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program(^value) = ... (defattr-attrfun attr program (term) () (value)

;final value; (opcase term (prog (vls value))))

(defcon-deltafun con exp (n term) (env)

(opcase term ...

(vref (argcase n

exp(!env,^value) = ... (0 (vls))

| vref(id(^token)) (otherwise (delta-error 'vref))))

with bound(value)

else "unbound variable" (defsyn-sigmafun syn exp (term) (env)

where value = lookup(token,env) (opcase term ...

(vref (mvb (token) (get-syn-argn syn exp id 0 term env)

(let ((value (rt-fun lookup token env)))

(constraint-check (rt-fun bound value)

"unbound variable")

(vls value))))

Figure 3: Attribute ADT Code

the attribute-grammar compiler itself, and a pro-

grammable formatting unparser. The 
ow analyzer

compiles high-level semantic descriptions for control


ow and abstract interpretation to produce attribute-

grammars that perform data 
ow analysis. The iter-

ative nature of this problem makes demand-driven

analysis and caching essential in obtaining adequate

performance. Additionally, the 
ow analyzer itself is

implemented using the Ergo Attribute System, since

an attribute-grammar provides a natural represen-

tation for specifying the syntax-directed translation

from the high-level descriptions for control 
ow to

attribute-grammars. The attribute-grammar com-

piler takes advantage of the optimizations in the un-

derlying attribute ADT to provide good performance

when tools are combined in this way. The formatting

unparser does not use attribute-grammars, but the

attribute ADT directly. It is fast enough to allow real

time highlighting of subterms during mouse-waving.

Its e�ciency is largely due to attribute sharing be-

tween di�erent versions of a program.

Among the extensions we are considering at this

point is the introduction of key functions into the

abstract data type. Instead of caching the mapping

from the context to the syntext, the implementation

would apply a key function to the context and cache

the mapping from the resulting key to the syntext.

This could result in signi�cant improvement in the

e�cieny of looking up cached values, and also allows

more sharing. On the downside: it puts the responsi-

bility for correct caching again into the client's hand,

since the abstract data type has no way of checking

whether equivalent keys mean equivalent syntext val-

ues.

A very useful extension of the attribute speci�ca-

tion language is to allow direct quotation of concrete

syntax with free variables. We could thus avoid the

explicit and tiresome references to term constructors

in attribute grammars.

Finally, we plan to exploit the higher-order view

of abstract syntax which is provided and used by

other tools in the ESS. The higher-order view in-

corporates name binding information in a static and

language-independent way into the representation,

and currently has to be \rediscovered" when writing

an attribute-grammar. Higher-order abstract syn-

tax and how it could be exploited in the context of

attribute-grammars is described in [15].
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Grammar calc

Terminals id, number

program(^value) = prog(exp(!ienv, ^value)) where ienv = nullenv()

; final value;

bindpair(!oenv, ^nenv) = bp(id(^token), exp(!oenv, ^value))

where nenv = bind(token,value,oenv);;

exp(!env, ^value) =

let(bplist(bindpair(!env/etag, ^etag\nenv)*), exp(!nenv, ^value))

| vref(id(^token))

with bound(value) else "unbound variable"

where value = lookup(token, env)

| cref(number(^litvalue) ) where value = litvalue

| add(exp(!env, ^val1), exp(!env, ^val2)) where value = val1 + val2

| sub(exp(!env, ^val1), exp(!env, ^val2)) where value = val1 - val2

| sum(exp(!env, ^val)*) where value = sumlist(val*);;

Figure 2: Calculator Attribute-Grammar

are used to maintain an environment of variables and

their values. The environment is enlarged in bindpair

and passed down to exp. Whenever a variable is ref-

erenced, its value is looked up in the environment.

The synthesized attribute value (pre�xed with `^') is

used to compute the numerical value of the expres-

sion. We make use of prede�ned numerical functions,

(e.g. +, �, �, =) and user-de�ned Lisp functions such

as nullenv, lookup, bound, sumlist, and bind.

The example also illustrates how the attribute

speci�cation language provides two ways of dealing

with operators with a variable number of arguments.

