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Abstract. We present an abstract view of existential variables in a de-
pendently typed lambda-calculus based on modal type theory. This al-
lows us to justify optimizations to pattern unification such as lineariza-
tion, which eliminates many unnecessary occurs-checks. The presented
modal framework explains a number of features of the current imple-
mentation of higher-order unification in Twelf and provides insight into
several optimizations. Experimental results demonstrate significant per-
formance improvement in many example applications of Twelf, including
those in the area of proof-carrying code.

1 Introduction

Unification lies at the heart of automated reasoning systems, logic programming
and rewrite systems. Thus its performance affects in a crucial way the global
efficiency of each of these applications. This need for efficient unification algo-
rithms has led to many investigations in the first-order setting. However, the
efficient implementation of higher-order unification, especially for dependently
typed A-calculus, is still a central open problem limiting the potential impact of
higher-order reasoning systems such as Twelf [15], Isabelle [12], or AProlog [9].

The most comprehensive study on efficient and robust implementation tech-
niques for higher-order unification so far has been carried out by Nadathur and
colleagues for the simply-typed A-calculus in the programming language AProlog
[7,8]. The Teyjus compiler [10] embodies many of the insights found, in partic-
ular an adequate representation of lambda terms and mechanisms to delay and
compose substitutions. Higher-order unification is implemented via Huet’s al-
gorithm [5] and special mechanisms are molded into the WAM instruction set
to support branching and carrying unification problems. To only perform an
occurs-check when necessary, the compiler distinguishes between the first occur-
rence and subsequent occurrences of a variable and compiles them into different
WAM instructions. While for the first occurrence of a variable the occurs-check
may be omitted, full unification is used for all subsequent variables. This ap-
proach seems to work well in the simply-typed setting, however it is not clear
how to generalize it to dependent types.
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Meta-Logical Frameworks” and by a Siebel Scholarship awarded to the first author.



In this paper, we discuss the efficient implementation of higher-order pattern
unification for the dependently typed lambda-calculus. Unlike Huet’s general
higher-order unification algorithm which involves branching and backtracking,
higher-order pattern unification [6, 13] is deterministic and decidable. An impor-
tant step toward the efficient implementation of higher-order pattern unification
was the development based on explicit substitutions and de Bruijn indices [3] for
the simply-typed lambda-calculus. This allows a clear distinction between bound
and existential variables and reduces the problem to essentially first-order uni-
fication. Although the use of de Bruijn indices leads to a simple formal system,
the readability may be obstructed and critical principles are obfuscated by the
technical notation. In addition, some techniques like pre-cooking of terms and
optimizations such as lowering and grafting remain ad hoc. This makes it more
difficult to transfer these optimizations to other calculi.

We present an abstract view of existential variables in the dependently typed
lambda-calculus based on modal type theory. Our calculus does not require de
Bruijn indices, nor does it require closures M[o] as first-class terms. This leads
to a simple clean framework which allows us to explain a number of features
of the current implementation of higher-order unification in Twelf [15] and pro-
vides insight into several optimizations. In the paper, we will particularly focus
on one optimization called linearization, which eliminates many unnecessary
occurs-checks. We have implemented this optimization of higher-order unifica-
tion as part of the Twelf system. Experimental results demonstrate significant
performance improvement, including those in the area of proof-carrying code.

The paper is organized as follows: First we give some background on modal
logic and modal type theory, and discuss its relation to the dependently typed
lambda calculus (see Section 2). In Section 3 we discuss higher-order pattern uni-
fication. In particular, we focus on the optimization, called linearization, which
eliminates unnecessary occurs-checks. Finally in Section 4 we discuss experimen-
tal results. Related work is discussed in Section 5.

2 A modal foundation for typed existential variables

2.1 Motivation

We start by presenting a foundation for dependently typed existential variables
based on modal logic. Following the methodology of Pfenning and Davies [14],
we can assign constructive explanations to modal operators. A key characteristic
of this view, is to distinguish between propositions that are true and propositions
that are valid. A proposition is valid if its truth does not depend on the truth
of any other propositions. This leads to the basic hypothetical judgment

Aqwvalid, . .. A, valid; By true, ..., By, true - C true.

