ` ` : refLevel(`) Σ(`)
(20)

Σ; Γ ` ∗ : 1
(21)

Σ; Γ ` true : bool
(22)

Σ; Γ ` false : bool
(23)

Σ; Γ ` M : bool Σ; Γ ` N1 : A Σ; Γ ` N2 : A

Σ; Γ ` if M then N1 else N2 : A
(24)

Σ; Γ, x : A ` M : B

Σ; Γ ` λx : A.M : A → B
(25)

Σ; Γ ` M : A → B

Σ; Γ ` N : A

Σ; Γ ` M N : B
(26)

Σ; Γ ` E ÷o A

Σ; Γ ` val E : ©oA
(27)

Σ; Γ ` M : A ` A ≤ B

Σ; Γ ` M : B
(28)

Σ; Γ ` E ÷o A

Σ; Γ ` M : A

Σ; Γ ` [M]÷(⊥,>) A
(29)

Σ; Γ ` M : ©oA Σ; Γ, x : A ` E ÷o B

Σ; Γ ` let val x = M in E ÷o B
(30)

Σ; Γ ` M : A

Σ; Γ ` refa (M : A)÷(⊥,>) refa A
(31)

Σ; Γ ` M : refra A

Σ; Γ `!M ÷(a,>) A
(32)

Σ; Γ ` M : refwa A Σ; Γ ` N : A

Σ; Γ ` M := N ÷(⊥,a) 1
(33)

Σ; Γ ` E ÷o′ A o′ � o

Σ; Γ ` E ÷o A
(34)

Σ; Γ ` E ÷(r,w) A ` A ↗ r

Σ; Γ ` E ÷(⊥,w) A
(35)

Σ; Γ ` E ÷o B ` B ≤ C

Σ; Γ ` E ÷o C
(36)

A Monadic Analysis of Information Flow Security with Mutable State 31

` H : Σ

dom(Σ) = {`1, . . . , `n} Σ; · ` Vi : Σ(`i) for 1 ≤ i ≤ n

` {`1 7→ V1, . . . , `n 7→ Vn} : Σ
(37)

` S ÷o A

` H : Σ Σ; · ` E ÷o A

` (H,Σ, E)÷o A
(38)

Derived typing rules for syntactic sugar

Σ; Γ ` E ÷o A Σ; Γ, x : A ` F ÷o C

Σ; Γ ` let x = E in F ÷o C

Σ; Γ ` M : ©oC

Σ; Γ ` run M ÷o C

A.3 Equivalent view judgments rules

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

` A ↗ a a 6v ζ Σ1; Γ ` V1 : A Σ2; Γ ` V2 : A

Σ1; Σ2; Γ ` V1 ≈ζ V2 : A
(39)

Σ1; Σ2; Γ ` ∗ ≈ζ ∗ : 1
(40)

Σ1; Σ2; Γ ` x ≈ζ x : Γ(x)
(41)

Σ1; Σ2; Γ ` true ≈ζ true : bool
(42)

Σ1; Σ2; Γ ` false ≈ζ false : bool
(43)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : bool

Σ1; Σ2; Γ ` N1 ≈ζ N2 : A

Σ1; Σ2; Γ ` P1 ≈ζ P2 : A

Σ1; Σ2; Γ `
if M1 then N1 else P1 ≈ζ

if M2 then N2 else P2 : A

(44)

Σ1; Σ2; Γ, x : A ` M1 ≈ζ M2 : B

Σ1; Σ2; Γ ` λx : A.M1 ≈ζ λx : A.M2 : A → B
(45)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A → B

Σ1; Σ2; Γ ` N1 ≈ζ N2 : A

Σ1; Σ2; Γ ` M1N1 ≈ζ M2N2 : B
(46)

Level(`) v ζ Σ1(`) = Σ2(`)
Σ1; Σ2; Γ ` ` ≈ζ ` : refLevel(`) Σ1(`)

(47)
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A

Σ1; Σ2; Γ ` val E1 ≈ζ val E2 : ©oA
(48)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A ` A ≤ B

Σ1; Σ2; Γ ` M1 ≈ζ M2 : B
(49)

32 Karl Crary, Aleksey Kliger and Frank Pfenning

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o′ C o′ � o

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C
(50)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(r,w) C ` C ↗ r

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(⊥,w) C
(51)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o B ` B ≤ C

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C
(52)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : C

Σ1; Σ2; Γ ` [M1] ≈ζ [M2]÷(⊥,>) C
(53)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : ©oA