One is to distribute inherited attributes to all imme-

diate subterms and collect all synthesized attributes

from immediate subterms into a list, the other is to

pass attributes from one member of a list to an ad-

jacent member in a bucket brigade. In the calculator

example, the list bindpair+ is speci�ed as a left-to-

right bucket brigade | if we instead intended let to

bind all variables simultaneously we would have used

distribution and collection instead as in the case of

the operator sum.

4.2 Attribute-Grammar Compilation

Compilation of an attribute-grammar proceeds in two

phases. The input attribute-grammar is parsed to

produce an abstract syntax tree, that is then analyzed

to produce the attribute ADT code. This latter phase

can be further subdivided into three subphases: (1)

the abstract syntax is translated into a dependency

structure where (2) dependency analysis is done to

produce a code graph which is (3) translated into the

attribute ADT code.

Dependencies that need to be constructed during

subphase (2) are the computation ordering of local

attribute de�nitions and the sequence in which syn-

text is to be computed for the immediate subterms of

a term. There is a close correspondence between the

dependencies and the attribute ADT code. Synthe-

sized attribute de�nitions translate into syntexts with

�-functions, inherited attribute de�nitions translate

into contexts with �-functions, and �nal attribute

de�nitions translate into attributes with A-functions.

The corresponding references translate into calls to

get-syn, references to Lisp variables, and calls to

get-attr. Additional code is required for variable-

length argument lists, optionals, and iterated at-

tributes.

Figure 3 shows the Common Lisp code produced by

the attribute-grammar compiler for a small portion of

the calculator attribute-grammar in Figure 2. This

code calls functions like get-syn and get-syn-argn

which are implementations of functions with the same

name in the attribute ADT.

5 Conclusions and Future Research

The view of attributes presented in this paper de-

scribes a formalism for specifying the data type of

attribute that ensures attribute consistency with-

out constraining the implementation. We have not

fully characterized the class of attribute languages

that can be supported by the attribute ADT, it

is clear that we do not exploit all of its 
exi-

bility in the present attribute-grammar compiler.

Our experience has been with three major appli-

cations: a language-generic program 
ow analyzer,

9



same, so it is returned without further computation.

AttrCalc Val program ht; h i; vali ( val

It should be noted that none of the � or � func-

tions are directly recursive. Wherever an implemen-

tation without attributes would make a recursive call,

our implementation will access (and perhaps compute

�rst, if it was not cached already) a syntext value for a

subterm. This mechanism allows the implementation

to intervene and cache and retrieve syntexts. This

mechanism is similar to function caching, but under

the control of the client.

4 An Attribute Speci�cation Lan-

guage

In the previous section we presented an abstract data

type of attributes and showed through an example

how it can be used to de�ne attributes without ever

writing an attribute grammar. However, attribute

grammars provide a convenient way of specifying at-

tributes, so the Ergo Attribute System also contains

an attribute-grammar compiler. This compiler gen-

erates code in the attribute ADT, given a relatively

conventional attribute grammar in our attribute spec-

i�cation language.

The attribute speci�cation language is basically ap-

plicative and similar in structure to the grammar lan-

guage used by the Syntax Facility, except that it fol-

lows the abstract syntax rather than the concrete

syntax. This style of grammar provides a declar-

ative view with emphasis on nonterminals and at-

tributes (as in Lisa [10]), rather than on productions

and semantic rules, (e.g. ALADIN [8] is rule-based,

ADELE is semantics-directed) and may thus be de-

scribed as \abstract-syntax-directed". An attribute-

grammar consists of a series of declarations followed

by a sequence of rules. A rule consists of a (unique)

nonterminal on the left-hand side and a sequence

of productions on the right-hand side. Productions

may contain local de�nitions, constraints, and decla-

rations. External attributes may be referenced within

a grammar by simple quali�cation of an attribute

name. This supports decomposition of large applica-

tions and allows sharing among di�erent applications.