Under the multiple-world interpretation of modal logic, C' valid corresponds
to C true in all reachable worlds. This means C true without any assumptions,
except those that are assumed to be true in all worlds. We can generalize this



idea to also capture truth relative to a set of specified assumptions by writing
C walid ¥, where ¥ is the abbreviation for Cj true,...,C), true. In terms of
the multiple world semantics, this means that C is true in any world where
C1 through C), are all true and we say C' is valid relative to the assumptions
in ¥. Hypotheses about relative validity are more complex now, so our general
judgment form is

Ay valid ¥y, ..., A, valid ¥,,; By true, . .., By, true - C true

While it is interesting to investigate this modal logic above in its own right, it
does not come alive until we introduce proof terms. In this paper, we investigate
the use of a modal proof term calculus as a foundation for existential variables.
We will view existential variables u as modal variables of type A in a context ¥
while bound variables are treated as ordinary variables. This allows us to dis-
tinguish between existential variables u::(W+A) for relative validity assumptions
A wvalid ¥ declared in a modal context, and z:A for ordinary truth assumptions
Atrue declared in an (ordinary) context. If we have an assumption A valid ¥
we can only conclude A true if we can verify all assumptions in ¥.

A Avalid U, A T =W
A, Avalid O, A'; T+ Atrue

(%)

In other words, if we know A true in ¥, and all elements in ¥ can be verified
from the assumptions in I", then we can conclude A ¢rue in I'. As we will see in
the next section, this transition from one context ¥ to another context I', can
be achieved via a substitutions from ¥ to I

2.2 Dependently typed lambda calculus based on modal logic

In this section, we introduce a dependently typed lambda calculus. Existential
variables u are treated as modal variables and x denotes ordinary variables. ¢
and a are constants, which are declared in a signature. This is a conservative
extension of the LF [4] so we suppress some routine details such as signatures.

Kinds K :=type| Hx:A. K
Families A, B,C :=a | AM | [Iz:A;. As
Objects M,N ==c|x |uf[o] | \x:A. M | M1 M,

Substitutions o,7u=-|0o,M/z
Contexts I u=-|I,x:A
Modal Contexts A= | Aus(PrA)

Note that the substitution o is part of the syntax of existential variables.
This eliminates the need of pre-cooking [3] which raises existential variables to
the correct context.

The principal judgments are listed below. As usual, we omit similar judg-
ments on types and kinds and all judgments concerning definitional equality.



A TEM: A Object M has type A

ATk o: W Substitution ¢ matches context ¥

F A mctx A is a valid modal context

AR W ctx ¥ is a valid context

Note substitutions o are defined only on ordinary variables z and not modal

variables u. We write idp for the identity substitution (z1/z1,...,2,/2,) for a
context I' = (-,z1:A1,...,2,:A,). We will use 7 for a substitution which may
permute the variables, i.e 7 = (2g1)/21,...,Ta(n)/Tn) Where @ is a total per-
mutation defined on the elements from a context I' = (-, z1:41,...,2,:4,). We

only consider well-typed substitutions, so m must respect possible dependencies
in its domain. We also streamline the calculus slightly by always substituting
simultaneously for all ordinary variables. This is not essential, but saves some
tedium in relating simultaneous and iterated substitution. Moreover, it is also
closer to the actual implementation where we use de Bruijn indices and postpone
explicit substitutions. The typing rules are given in Figure 1.

Ausz(0r-A), AT oW

AT AT R A Ajuz(0-A), A T ufo] : [0]A )
AL x:Av M As A My DA, Av A;TF Ms o As
AT Ao M : ITx:Aqp. As A;T'E My Mo : [idr, Ma /] Ay

A T'Fo: 0 A;THM: [o]A
AT E(G): () A;TE (o, M/x) : (U, x:A)

FAmctx ARV ctx A;¥F A:type
F () metx F (A, u::(PrA)) metx

AFWYctx A;¥F A:type
Al (+) ctx AF (¥, x:A) ctx

Fig. 1. Typing rules for objects, substitutions, and context

Note that the rule for modal variables is the rule (*) presented in the previ-
ous section, annotated with proof terms and slightly generalized, because of the
dependent type theory we are working in. This rule also justifies our implemen-
tation choice of using existential variables only in the form u[o].