Σ1; Σ2; Γ, x : A ` E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ `
let val x = M1 in E1 ≈ζ

let val x = M2 in E2 ÷oC

(54)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Σ1; Σ2; Γ `
refa (M1 : A) ≈ζ

refa (M2 : A) ÷(⊥,>)refa A

(55) Σ1; Σ2; Γ ` M1 ≈ζ M2 : refra A

Σ1; Σ2; Γ `!M1 ≈ζ !M2 ÷(a,>) A
(56)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : refwa A

Σ1; Σ2; Γ ` N1 ≈ζ N2 : A

Σ1; Σ2; Γ ` M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

` (H1 : Σ1) ≈U
ζ (H2 : Σ2)

` Hi : Σi for i = 1, 2
Σ1 � U = Σ2 � U

Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`) for all ` ∈ U

` (H1 : Σ1) ≈U
ζ (H2 : Σ2)

(58)

` S1 ≈ζ S2 ÷o C

` (H1 : Σ1) ≈dom(Σ1)∩dom(Σ2)∩↓(ζ)
ζ (H2 : Σ2)

Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C

` (H1,Σ1, E1) ≈ζ (H2,Σ2, E2)÷o C
(59)

B Evaluation Rules

M → M ′

M → M ′

if M then N1 else N2 → if M ′ then N1 else N2
If1

if true then N1 else N2 → N1
IfTrue

if false then N1 else N2 → N2
IfFalse

A Monadic Analysis of Information Flow Security with Mutable State 33

M → M ′

MN → M ′N
App1

N → N ′

V N → V N ′ App2

(λx : A.M)V → M [V/x] App

S → S′

M → M ′

(H,Σ, [M]) → (H,Σ, [M ′])
Ret1

M → M ′

(H,Σ, let val x = M in E) →
(H,Σ, let val x = M ′ in E)

Letval1
(H,Σ, E) → (H ′,Σ′, E′)

(H,Σ, let val x = val E in F) →
(H ′,Σ′, let val x = val E′ in F)

Letvalval

(H,Σ, let val x = val [V] in E) → (H,Σ, E[V/x]) Letval

M → M ′

(H,Σ, refa (M : A)) →
(H,Σ, refa (M ′ : A))

Ref1
` 6∈ dom(H) Level(`) = a

(H,Σ, refa (V : A)) →
(H{` 7→ V },Σ{` : A}, [`])

Ref

M → M ′

(H,Σ, !M) → (H,Σ, !M ′)
Bang1

(H,Σ, !`) → (H,Σ, [H(`)]) Bang

M → M ′

(H,Σ,M := N) → (H,Σ,M ′ := N)
Assn1

N → N ′

(H,Σ, V := N) → (H,Σ, V := N ′)
Assn2

` ∈ dom(H)
(H,Σ, ` := V) → (H{` 7→ V },Σ, [∗]) Assn

C Proofs

C.1 Type safety proof

C.1.1 Properties of informativeness and subtyping

Before we go on to prove type safety and non-interference, we take the time to
prove several (standard) lemmas.

Lemma C.1 (Informativeness Inversion)
If ` A ↗ a and if

• A = bool then a = ⊥
• A = B → C then ` C ↗ a

• A = ©(r,w)B then a v w u b and ` B ↗ b

• A = refb B then ` B ↗ c and a v c t b

• A = refrb B then ` B ↗ c and a v c t b

• A = refwb B then a v b

Proof
by induction on the given derivation. By cases on the last rule used.

34 Karl Crary, Aleksey Kliger and Frank Pfenning

Lemma C.2 (Subtyping Inversion)
If ` A′ ≤ A and if

• A = 1 then A′ = 1
• A = bool then A′ = bool

• A = B → C then A′ = B′ → C ′ and ` B ≤ B′ and ` C ′ ≤ C

• A = refa B then A′ = refa B

• A = refra B then

— either A′ = refra′ B′ with ` B′ ≤ B and a′ v a

— or A′ = refa′ B′ with ` B′ ≤ B and a′ v a

• A = refwa B then

— either A′ = refwa′ B′ with ` B ≤ B′ and a v a′

— or A′ = refa′ B′ with ` B ≤ B′ and a v a′

• A = ©oB then A′ = ©o′B′ and ` B′ ≤ B and o′ � o

and moreover, all the result derivations are subderivations of the given derivation.

Proof
by cases on the last rule used in the given derivation. Each case follows immediately
from the rules.