The class of languages accepted by the at-

tribute speci�cation language is similar to ADELE in

MUG2 [21]. Attribute dependencies are restricted to

those which allow attribute evaluation in a �xed num-

ber of passes over the abstract syntax tree. A pass is

any depth-�rst tree traversal where the order of the

visits to the subtrees of a given node is known at com-

pile time. This classi�cation falls between ordered

attribute-grammars [7] and attribute-grammars that

are evaluable in alternating passes [5]. Like ADELE,

our attribute-grammars are of type n-sweep where the

decomposition into the single sweeps has to be explic-

itly provided for. Experience with MUG2 indicated

that this class of attribute grammars is su�ciently

general while allowing e�cient pass-oriented evalua-

tion techniques. Requiring explicit separation into

passes helps to keep descriptions modular and com-

prehensible, and also aids demand analysis.

In order to provide good support for 
ow analysis

the attribute-compiler has an additional feature that

allows attributes that are to be computed iteratively

if they are declared as such (as in MUG2).

It should be pointed out that the attribute ADT

does not restrict us to this particular class of

attribute-grammars. Rather, the attribute spec-

i�cation language has evolved based on the de-

mands made by the clients in our program deriva-

tion environment. This evolution was greatly facil-

itated by the separation of attribute ADT and at-

tribute grammar compiler, and also by the boot-

strap of the compiler within the Ergo Support Sys-

tem (ESS). This \bootstrap" includes the generation

of the attribute-grammar parser by our parser gen-

erator and the attribute-grammar compiler by the

attribute-grammar system itself.

4.1 The Calculator Example Revisited

Let us return to the calculator example introduced

in Section 3.3. We will illustrate how the value at-

tribute could have been speci�ed in the attribute

speci�cation language, rather than writing it directly

in the attribute ADT. The attribute-grammar com-

piler will compile this into attribute ADT code which

is relatively close to the hand-coded version. In this

subsection we follow that standard terminology in

attribute-grammars, that is, we use the terms inher-

ited attribute and synthesized attribute. It is impor-

tant to remember, that an inherited attribute will be

compiled into a member of a context, a synthesized

attribute will be compiled into a member of a syn-

text. Only attributes that are declared �nal in the

attribute-grammar will be compiled into attributes

in the attribute ADT.

The attribute-grammar is given in Figure 2 (the

reader may want to refer back to the grammar in Fig-

ure 1). Inherited attributes are pre�xed with `!' and

8



Comment Character newline '%'

Lexical Terminals id, number

Precedence Information

exp '+' medial left, '-' medial left

program ::= { exp } <prog(exp)>;

bindpair ::= { id '=' exp } <bp(id,exp)>;

exp ::= { 'let' {bindpair ++ ','} 'in' exp } <let(bplist(bindpair+),exp)>

| { id } <vref(id)>

| { number } <cref(number)>

| { exp^1 '+' exp^2 } <add(exp^1,exp^2)>

| { exp^1 '-' exp^2 } <sub(exp^1,exp^2)>

| { 'SUM' '(' { exp ++ ',' } ')' } <sum(exp+)>;

Figure 1: Calculator Grammar

such a collection of de�nitions a context family |

Calc in this example. (opcase performs case analysis

on the abstract syntax operator of the term.)

�Calc program hi; t; h ii ( nullenv

�Calc exp hi; t; envi (

opcase t of

let ! case i of

0 ! env

1 ! get-syn-argn Calc h0; t; envi

otherwise ! env

�Calc bplist hi; t; envi (

case i of

0 ! env

otherwise ! get-syn-argn Calc h(i� 1); t; envi

�Calc bindpair hi; t; envi (

case i of

0 ! h i

1 ! env

The context for an expression will be an environ-

ment associating variable names with values. When

entering the body of a let, this must be updated to the

environment synthesized from the list of additional

bindings. This is achieved by the call to get-syn-argn

in line 6 of the example. For other expressions, the

environment for the subterms is identical to the en-

vironment for the term.

A list of bindings is processed from left to right,

so that the environment for binding pair i is the en-

vironment synthesized by binding pair i � 1, or the

environment that is passed down if i = 0. This is

embodied in the de�nition of �Calc bplist.