Our convention is that substitutions as defined operations on expressions are
written in prefix notation [¢]P for an object, family, kind, or substitution P.
These operations are capture-avoiding as usual. Moreover, we always assume
that all free variables in P are declared in ¢. Substitutions that are part of the



syntax are written in postfix notation, u[o]. Note that such explicit substitutions
occur only for variables u labeling relative validity assumptions.

Substitutions are defined in a standard manner. We omit the details at the
level of types and kinds for the sake of brevity.

)=u

) = ([o]N1) ([0] V2)

[o](Ay:A. N) = Ay:[o]A. [0, y/y]N provided y not declared or free in o
)
)

(
[e](r,N/y) = (lo]r, [c]N/y) provided y not declared or free in o

The side conditions can always be verified by (tacitly) renaming bound variables.
We do not need an operation of applying a substitution ¢ to a context. The last
principle makes it clear that [o]7 corresponds to composition of substitutions,
which is sometimes written as 7 o 0.

The following substitution principles for substitutions ¢ hold. They are sug-
gested by the modal interpretation and proved by simple structural inductions.
We elide corresponding principles for families and kinds.

Theorem 1.

1. IfA;THo W and A; @ - N : C then A; T F [o]N : [0]C.
2. If AsT oW and AW 7 : 0 then A, T F o] : 0.
3. [o]([r]M) = [[o]7]M and [o]([7]7") = [[o]7]7’

A new and interesting operation arises from the substitution principles for
relative validity. The new operation of substitution is compositional, but two
interesting situations arise: when a variable u is encountered, and when we sub-
stitute into a A-abstraction. For sake of brevity, we only give the substitution on
objects.

[M/u]e=c
[M/u]z =z
[M/u)(ulo]) = [[M/u]o]M
[M/u](vlo]) = v[[M/u]o] for u# v
[M/u] (N1 Na) = ([M/u]N1) ([M/u]N2)
[M/u](Ay:A. N) = Ay:[M /u] A. [M/u] N

We remark that the rule for substitution into a A-abstraction does not require
a side condition. This is because the object M is defined in a different context,
which is accounted for by the explicit substitution stored at occurrences of u.
This ultimately justifies implementing substitution for existential variables by
mutation.



Finally, consider the case of substituting into a closure, which is the critical
case of this definition.

[M/ul(ulo]) = [[M/u]o]M

This is clearly well-founded, because o is a subexpression (so [M/u]o will ter-
minate) and application of an ordinary substitution has been defined previously
without reference to the new form of substitution.

Using the given definitions, we can then show that the new substitution
operation for relative validity satisfies the substitution principles. Again, this is
motivated by the logical interpretation and follows by simple inductions after
straightforward generalization to encompass all syntactic categories.

Theorem 2.

1. If A0 EM: A and Ajusz(PrA), A TN : C
then A, [M/u] A" [M/u]T" F [M/u]N : [M/u]C
2. If A;WEM: A and Aju:(WrA), AT 10/
then A, [M/u) A" [M/u]T" + [M/u]7 : [M/u]¥’
3. [M/a)((0]P) = [[M/ulo) ([Mu] P)
4. [M/u]([N/v]P) = [[M/u]N/v]([M/u]P) if u # v and v not free in M

2.3 Normal Forms

There are two notions of normal forms that are useful in the implementation.
The first corresponds to a f-normal form. We simultaneously define normal (U)
and neutral (R) objects and normal substitutions 7.