C.1.2 Typing judgment properties

Lemma C.3 (Substitution)
If Σ; Γ,Γ′ ` M : A and

1. if Σ; Γ, x : A,Γ′ ` N : B then Σ; Γ,Γ′ ` N [M/x] : B

2. if Σ; Γ, x : A,Γ′ ` E ÷o B then Σ; Γ,Γ′ ` E[M/x]÷o B

Proof
Parts (1) and (2) simultaneously by induction on Σ; Γ, x : A,Γ′ ` N : B (or
Σ; Γ, x : A,Γ′ ` E ÷o B). By cases on the last rule used.

Lemma C.4 (Inversion)
Two parts:

• If Σ; Γ ` M : A and

1. if M = x then ` Γ(x) ≤ A

2. if M = ∗ then ` 1 ≤ A

3. if M = true or M = false then ` bool ≤ A

4. if M = if N1 then N2 else N3 then Σ; Γ ` N1 : bool, Σ; Γ ` N2 : B,
Σ; Γ ` N3 : B′, and ` B ≤ A, ` B′ ≤ A

5. if M = λx : B.N then Σ; Γ, x : B ` N : C and ` B → C ≤ A

6. if M = NP then Σ; Γ ` N : B → C and Σ; Γ ` P : B and ` C ≤ A

7. if M = ` then ` refLevel(`) Σ(`) ≤ A

8. if M = val E then Σ; Γ ` E ÷o B and ` ©oB ≤ A

A Monadic Analysis of Information Flow Security with Mutable State 35

• If Σ; Γ ` E ÷o A and

1. if E = [M] then Σ; Γ ` M : A

2. if E = let val x = M in F then Σ; Γ ` M : ©o′B and Σ; Γ, x : B ` F÷o′ C,
` C ≤ A and o′ = (r′, w′) with either o′ � o or ` C ↗ r′ and (⊥, w′) � o

3. if E = refa (M : B) then ` refa B ≤ A and Σ; Γ ` M : B

4. if E =!M then Σ; Γ ` M : refra B and ` B ≤ C, ` C ≤ A and either
(a,>) � o or ` C ↗ a

5. if E = M := N then Σ; Γ ` M : refwa B, Σ; Γ ` N : B, ` 1 ≤ A, and
(⊥, a) � o

Proof
by induction on the given derivation. By cases on the last rule used.

For part (1), in cases of rules (21)− (27) the result is immediate, by rule (12). In
case of rule (28), the result follows by IH, and transitivity of subtyping (which can
be shown to be admissible).

For part (2), the cases for rules (29), (30), (31), (32), (33) are immediate. The
cases for rules (34), (35) and (36) follow by IH, by subcases on E.

Lemma C.5 (Canonical Forms)
If Σ; · ` V : A and

1. if A = 1 then V = ∗
2. if A = bool then V = true or V = false

3. if A = B → C then V = λx : B′.M

4. if A = refa B then V = ` and ` ∈ dom(Σ)
5. if A = refra B then V = ` and ` ∈ dom(Σ)
6. if A = refwa B then V = ` and ` ∈ dom(Σ)
7. if A = ©oB then V = val E

Proof
by induction on the typing derivation; by inspection of the last typing rule used.

C.1.3 Store properties

Lemma C.6 (Store Weakening)
If Σ′ ⊇ Σ and Σ′ well-formed, and

• if Σ; Γ ` M : A then Σ′; Γ ` M : A

• if Σ; Γ ` E ÷o C then Σ′; Γ ` E ÷o C

Proof
by simultaneous induction on the given derivations. By cases on the last rule used.

• Case

Σ; Γ ` ` : refLevel(`) Σ(`)
(20)

1. Since Σ′ is well-formed, there is at most one occurrence of ` in Σ′

36 Karl Crary, Aleksey Kliger and Frank Pfenning

2. Evidently ` ∈ dom(Σ), therefore ` ∈ dom(Σ′).
3. Since Σ′ ⊇ Σ, Σ′(`) = Σ(`).
4. By rule (20), Σ′; Γ ` ` : refLevel(`) Σ′(`).

• All the remaining cases are straightforward by IH.

Corollary C.7 (Allocation Safety)
If Σ; · ` V : A, ` H : Σ and if ` 6∈ dom(H) then ` H{` 7→ V } : Σ{` : A}

Proof
Directly. Using the Store Weakening lemma.

Lemma C.8 (Store Update)
If ` H : Σ and if ` ∈ dom(Σ) and Σ; · ` V : Σ(`) then ` H{` 7→ V } : Σ

Proof
Directly.