The following is the de�nition of the syntext family

Calc that depends on the context family of the same

name. The syntext of an expression should be the

result of evaluating it in the current environment, the

syntext of a list of bindings is the result of augmenting

the environment by additional bindings.

�Calc program ht; h ii ( get-syn-argn Calc h0; t; h ii

�Calc exp ht; envi (

opcase t of

let ! get-syn-argn Calc h1; t; envi

vref ! let id = term-argn h0; ti in

let val = lookup hid; envi in

if bound val then val

else error 'Unbound Variable.'

cref ! numval (term-argn h0; ti)

add !(get-syn-argn Calc h0; t; envi)

+(get-syn-argn Calc h1; t; envi)

sub !(get-syn-argn Calc h0; t; envi)

�(get-syn-argn Calc h1; t; envi)

sum ! sumlist (get-syn-list Calc ht; envi)

�Calc bplist ht; envi (

get-syn-last Calc hterm-argn h0; ti; envi

�Calc bindpair ht; envi (

let id = term-argn h0; ti and

val = get-syn-argn Calc h1; t; envi in

bind hid; val; envi

The de�nition of the �-function for expressions

should be easy to understand. The calculation of the

new environment for a bindpair involves synthesizing

the value of the expression the variable is bound to

and adding a new binding to the environment that is

returned. The new environment synthesized from a

whole list of bindings is simply the one synthesized

by the last element of the list (achieved by a call to

get-syn-last).

The de�nition of the attribute family in this exam-

ple depends only on the syntext. In fact it is the

7



a context, syntext, or attribute during debugging of

an attribute-grammar. Since our e�cient version of

the implementation provides no simple way of erasing

all cached attribute information, we often switch to

an implementation where the mapping from context

to syntext values is stored in a global hashtable in-

dexed by terms. This is somewhat less e�cient, but

the hash table can be erased completely at any time

without a�ecting the value of attributes (though their

computation may take more time).

Inter-program structure sharing. Any given at-

tribute slot may cache the mapping from di�erent

contexts to di�erent syntexts. Therefore a term may

appear in many versions of the program with di�erent

attribute values. Since syntext values (and therefore

attributes) are computed uniformly as a function of

the context and the term, the implementation does

not have to deal with creating and maintaining ver-

sions for each change to the program, and a client

does not have to request \new versions."

Demand-driven attribute evaluation. This is

clearly built into the implementation, since no at-

tribute is computed, unless access is attempted (via

get-syn). We also provide a function to explicitly tra-

verse the term and compute syntext, context, and

attributes for each subterm. This is sometimes useful

to force the checking of constraints embedded in the

attribute de�nition.

Incremental attribute update. We implicitly

use the simple criterion that a syntext (and conse-

quently, attribute) of a term does not need to be

recomputed if the context it depends on has not

changed. This criterion is correct by de�nition of a

syntext. Thus many attribute values will be shared

between closely related versions of a program, achiev-

ing the bene�ts of \change propagation" of Reps et

al. [19] within demand-driven evaluation.

Attribute persistence. When a program is mod-

i�ed during a transformation, attributes for un-

changed parts of the program will persist. The fact

that we cache a mapping guarantees attribute consis-

tency, and if a transformation is \undone," the old

attribute values will again be accessible. As noted

above, for debugging purposes this is almost too per-

sistent, since attributes will exist as long as the term

they are cached in exists, even if the de�nition of the

attributes is changed.

Genericity. An implementation of the attribute

ADT is required to provide the primitives for

local propagation of context and syntext infor-

mation (through such functions as con-delta and

get-syn-argn). It does not provide evaluation strate-

gies: those are the responsibility of the client. This is

the primary source of the genericity of the attribute

ADT. A client (such as an attribute-grammar com-

piler) can program di�erent strategies for ordering of

local dependencies, ordering of global dependencies

(e.g. list traversal, circular dependencies, non-local

propagation), program traversal, and multiple passes

over the program.