Normal Objects U := A x:A.U | R
Neutral Objects R:=c |z |u[n] | RU
Normal Substitutions n:=-|n,U/x

We obtain the canonical objects (long Gn-normal forms) by requiring normal
objects of the form R to have base type (that is, not to have function type).
In the implementation we use a stronger normal form where existential vari-
ables (represented here by modal variables) must also be of atomic type. This
is accomplished by a technique called lowering. Lowering replaces a variable
w:(WrIz:Aq. Ag) by a new variable u':(¥, 2: A1+ As). This process is repeated
until all existential variables have a type of the form ¥ + b Nj ... N. This op-
eration has been proved correct for the simply-typed case by Dowek et al. [3],
but remains somewhat mysterious. Here, it is justified by the modal substitution
principle.

Lemma 1.

1. (Lowering) If Aju:(WrIlx:Ay. Ag), A THM @ A
then Aju/ (W, x:A1pAg), AT~ M~ : A~
where (P)™ = [(Az: Ay [idg, z/x]) /u] P.



2. (Raising) If A,u':(W, x:A1-As), A THM : A
then A,u::(@—ﬂx:Al.Ag),A’+;F+ FMT:AT
where (P)* = [(u[idy] z) /u'] P.
3. ()t and ()~ are inverse substitutions (modulo (n-conversion,).

Proof. Direct, by weakening and the modal substitution principle. For part (1)
we observe that A,u':(¥,x:A1+-A2);¥ F \x:Ay.u/[idg, z/z] © Hx:Ay. Ag. For
part (2) we use instead that A j u::(WrIlxz:A;. Ag); W, x: Ay F ufidg]x : Ay, Part
(3) is direct by calculation.

Since we can lower all modal variables, we can change the syntax of normal
forms so that terms u[n] are also normal objects of base type, rather than neutral
objects. This is, in fact, what we chose in the implementation.

2.4 Existential Variables

As mentioned several times above, in the implementation the modal variables
in A are used to represent existential variables (also known as meta-variables),
while the variables in I" are universal variables (also known as parameters).

Existential variables are created in an ambient context ¥ and then lowered.
We do not explicitly maintain a context A of these existential variables, but it is
important that a proper order for them exists. Existential variables are created
with a mutable reference, which is updated with an assignment when we need
to carry out a substitution [M/u].

In certain operations, and particularly after type reconstruction, we need
to abstract over the existential variables in a term. Since the LF type theory
provides no means to quantify over w::(¥+A) we raise such variables until they
have the form u'::(-++A’). It turns out that in the context of type reconstruction
we can now quantify over them as ordinary variables z’:A’. However, this is
not satisfactory as this requires first raising the type of existential variables for
abstraction, and later again lowering the type of existential variables during
unification to undo the effect of raising. To efficiently treat existential variables,
we would like to directly quantify over modal variables u.

The judgmental reconstruction in terms of modal logic suggests two ways to
incorporate modal variables. One way is via a new quantifier IT°u::(W+A;). As,
the other is via a general modal operator Oy. Proof-theoretically, the former is
slightly simpler, so we will pursue this here. The new operator then has the form
IT°u::(WrAy). Ao and is defined by the following rules.

A;UE A:type Aju(PrA);T'H B :type
A; T TP (Pr-A). B : type

Auz(OrA); ' M : B A;T'E N HPu:(WrA).B AW EM:A
A; T EXu. M IT°u::(W-A). B A;TENoM:[M/u]B
The main complication of this extension is that variables u can now be bound

and substitution must be capture avoiding. In the present implementation, this
is handled by de Bruijn indices.




3 Toward efficient higher-order pattern unification

3.1 Preliminaries

In the following, we will consider the pattern fragment of the modal lambda-
calculus. Higher-order patterns are terms where existential variables must be
applied to distinct bound variables. This fragment was first identified by Miller
[6] for the simply-typed lambda-calculus, and later extended by Pfenning [13]
to the dependently typed and polymorphic case. We enforce that all terms are
in normal form, and the type of existential variables has been lowered and is
atomic. We call a normal term U an atomic pattern, if all the subterms of the
form u[o] are such that o = yi/x1,...yx/xr where y1, ..., y, are distinct bound
variables. This is already implicitly assumed for x1,...,x; because all variables
defined by a substitution must be distinct.