C.1.4 Preservation, Progress and Type safety

Lemma C.9 (Term Preservation)
If Σ; · ` M : A and M → M ′ then Σ; · ` M ′ : A

Proof
by induction on the evaluation relation. By cases on the last rule used. Since terms
are pure, the proof is particularly straightforward.

Preservation If ` S ÷o A and S → S′ then ` S′ ÷o A

Proof
by induction on the evaluation relation.

By pattern matching, S = (H,Σ, E), S′ = (H ′,Σ′, E′), o = (r, w)
By Inversion,

• ` H : Σ
• Σ; · ` E ÷o A

Now proceed by cases on the last rule used in S → S′. The proof is straightfor-
ward, using Inversion, Term Preservation, Store Weakening, Allocation Safety, and
Store Update.

Lemma C.10 (Term Progress)
If Σ; · ` M : A then either M is a value, or ∃M ′ such that M → M ′

Proof
by induction on the given derivation. By cases on the last rule used. The proof is
straightforward, using the Canonical Forms lemma.

A Monadic Analysis of Information Flow Security with Mutable State 37

Progress If ` S ÷o A then either S is terminal, or ∃S′ such that S → S′

Proof
By pattern matching, S = (H,Σ, E).

By Inversion, ` H : Σ, and Σ; · ` E ÷o A.
Proceed by induction on the typing derivation, by cases on the last rule used.

In each case the result is either immediate by IH, or follows from Term Progress,
Canonical Forms and the IH.

C.2 Structural properties of equivalence

We show that the judgments for ≈ζ admit reflexivity (for well-typed computations),
symmetry, and transitivity rules, that is they are equivalence relations on well-typed
computation states.

Lemma C.11 (Reflexivity)
1. If Σ; Γ ` M : A then Σ;Σ; Γ ` M ≈ζ M : A.
2. If Σ;Σ; Γ ` E ÷o C then Σ;Σ; Γ ` E ≈ζ E ÷o C

3. If ` H : Σ then ` (H : Σ) ≈U
ζ (H : Σ) for all U ⊆ dom(H)

4. If ` S ÷o C then ` S ≈ζ S ÷o C

Proof
Parts (1) and (2) simultaneously by induction on the given derivation, by cases on
the last rule used. Parts (3) and (4) follow by inversion on the single rule for the
given derivation, and then using parts (1) and (2).

In part (1), the case of store locations l is not immediate. There are two cases
depending on whether Level(`) is below ζ or not. When ` is low-security, the result
is straightforward. Otherwise, note that store locations are values and that since
Level(`) 6v ζ, ` refLevel(`) Σ(`) ↗ Level(`), and the result follows using rule (39).

The remaining cases follow by induction.

Lemma C.12 (Symmetry)
1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then Σ2; Σ1; Γ ` M2 ≈ζ M1 : A.
2. If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C then Σ2; Σ1; Γ ` E2 ≈ζ E1 ÷o C

3. If ` (H1 : Σ1) ≈U
ζ (H2 : Σ2) then ` (H2 : Σ2) ≈U

ζ (H1 : Σ1)
4. If ` S1 ≈ζ S2 ÷o C then ` S2 ≈ζ S1 ÷o C

Proof
by induction on derivations. Evident as all the judgments are symmetric.

Lemma C.13 (Transitivity)
Four parts:

1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A and Σ2; Σ3; Γ ` M2 ≈ζ M3 : A then Σ1; Σ3; Γ `
M1 ≈ζ M3 : A

2. If Σ1; Σ2; Γ ` E1 ≈ζ E2÷o C and Σ2; Σ3; Γ ` E2 ≈ζ E3÷o C then Σ1; Σ1; Γ `
E1 ≈ζ E3 ÷o C

38 Karl Crary, Aleksey Kliger and Frank Pfenning

3. If ` (H1 : Σ1) ≈U
ζ (H2 : Σ2) and ` (H2 : Σ2) ≈U

ζ (H3 : Σ3) then ` (H1 :
Σ1) ≈U

ζ (H3 : Σ3)
4. If ` S1 ≈ζ S2 ÷o C and ` S2 ≈ζ S3 ÷o C then ` S1 ≈ζ S3 ÷o C

Proof
Parts (1) and (2) follow by simultaneous induction on derivations.