E�ciency. The primary source of ine�ciency in

our implementation is the fact that we have to cache

a mapping from contexts to syntexts in a slot of the

term. In a conventional implementation, the syntext

value could be looked up directly, while here an as-

sociation list must be traversed. However, e�ciency

gains through other advantages of our scheme out-

lined above clearly outweigh the additional overhead

of caching in our applications. If the need arises,

our implementation of caching could be greatly im-

proved using techniques developed for e�cient func-

tion caching (see, for example, [16]).

3.3 A Simple Example

The Ergo Attribute System can best be explained

with an example that will illustrate how to create an

application, and how the implementation processes

it. We present a simple calculator language and �rst

show how the attribute ADT can be used to imple-

ment an evaluator for this language. This example

will also be used to demonstrate our attribute speci-

�cation language (see Figure 2).

The concrete syntax of the language is de�ned

through a grammar (see Figure 1). The Syntax Facil-

ity produces a parser, lexer, and unparser for the lan-

guage as well as a language de�nition table that can

be referenced by other tools. The structure of the ab-

stract syntax for a given calculator expression is listed

in the grammar augments (between <>) and shows

the operator and its arguments. (bindpair+ denotes

the list of bindings). The nonterminals are program,

bindpair, exp, and bplist (inferred by the Syntax Fa-

cility). Abstract syntax operators are, for example,

let, vref, or add.

In this example, a context consists of the environ-

ment and a syntext consists of the computed value

(except for bindpair which synthesizes a new environ-

ment). There is only one attribute, namely the result

of evaluating the program.

As is often convenient, we will de�ne the �-

function separately for each nonterminal. We call

6



Next we de�ne syntexts. The syntext values of a

given term are de�ned through a function from the

term and context values to a tuple of values to be

computed simultaneously. We call such a function a

�-function. � is the type of the information conveyed

by the syntext, usually a tuple of values.

ADT Syn with

mk-syn : Con ! (((Term � �) ! �) ! Syn)

syn-con : Syn ! Con

syn-fun : Syn ! ((Term � �) ! �)

end

In the auxiliary functions and axioms below,

f(t

1

; . . . ; t

n

) is a term with operator f and arguments

t

1

through t

n

. � is a �-function, � is a �-function,

and i, t, and c are variables denoting an index, term,

and context.

Auxiliary functions of Syn

get-syn : Syn ! Term � � ! �

get-syn (mk-syn con �) ht; ci = � ht; ci

get-syn-argn : Syn ! Nat � Term� � ! �

get-syn-argn (mk-syn (mk-con�) �)

hi; f (t

1

; . . . ; t

n

); ci

= get-syn (mk-syn (mk-con�) �)

ht

i

;� hi; f (t

1

; . . . ; t

n

); cii

get-syn-list : Syn ! Term � � ! (� list)

(get-syn-list syn ht; ci)

i

= get-syn-argn syn hi; t; ci

get-syn-last : Syn ! Term � � ! �

get-syn-last syn hf (t

1

; . . . ; t

n

); ci

= get-syn-argn syn hn; t; ci

end

The auxiliary function get-syn and the destructor

function syn-fun are extensionally equal, but they will

be implemented di�erently. The computation of syn-

thesized information is often recursive and this re-

cursion will be exposed in the de�nition of the �-

function by an access to the syntext of the immedi-

ate subterms of a term. This access is done through

the function get-syn-argn, which in turn makes use of

the �-function to compute the correct context for the

subterm.

Since the term t itself is an argument to the �-

function, it may perform any recursive computation

on t to obtain the syntext. However, it is most e�-

cient if the information needed about the subterms of

t is embodied in the syntext of the subterm so it can

be cached there and retrieved by get-syn-argn.

Our implementation of get-syn will by default try

to look up a cached value for the given term and con-

text. If no such value exists, it will be computed

by the appropriate �-function and the result will be

cached. Caching and lookup can be explicitly enabled

or disabled at compile-time, so that in reality we sup-

port several alternative implementations of this ab-

stract data type simultaneously. Syntext values are

cached in a slot of the term as an association list

indexed by the syntext name and the context. The

equality check between contexts defaults to Common

Lisp equal.