Higher-order pattern unification can be done in two phases (see [13, 3] for a
more detailed account). During the first phase, we decompose the terms until
one of the two terms we unify is an existential variable u[o]. This decomposition
phase is straightforward and resembles first-order unification closely. During the
second phase, we need to find an actual instantiation for the existential variable
u. There are two main cases to distinguish: (1) when we unify two existential
variables, u[o] = wv[o’], and when we unify an existential variable with another
kind of term, u[o] = M. The latter case is transformed into u = [o] ' M
assuming u does not occur in M and all variables v[r] are pruned so that the
free variables in 7 all occur in the image of o (see [6,3] for details). Note that
we view [0]_1 M as a new meta-level operation such as substitution, because it
may be defined even if ¢ is not invertible in full generality.

The main efficiency problem in pattern unification lies in treating this last
case. In particular, we must traverse the term M. First of all, we must perform
the occurs-check to prevent cyclic terms. Second, we may need to prune the
substitutions associated with existential variables occurring in M. Third, we
need to ensure that all bound variables occurring in M do occur in the range
of &, otherwise [o] ™' M does not exist. To illustrate the problem, we give the
definition for inverting substitutions:

o] te=c
o] tz=y if z/y € o, undefined otherwise
[o] ™" (vl]) = vl[o] " 7]
o] ' (RU) = ([o] " R) ([o] " U)
(0] (A\z:A.U) = Az:([o] " A). [0, 2/2] " U if 2 not declared or free in [o]~

o] () =) o] (n.U/x) = (o) " 7, [0] " U/a)

In the next section, we will show how linearization can be used to enforce
the two criteria which eliminates the need to traverse M. First, we will enforce
that all existential variables occur only once, thereby eliminating the occurs-
check. Second, we will require that the substitution ¢ associated with existential
variables is always a permutation 7. This ensures that the substitutions are
always invertible and eliminates the need for pruning.



3.2 Linearization

One critical optimization in unification is to perform the occurs-check only when
necessary. While unification with the occurs-check is at best linear in the sum
of the sizes of the terms being unified, unification without the occurs-check is
linear in the smallest term being unified. In fact the occurs-check can be omitted
if the terms are linear, i.e., every existential variable occurs only once.

Let us consider the following clause from a program which evaluates expres-
sions from a small functional language Mini-ML. It says that functions evaluate
to themselves. Using the introduced modal term language, this can be expressed
as follows:

exp : type.
lam : (exp — exp) — exp.

eval : exp — exp — type.
ev_lam : IT"e::(y:exprexp).eval (lam (Az:exp.e[x/y])) (lam (Ax:exp.e[z/y])).

The existential variable e in the clause ev_lam is quantified by IT"e::(y:exprexp).
To enforce that every existential variable occurs only once, the clause head of
ev_lam can be translated into the linear type

I1°¢'::(z:exprexp). 11 e:: (y:exprexp).
eval (lam (Az:exp.e[z/y])) (lam (Az:exp.€’[z/z]))

together with the following variable definition
Va:exp.e'[z/z] 2 elz/y]

where €’ is a new existential variable. Then a constant time assignment algo-
rithm can be used for assigning a linear clause head to a goal, and the variable
definitions are solved by conventional unification. As a result, the occurs-check
is only performed if necessary.

In the dependently typed lambda-calculus, there are several difficulties in
performing this optimization. First of all, all existential variables carry their
context ¥ and type A. If we introduce a new existential variable, then the ques-
tion arises what type should be assigned to it. As type inference is undecidable
in the dependently typed case, this may be expensive. In general, we may even
obtain a term which is not necessarily well-typed.