Part (3):

1. By Inversion on each given derivation, ` Hi : Σi for i = 1, 2, 3, Σ1 � U =
Σ2 � U = Σ3 � U , and for each ` ∈ U , Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`) and
Σ2; Σ3; · ` H2(`) ≈ζ H3(`) : Σ2(`)

2. By Part (1), for each ` ∈ U , Σ1; Σ3; · ` H1(`) ≈ζ H3(`) : Σ1(`)
3. By rule (58), ` (H1 : Σ1) ≈U

ζ (H3 : Σ3)

Part (4):

1. By pattern matching, Si = (Hi,Σi, Ei) for i = 1, 2, 3
2. By Inversion, ` (H1 : Σ1)) ≈U12

ζ (H2 : Σ2), Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C where
U12 = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

3. By Inversion, ` (H2 : Σ2)) ≈U23
ζ (H3 : Σ3), Σ2; Σ3; · ` E2 ≈ζ E3 ÷o C where

U23 = dom(Σ2) ∩ dom(Σ3) ∩ ↓(ζ)
4. Let U13 = dom(Σ1) ∩ dom(Σ3) ∩ ↓(ζ)
5. Suppose ` ∈ U13 \ (dom(Σ2) ∩ ↓(ζ))

(a) Evidently, ` 6∈ U12 and ` 6∈ U23

(b) Choose `′ 6∈ U13 ∪ dom(Σ2) such that Level(`′) = Level(`)
(c) α-vary (H3,Σ3, E3) with `′ for `

6. So for all ` ∈ U13, ` ∈ dom(Σ2) ∩ ↓(ζ)
7. Evidently, U13 ⊆ U12 and U13 ⊆ U23

8. By Store Equivalence Coarsening, ` (H1 : Σ1) ≈U13
ζ (H2 : Σ2), and ` (H2 :

Σ2) ≈U13
ζ (H3 : Σ3)

9. By Part (3), ` (H1 : Σ1) ≈U13
ζ (H3 : Σ3)

10. By Part (2), Σ1; Σ3; · ` E1 ≈ζ E3 ÷o C

11. By rule (59), ` S1 ≈ζ S3 ÷o C

Lemma C.14 (Regularity of Equivalence)
Four parts:

1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then Σi; Γ ` Mi : A

2. If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C then Σi; Γ ` Ei ÷o C

3. If ` (H1 : Σ1) ≈U
ζ (H2 : Σ2) then ` Hi : Σi

4. If ` S1 ≈ζ S2 ÷o C then ` Si ÷o C

Proof
by induction on the derivations.

Next, we establish inversion and functionality. Inversion will let us reason by cases
in subsequent proof. Functionality is the analog of a substitution for the equivalence
judgment.

A Monadic Analysis of Information Flow Security with Mutable State 39

Lemma C.15 (Equivalent Term Inversion)
If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then either

there exists a B, such that ` B ≤ A and ` B ↗ a and a 6v ζ and M1 and M2 are values
and Σi; Γ ` Mi : B for i = 1, 2,

or

1. if M1 = x then ` Γ(x) ≤ A and M2 = x.
2. if M1 = ∗ then ` 1 ≤ A and M2 = ∗.
3. if M1 = true then ` bool ≤ A and M2 = true.
4. if M1 = false then ` bool ≤ A and M2 = false.
5. if M1 = if N1 then P11 else P12 then M2 = if N2 then P21 else P22 and

Σ1; Σ2; Γ ` N1 ≈ζ N2 : bool and Σ1; Σ2; Γ ` P11 ≈ζ P21 : B and Σ1; Σ2; Γ `
P12 ≈ζ P22 : B′ and ` B ≤ A, ` B′ ≤ A

6. if M1 = ` then ` refb B ≤ A and M2 = ` and b v ζ and Σi(`) = B for i = 1, 2
and Level(`) = b

7. if M1 = λx : B.N1 then ` B → C ≤ A and M2 = λx : B.N2 and Σ1; Σ2; Γ, x :
B ` N1 ≈ζ N2 : C

8. if M1 = val E1 then ` ©oB ≤ A and M2 = val E2 and Σ1; Σ2; Γ ` E1 ≈ζ

E2 ÷o B

9. if M1 = N1P1 then M2 = N2P2 and Σ1; Σ2; Γ ` N1 ≈ζ N2 : B → C and
Σ1; Σ2; Γ ` P1 ≈ζ P2 : B and ` C ≤ A

Proof
by induction on the derivation.

Lemma C.16 (Equivalent Expression Inversion)
If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A then

1. if E1 = [M1] then E2 = [M2] and Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Proof
by induction on the given derivation. By cases on the last rule used. The proof is
straightforward.

