
Benjamin C. Pierce. Types and Programming Languages, The MIT Press,
Cambridge, Massachusetts, xxi + 623 pp.

Types were developed in the early part of the 20th century in order to avoid incon-
sistencies in Frege’s formulation of logic discovered by Russell. They therefore have a
strong logical origin, confirmed by the development of Church’s type theory, sometimes
called higher-order logic. It contains the simply-typed λ-calculus which is at the core
of most modern programming languages. Through the research of other pioneers such
as Milner and Martin-Löf, type systems are now understood to be central in the de-
sign and analysis of programming languages. They provide the fundamental principles
according to which languages are organized. A thorough textbook on type systems
in programming languages had been long overdue and Pierce’s book provided exactly
that.

Types and Programming Languages is designed for an advanced undergraduate or
graduate course and assumes some familiarity with functional programming. Since
types and programming languages are by now a large subject, a stringent selection
of topics is necessary. After providing some background on the λ-calculus and basic
notions such as substitution and induction, the book starts with simple types. In this
setting the pervasive idea of type safety is first introduced. Type safety is comprised
of two properties relating typing with the operational semantics of a language: preser-
vation, which guarantees that a term retains its type under evaluation, and progress,
which guarantees that a well-typed term is either a value or can proceed to be evaluated
further. Type safety is one of the recurring themes of the book and one of its most
important lessons.

Following the thorough treatment of simple types, the book successively develops
subtyping, recursive types, polymorphism, and type operators. Subtyping is motivated
and presented as record subtyping; coercion semantics and coherence are covered as
a short excursion. Recursive types are presented first informally, and then in both
iso-recursive and equi-recursive forms. The treatment of co-induction in the study of
recursive types is a nice addition that is difficult to find elsewhere in introductory
form. The next part on polymorphism covers type inference, ML-style and impredica-
tive polymorphism, existential types for data abstraction, and bounded quantification.
Much of this should be core material in any advanced course concerned with program-
ming languages. The final part treats type operators and higher-order polymorphism,
a topic rather more advanced particularly in its application to the study of purely
functional objects in the last chapter.

The pragmatics of type constructs are illustrated in interesting and novel ways. First,
for most chapters there is an implementation available from a web site with supporting
material. Several of these implementations are discussed in detail in the book, which
can be quite helpful to students for gaining a deeper and more intuitive understanding
of the fundamental concepts. Second, there are many exercises interleaved with the
text whose solutions are given at the end of the book. This device is helpful, even to
advanced readers, by giving them the opportunity to test their comprehension imme-
diately. Third, the book contains several excursions called “case studies” where the
type systems are exploited in sometimes unexpected ways to support object-oriented
programming.

The book is very well-written, with clear motivations, cogent explanations, help-
ful examples, appropriate exercises, and thorough discussions. The material is well-
structured; the incremental approach to developing a cumulative system quite success-
ful. Besides serving as an excellent textbook, the detailed notes and suggestions for
further reading make it an important reference and study resource. I have used the

1

2

book directly for two lectures and also as general supplementary reading in my junior-
level undergraduate course on Foundations of Programming Languages. The students
and I found it quite easy to use and I will likely expand its role the next time I teach
the course.

The one aspect of the book that would make me hesitate to adopt it as the sole
textbook for one of my own courses is the orientation of its latter parts towards a
functional interpretation of object-oriented programming at the expense of other im-
portant topics. Much of the material on subtyping, bounded quantification, and type
operators is motivated and explained in terms of a functional reconstruction of objects
based on structural subtyping. I do not find this approach to be particularly realistic
or appealing and I think it is difficult for students to relate to their own object-oriented
programming experience, which almost universally stems from languages with nominal
subtyping.

In an undergraduate course, I have instead covered some further topics on imple-
mentation such as environments, abstract machines, or storage management, advanced
type constructs such as monads or intersection types, or other paradigms such as con-
currency or logic programming. In a graduate course I might instead expand on the
meta-theory, covering topics such as parametricity or normalization for System F in
more detail. Admittedly, some of these topics clearly exceed the bounds of a text-
book on type systems, but others, particularly monadic types, intersection types, and
dependent types would have rounded out the coverage.

In summary, Types and Programming Languages provides an excellent, unified intro-
duction to type systems, suitable for an advanced undergraduate or graduate course,
notwithstanding minor concerns about coverage and approach. In addition, it will serve
as a standard reference in the field for many years to come. Given the central role of
types in modern programming language design and analysis, Types and Programming
Languages is probably the single most important book in the area of programming
languages in recent years.

Frank Pfenning
Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-

vania. fp@cs.cmu.edu.

Entry for the Table of Contents:

Benjamin C. Pierce, Types and Programming Languages. Reviewed by
Frank Pfenning . xxx