Let us modify the previous example, and annotate the expressions with their
type thus enforcing that any evaluation of a Mini-ML expression will be well-
typed.
tp : type.
arrow : tp — tp — tp.
exp : tp — type.
lam : IT%¢1::(-+tp) It (-+tp).(exp t1 — exp ta) — exp (t1 = t2).
eval : I[T°¢::(-+tp).exp t — expt — type.
ev_lam : IT"¢y::(-+tp) . IT%to::(-Htp). JIP e::(y:exp t1rexp ta).

eval (arrow t1 to)(lam ¢y to (Az:exp t1.e[x/y])) (lam t1 to (Ax:exp t1.e[z/y])).



During linearization, the clause head of ev_lam will now be translated into

IT°ty:(-+tp) JIPto::(Htp). TP e::(y:exp t1rexp ta).
IIPts::(+tp) I1%t 4z (htp) I t5:: (-tp) It (-Htp). 1P e :: (2:exp titexp t2).
eval (arrow t1 to)(lam t3 t4 (Az:exp t1.e[x/y])) (lam t5 tg (Ax:exp t1.€'[z/2])).

and the following variable definitions
tl 2 t3 A tl 2 t5 A tg 2 t4 A tg 2 tﬁ A Vx:exp tl.BI[I/Z] 2 B[I/y]

Due to the linearization, the linear clause head is clearly not well-typed.
However, it is well-typed modulo variable definitions. Therefore, it will be well-
typed after all existential variables have been instantiated during assignment
and the variable definitions have been solved. It would be interesting to accord
first-class type-theoretic status to the variable definitions, but we leave this to
future work, since the implementation treats them only in a very special manner
explained in Section 3.3. Note that some of these variable definitions are in fact
redundant, which is another orthogonal optimization (see [11] for an analysis on
a fragment of LF).

It is worth pointing out that this situation does not arise in the simply
typed case. These considerations lead to the following description of variable
definitions:

Variable Definitions D ::= true | u[idy] 2y | Dy A Do | Vx:A.D

The idea of factoring out duplicate existential variables can be generalized to
replacing arbitrary subterms by new existential variables and creating variable
definitions. In particular, the process of linearization also replaces any existential
variables v[o] where o is not a permutation by a new variable u[idy] and a
variable definition u[idy] Z v[o].

The linearization itself is quite straightforward and we will omit the details
here. In the actual implementation, we do not generate types A and contexts
¥ for the new, linearly occurring existential variables, but ensure that all such
variables are in instantiated and disappear by the time the variable definitions
have been solved.

3.3 Assignment for higher-order patterns

In this section, we give a refinement of the general higher-order pattern uni-
fication which exploits the presented ideas. The algorithm proceeds in three
phases. First we will unify a linear atomic higher-order pattern L with an ob-
ject U. The following judgments capture the assignment between a linear atomic
higher-order pattern L and a normal object U. We write 6 for simultaneous sub-
stitutions [U /uy, . .. U, /u,] for existential variables which have straightforward
definition and properties.

A, TEL=U/(0,FE) assignment for normal objects

A; 'l L' = R'/(0, F) assignment for neutral objects

10



where R is a linear neutral object. E denotes residual equations which may
be generated during assignment. The assignment algorithm itself is given below.

AL AFL=U/(0,FE) l
AT AwAL = \eiAU/(OVoAE) " AT ulr] = U/([r] " U/u, true)

AT L' = R/(0,E) .
coerce
A;T+HL =R/(0,E) ATFL=uol/(5L = ulo]) %

const var

AT x = x/(-;true) AT e = ¢/(-true)

A;TIFL =R/(01;E) A T+L=U/(6s, Es) ap
A;FH—L’LiRU/(QlLJGg;El/\ EQ)

Note that we do not need to worry about capture in the rule lam, since
existential variables and bound variables are defined in different contexts. In the
rule app, we are allowed to union the two substitutions 6; and 65, as the linearity
requirement ensures that the domains of both substitutions are disjoint. Note
that the case for unifying an existential variable u[r] with another term U is
now simpler and more efficient than in the general higher-order pattern case.
In particular, it does not require a traversal of U (see rule existsL). Since the
inverse of the substitution 7 can be computed directly and will be total, we know
[7] 7' U exists and can simply generate a substitution [7] ™" U/u. Finally, we may
need to postpone solving some unification problems and generate some residual
equations if the non-linear term is an existential variable (see existsR).