Lemma C.17 (Functionality)
If Σ1; Σ2; Γ,Γ′ ` M1 ≈ζ M2 : A then

1. if Σ1; Σ2; Γ, x : A,Γ′ ` N1 ≈ζ N2 : C then Σ1; Σ2; Γ,Γ′ ` N1[M1/x] ≈ζ

N2[M2/x] : C

2. if Σ1; Σ2; Γ, x : A,Γ′ ` E1 ≈ζ E2 ÷o C then Σ1; Σ2; Γ,Γ′ ` E1[M1/x] ≈ζ

E2[M2/x]÷o C.

Proof
by induction on the TD.

Although we established Functionality for arbitrary terms to be substituted for
x, as befits a call by value language, we only substitute values in the proof of
non-interference.

40 Karl Crary, Aleksey Kliger and Frank Pfenning

Lemma C.18 (Store Equivalence Coarsening)
If ` (H1 : Σ1) ≈U ′

ζ (H2 : Σ2) and U ⊆ U ′ then ` (H1 : Σ1) ≈U
ζ (H2 : Σ2)

Proof
1. By Inversion, ` Hi : Σi for i = 1, 2, Σ1 � U ′ = Σ2 � U ′, for each ` ∈ U ′,

Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)
2. Evidently, Σ1 � U = Σ2 � U

3. Evidently, for each ` ∈ U , Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)
4. By rule (58), ` (H1 : Σ1) ≈U

ζ (H2 : Σ2)

Lemma C.19 (Equivalent Values)
If Σ1; Σ2; · ` M1 ≈ζ M2 : A then M1 is a value if and only if M2 is a value.

Proof
by induction on the equivalence derivation. By cases on the last rule used. The proof
is straightforward. The restriction to values in rule (39) greatly simplifies matters.

With the Equivalent Values lemma in hand, we can establish the Hexagon Lemma
for terms.

C.3 Term Hexagon lemma proof

Term Hexagon Lemma For all ζ, if Σ1; Σ2; · ` M1 ≈ζ M2 : A and M1 → M ′
1 and

M2 → M ′
2 and M ′

1 ↓ and M ′
2 ↓, then there exist M ′′

1 ,M ′′
2 such that M ′

1 →∗ M ′′
1 ,

M ′
2 →∗ M ′′

2 , Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

Proof
by induction on the given derivation. By cases on the last rule used.

• Cases rules (39), (40), (42), (43), (45), (47), (48). Vacuous, M1,M2 are values,
no applicable evaluation rules.

• Case rule (41). Vacuous, Γ = ·
• Case rule (49). By IH.
• Case rule (44):

Σ1; Σ2; · ` N1 ≈ζ N2 : bool Σ1; Σ2; · ` P11 ≈ζ P21 : A Σ1; Σ2; · ` P12 ≈ζ P22 : A

Σ1; Σ2; · ` if N1 then P11 else P12 ≈ζ if N2 then P21 else P22 : A
(44)

By pattern matching, Mi = if Ni then Pi1 else Pi2 for i = 1, 2
There are three possible evaluation rules for M1 → M ′

1

— Case If1: M ′
1 = if N ′

1 then P11 else P12, N1 → N ′
1

1. By Equivalent Values, N2 is not a value

2. The only applicable evaluation rule for M2 → M ′
2 is If1: M ′

2 =
if N ′

2 then P21 else P22, N2 → N ′
2

3. By Subterm Termination, N ′
1 ↓, N ′

2 ↓

A Monadic Analysis of Information Flow Security with Mutable State 41

4. By IH, there exist N ′′
1 , N ′′

2 such that N ′
i →∗ N ′′

i for i = 1, 2, and
Σ1; Σ2; · ` N ′′

1 ≈ζ N ′′
2 : bool

5. By repeated application of If1, M ′
i →∗ M ′′

i for i = 1, 2

6. By rule (44), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

— Case IfTrue: N1 = true, M ′
1 = P11

1. By Equivalent Values, N2 is a value

2. By Equivalent Term Inversion, there are two subcases:

– Either there exists a B such that ` B ≤ bool, ` B ↗ a, a 6v ζ and
Σi; · ` Ni : B

By subtyping inversion, B = bool. By Informativeness Inversion,
a = ⊥, for a contradiction (since ⊥ v ζ)

– Or N2 = true

(a) There is a single applicable evaluation rule for M2 → M ′
2, IfTrue:

M ′
2 = P21.

(b) Let M ′′
i = M ′

i for i = 1, 2.

(c) Evidently, Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

— Case IfFalse: N1 = false, M ′
2 = P12

Similar to previous case.

• Case rule (46):

Σ1; Σ2; · ` N1 ≈ζ N2 : B → A Σ1; Σ2; · ` P1 ≈ζ P2 : B

Σ1; Σ2; · ` N1P1 ≈ζ N2P2 : A
(46)

Similar to the previous case.

C.4 High Security Step

To show the HSS Lemma 5.2, we need to show that after executing a high security
expression, the resulting store is equivalent to the original store. We first show this
for one evaluation step, and then extend to multiple steps.

Lemma C.20 (Single High Security Step)
If ` (H,Σ, E) ÷o A, o = (r, w) and w 6v ζ, and (H,Σ, E) → (H ′,Σ′, E′) then
` (H : Σ) ≈dom(Σ)∩↓(ζ)

ζ (H ′ : Σ′).

Proof
By induction on (H,Σ, E) → (H ′,Σ′, E′)

By inversion on ` (H,Σ, E)÷o A, we have

• ` H : Σ
• Σ; · ` E ÷o A

Now consider cases on the evaluation rule used:

42 Karl Crary, Aleksey Kliger and Frank Pfenning

• Case Ret1: E = [M], H ′ = H, Σ′ = Σ, E′ = [N], M → N

By Reflexivity, ` (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

Cases for Letval1, Ref1, Bang1, Assn1, Assn2, Bang, and Letval are
similar.

• Case Letvalval: E = let val x = val E1 in F , E′ = let val x = val E2 in F ,
(H,Σ, E1) → (H ′,Σ′, E2)

1. By Inversion, for some o′ = (r′, w′), Σ; · ` val E1 : ©o′B, Σ;x : B `
F ÷o′ C, ` C ≤ A, where either o′ � o or both ` C ↗ r′ and (⊥, w′) � o

2. Either way, w v w′, so w′ 6v ζ

3. By Inversion, Σ; · ` E1 ÷o′′ B′ and ` ©o′′B′ ≤ ©o′B

4. By rule (38), ` (H,Σ, E1)÷o′′ B′

5. By IH, ` (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

• Case Ref: E = refa (V : B), H ′ = H{` 7→ V }, Σ′ = Σ{` : B}, E′ = `,
` 6∈ dom(H), Level(`) = a

1. By Inversion, Σ; · ` V : B, ` refa B ≤ A

2. By rule (37), ` H ′ : Σ′

3. Consider `′ ∈ U , by construction, H ′(`′) = H(`′) and Σ′(`′) = Σ(`′)
4. By rule (58) ` (H : Σ) ≈U

ζ (H ′ : Σ′)

• Case Assn: E = ` := V , H ′ = H{` 7→ V }, Σ′ = Σ, E′ = [∗]
1. By Inversion, Σ; · ` ` : refwa B, Σ; · ` V : B, (⊥, a) � o, ` 1 ≤ A

2. By Inversion, ` refLevel(`) Σ(`) ≤ refwa B

3. By Subtyping Inversion, ` B ≤ Σ(`), a v Level(`)
4. Since (⊥, a) � o, w v a v Level(`)
5. Since w 6v ζ, Level(`) 6v ζ, so ` 6∈ U where U = dom(Σ) ∩ ↓(ζ)
6. By rule (37), ` H ′ : Σ′

7. By rule (58), ` (H : Σ) ≈U
ζ (H ′ : Σ′)

Corollary C.21
If ` (H,Σ, E) ÷o A, o = (r, w) and w 6v ζ, and (H,Σ, E) →n (H ′,Σ′, E′) then
` (H : Σ) ≈dom(Σ)∩↓(ζ)

ζ (H ′ : Σ′).

Proof
By induction on n, the number of steps.

By inversion,

• ` H : Σ
• Σ; · ` E ÷o A

If n = 0, the result follows by Reflexivity.
If n > 0, then (H,Σ, E) → (H ′′,Σ′′, E′′) →n−1 (H ′,Σ′, E′). The result follows

by IH, Single High Security Step, Preservation, Store Equivalence Coarsening and
transitivity of the store equivalence judgment.

A Monadic Analysis of Information Flow Security with Mutable State 43

D λREF
SEC well-typed translation proof

Well-typed Translation

1. If Σ; Γ ` bv : t ⇒ M then Σ; Γ ` M : t

2. If Σ; Γ[pc] ` e : s ⇒ E then Σ; Γ ` E ÷(⊥,pc) s

Proof
Both parts simultaneously, by induction on the given derivations. By cases on the
last rule used.