The result of the assignment algorithm is a substitution #; for the existential
variables in L and potentially some residual equations E. In the second phase, we
apply 6 to the variable definitions D which were generated during linearization
of U’ and solve [61]D using conventional pattern unification. We only need to
pay attention to the case where we unify an existential variable wlidy] with
another variable u'[o]. In this case, we simply generate a substitution [u'[o]/u],
as the inverse of idy will be the identity substitution again. This ensures that
all existential variables introduced during linearization, will be instantiated after
assignment succeeds.

As a final result of solving the variable definitions D, we obtain an additional
substitution #s. In the third phase, we solve the remaining residual equations F,
which were generated during phase 1 under 6 o 65.

4 Experiments

In this section, we discuss some experimental results with different programs
written in Twelf. All experiments are done on a machine with the following
specifications: 1.60GHz Intel Pentium Processor, 256 KB cache. We are using
SML of New Jersey 110.0.3 under Linux Red Hat 7.1. Times are measured in sec-
onds. In the tables below, the column “opt” refers to the optimized version with

11
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linearization and assignment, while the column “stand” refers to the standard
implementation using general higher-order pattern unification.

4.1 Higher-order logic programming

In this section, we present two experiments with higher-order logic programming.
The first one uses an implementation of a meta-interpreter for ordered linear
logic by Polakow and Pfenning [16]. In the second experiment we evaluate our
unification algorithm using an implementation of foundational proof-carrying
code developed at Princeton University [1].

Meta-interpreter for ordered linear logic

example opt|stand||speed-up variable def  calls to assign

trivial|non-tr. fail|success| fail
sqnt (bf) 0.84| 2.09 149%|| 44% 46%| 23%| 7%
squt (dfs) 0.93| 2.35 152%|| 44% 47%  22%| 8%
sqnt (perm) 4.44] 7.11 60%|| 44% 52%|  20%| 80%
squt (rev) 1.21] 1.70 40%|| 45% 48%|  21%| 79%
sqnt (mergesort)|2.26| 3.39 50%|| 46% 53%| 20%| 80%

As the results for the meta-interpreter demonstrate, the performance im-
provement ranges between 40% and 152%. Roughly, 45% of the time there were
no variable definitions at all. From the non-trivial equations roughly 45% were
not unifiable. This means overall, in approx. 20% - 30% of the cases the assign-
ment algorithm succeeded and the failure of unification was delayed. It is worth
noting that 77% to 80% of the calls to assignment presented in Section 3.3 fail
immediately.

Foundational proof-carrying code

example opt stand speed-up variable def  calls to assign
trivial|non-tr. fail{success| fail

inc 5.8 9.19 58%|| 64% 46%| 18%| 82%
switch 36.00 49.69 38%|| 64% 48%| 19%| 81%
mul2 5.51 9.520 2%| 64% 46%| 18%| 82%
div2 121.96 153.610 26%|| 63% 48%| 20%| 80%
divx 333.69 1133.150 239%|| 63% 50%| 21%| 79%
listsum 1073.33 00 oof|| 65% 45%|  18%| 82%
polyc 2417.85 0 ool 65% 41%| 17%| 83%
pack 197.07 1075.610 445%| 66% 45%|  19%| 82%

In the table above we show the performance on programs from the proof-

carrying code benchmark. Performance is improved by up to 445% and some
examples are not executable without linearization and assignment. The results
clearly demonstrate that an efficient unification algorithm is critical in large-scale
examples.

12



4.2 Higher-order theorem proving

Besides a logic programming engine, the Twelf system also provides a theorem
prover which is based on iterative deepening search. In this section, we consider
two examples, theorem proving in an intuitionist sequent calculus and theorem
proving in the classical natural deduction calculus.