Part (1)

• The cases for unit and boolean values, and store locations are immediate.
• Case

Σ; Γ, x : s1[pc] ` e : s2 ⇒ E

Σ; Γ ` λ[pc]x : s1.e : s1
pc−→ s2 ⇒ λx : s1.val E

1. By IH,

Σ; Γ, x : s1 ` E ÷(⊥,pc) s2

2.
Σ; Γ, x : s1 ` E ÷(⊥,pc) s2

Σ; Γ, x : s1 ` val E : ©(⊥,pc)s2

Σ; Γ ` λx : s1.val E : s1
pc−→ s2

• The case for subsumption follows by well-typed type translation

44 Karl Crary, Aleksey Kliger and Frank Pfenning

Part (2)

• Case

Σ; Γ[pc] ` e1 : (bool, a) ⇒ E1 Σ; Γ[pc t a] ` e2 : s ⇒ E2 Σ; Γ[pc t a] ` e3 : s ⇒ E3

Σ; Γ[pc] ` if e1 then e2 else e3 : s ⇒

let y = E1 in

let y′ = !y in

run if y′

then val E2

else val E3

1. By IH, Σ; Γ ` E1 ÷(⊥,pc) refra bool, and Σ; Γ ` Ei ÷(⊥,pcta) s for i = 2, 3
2. Let Γ1 = Γ, y : refra bool

3. By rule (32), Σ; Γ1 `!y ÷(a,>) bool

4. Let Γ2 = Γ1, y
′ : bool

5.

Σ; Γ2 ` y′ : bool
(19)

Σ; Γ2 ` val Ei : ©(⊥,pcta)s
(27)

for i = 2, 3

Σ; Γ2 ` if y′ then val E2 else val E3 : ©(⊥,pcta)s
(24)

Σ; Γ2 ` run if y′ then val E2 else val E3 ÷(⊥,pcta) s

6. We can promote the operation levels of !y and run . . . to (a, pc t a), such
that

Σ; Γ1 ` let y′ = !y in run . . .÷(a,pcta) s

7. Let (t, b) = s, and note that s = refrb t.
8. By lemma 6.1, a v b. Hence ` s ↗ a.
9. Therefore,

Σ; Γ1 ` let y′ = !y in run . . .÷(a,pcta) s ` s ↗ a

Σ; Γ1 ` let y′ = !y in run . . .÷(⊥,pcta) s
(35)

Σ; Γ1 ` let y′ = !y in run . . .÷(⊥,pc) s
(34)

10. Therefore,

Σ; Γ ` let y = E1 in let y′ = !y in run . . .÷(⊥,pc) s

• Case

Σ; Γ[pc] ` e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] ` e2 : (t, b) ⇒ E2 a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc) ⇒

let y1 = E1 in

let y2 = E2 in

let y′1 = !y1 in

let = y′1 := y2 in

refpc (∗ : 1)

1. By IH, Σ; Γ ` E1 ÷(⊥,pc) refra refb refrb t and Σ; Γ ` E2 ÷(⊥,pc) refrb t

2. By Lemma 6.1, pc v b

3. Let Γ1 = Γ, y1 : refra refb refrb t, y2 : refrb t

A Monadic Analysis of Information Flow Security with Mutable State 45

4.
Σ; Γ1 `!y1 ÷(a,>) refb refrb t (a,>) � (a, b)

Σ; Γ1 `!y1 ÷(a,b) refb refrb t

Note that (a, b) is a well-formed operation level since a v b

5. Let Γ2 = Γ1, y
′
1 : refb refrb t

Σ; Γ2 ` y′1 := y2 ÷(⊥,b) 1 Σ; Γ2 ` refpc (∗ : 1)÷(⊥,>) refrpc 1

Σ; Γ2 ` let = y′1 := y2 in refpc (∗ : 1)÷(⊥,b) refrpc 1 (⊥, b) � (a, b)

Σ; Γ2 ` let = y′1 := y2 in refpc (∗ : 1)÷(a,b) refrpc 1

6.

Σ; Γ1 `!y1 ÷(a,b) refb refrb t

Σ; Γ2 ` let = y′1 := y2 in refpc (∗ : 1)÷(a,b) refrpc 1

Σ; Γ1 `
let y′1 = !y1 in

let = y′1 := y2 in refpc (∗ : 1)÷(a,b) refrpc 1

` 1 ↗ a

` refrpc 1 ↗ a

Σ; Γ1 `
let y′1 = !y1 in

let = y′1 := y2 in refpc (∗ : 1)÷(⊥,b) refrpc 1

7. Since pc v b,

Σ; Γ ` let y1 = E1 in let y2 = E2 in let y′1 = !y1 in ...÷(⊥,pc) refrpc 1

• Other cases are similar.