Proof search in the intuitionist sequent calculus

example opt| stand||speed-up variable def  calls to assign

trivial‘non—tr. fail‘success fail
dist-1 53.00| 57.11 8%|| 100% 0%| 52%| 48%
distImp 0.40 0.44 10%|| 100% 0%| 53%| 4%
pierce [1520.77(1563.35 3%|| 100% 0%| 52%| 48%
trans 0.13| 0.13 0%|| 100% 0%| 53%| 47%

As the results demonstrate, the performance of the theorem prover is not
greatly influenced by the optimized unification algorithm. The main reason is
that we have many dynamic assumptions, which need to be unified with the
current goal. However, we use the standard higher-order pattern unification al-
gorithm for this operation and use the optimized algorithm only for selecting a
clause. For dynamic assumptions we cannot maintain the linearity requirement
and linearizing the dynamic assumptions at run-time seems too expensive.

Proof search in NK (and, impl, neg)

example opt|stand||speed-up variable def  calls to assign

trivial‘non—tr. fail‘success‘ fail
andEffl-nk |7.67|13.14 71%|| 100% 0%| 80%| 20%
andEff2-nk [3.86| 6.58 70%|| 100% 0%| 81%| 19%
assocAnd-nk|2.24| 3.74 67%| 100% 0%| 81%| 19%
combS-nk [3.85| 6.64 72%|| 100% 0%| 81%| 19%

The second example is theorem proving in the natural deduction calculus.
In contrast to the previous experiments with the sequent calculus, there is a
substantial performance improvement by approximately 70%. Although linear
head compilation substantially improves performance, more optimizations, such
as tabelling and indexing, are needed to solve more complex theorems.

5 Related Work

The language most closely related to our work, is AProlog. Two main differ-
ent implementations of AProlog exist, Prolog/Mali and Teyjus. In Prolog/MALI
implementation, the occurs-check is left out entirely[2]. While Teyjus [8, 7] also
eliminates some unnecessary occurs-checks statically during compilation. How-
ever, in addition to the presence of dependencies in Twelf, there are several other
differences between our implementation and Teyjus. 1) Teyjus compiles first and
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subsequent occurrences of existential variables into different instruction. There-
fore, assignment and unification are freely mixed during the execution. This
may lead to expensive failure in some cases, since unification is still called. In
our approach, we perform a simple fast assignment check and delay unification
entirely. As the experimental results demonstrate, only a small percentage of
the cases fails after it already passed the assignment test and most cases benefit
from a fast simple assignment check. 2) We always assume that the types of
existential variables are lowered. This can be done at compile time and incurs
no run-time overhead. In Huet’s unification algorithm, projection and imitation
rules are applied at run-time to construct the correct prefixes of A-abstractions.
3) Our approach can easily incorporate definitions and constraint domains. This
is important since unifying definitions and constraint expressions may poten-
tially be expensive. In fact, we generalize and extend the idea of linearization in
the implementation and factor out not only duplicate existential variables but
also any difficult sub-expressions such as definitions and constraint expressions.
Therefore, our approach seems more general than the one adopted in Teyjus.

6 Conclusion

We have presented modal foundation for existential variables which underlies
our higher-order pattern unification implementation in Twelf. This leads to a
simple framework in which many optimizations such as lowering, grafting and
linearization can be justified. As experiments show, performance is improved
substantially. This is especially important in large-scale applications such as
proof-carrying code and allows us explore the full potential of logical frameworks
in real-world applications.

In the future, we plan to investigate and implement further optimizations to
reduce the performance gap between higher-order and first-order system. One
optimization which is particularly important to sustain performance in large-
scale examples is term indexing. However, indexing of higher-order terms is still
an open problem. We believe the presented strategy is a suitable basis to adopt
indexing techniques from the first-order setting for two reasons: 1) the presented
strategy reduces the higher-order unification problem to a simple class of prob-
lems which is essentially first-order. 2) the experimental results show that many
unification problems arising in practice fall into this class and can be solved
by this strategy. This indicates that a term indexing algorithm based on this
assignment strategy may also be effective in practice.
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