Finally, we consider attributes, which are de�ned

through a function from terms, context, and syntext

information to the attribute value. This function is

called an A-function (alpha function). In the de�ni-

tion below, � and � are the type of the context and

syntext information on which the attribute depends,

respectively. � is the type of the information con-

veyed by the attribute. A is an A-function.

ADT Attr with

mk-attr : Syn� ((Term� � � �) ! �) ! Attr

attr-syn : Attr ! Syn

attr-fun : Attr ! ((Term� � � �) ! �)

end

Auxiliary functions of Attr

get-attr : Attr ! ((Term� � � �) ! �)

get-attr (mk-attr syn A) ht; c; si = A ht; c; si

end

The relationship between attr-fun and get-attr is

the same as between syn-fun and get-syn. As in the

case of contexts, we do not cache the result of this

computation.

3.2 Requirements Revisited

In this section we describe how our implementa-

tion of the attribute ADT meets the requirements we

identi�ed in the introduction: attribute consistency,

inter-program structure sharing, demand-driven at-

tribute evaluation, incremental attribute update, and

attribute persistence.

Attribute consistency. Since we cache a mapping

rather than a value, and that mapping uniquely deter-

mines the syntext and therefore the attribute value,

correctness of attributes with respect to its de�nition

as a function is always guaranteed. There is one no-

table exception, namely a change in the de�nition of

5



in which a term occurs. Typical examples of contexts

are binding environments, paths from the root to the

current subterm occurrence, etc. Contexts are anal-

ogous to sets of inherited attributes in an attribute-

grammar.

A syntext is a tuple of values that distills relevant

information from the subterms of a term, given the

current context. Typical examples of syntexts are

computed values, translated terms, etc. Syntexts

are analogous to sets of synthesized attributes in an

attribute-grammar.

Finally, an attribute is a single value that depends

on the current context and syntext. Attributes seem

to be the simplest way of isolating values from context

and syntexts, which are the central notions of the

abstract data type.

3.1 The Speci�cation of the Abstract Data

Type

We now give the de�nition of the abstract data type

in the pieces outlined above and intersperse com-

ments about our implementation, and how it satis�es

the requirements of a program derivation system. Of

course, the abstract data type allows other implemen-

tations, and we will occasionally indicate alternatives.

The abstract data type de�nition is somewhat un-

usual in that the principal objects given as arguments

to constructors are functions. We therefore think of

it as a higher-order data type, and this has several

consequences. Normally, the signature of an alge-

braic data type is that of a many-sorted algebra |

here functions are arguments of constructors, and the

types of these functions are not �xed. Thus a com-

pletely formal speci�cation of the data type would

have to use dependent function types or explicit poly-

morphism. Such a formulation would exceed the

scope of this paper and also make the speci�cation

less readable, so we have chosen to use type variables

in the speci�cation and explain their dependencies

informally. We omit the obvious axioms for the de-

structor functions associated with an abstract type

and focus on the auxiliary functions. We consider a

function auxiliary if it could be de�ned from the ba-

sic constructors and destructors, but, for e�ciency

reasons, should be implemented di�erently.

A brief word on notation: we use \!" as the func-

tion type constructor and \�" as product type con-

structor, where � binds more tightly. Functions are

constructed using \�," products are constructed with

\h i." We use typewriter fonts for data types, lower-

case greek letters for type variables, sans-serif font for

functions, italics for variables, and upper-case greek

letters for function variables. \=" stands for equality

in a data type, \(" stands for function de�nition.

Following the dependencies between the abstract

types, we begin with the de�nition of contexts. Con-

texts are speci�ed by a function that, given a term

and its context, computes the context information for

an immediate subterm. This function is called a �-

function and takes three arguments: the index for

an immediate subterm, a term, and a context. � is

the type of the information conveyed by the context,

usually a tuple of values. The type of context infor-

mation associated with a term may depend on that

term, and therefore � and �

0

may di�er.

ADT Con with

mk-con : ((Nat� Term� �) ! �

0

) ! Con

con-deltafun : Con ! ((Nat� Term� �) ! �

0

)

end

The following auxiliary function could be de�ned in

terms of con-deltafun but may be implemented quite

di�erently.

Auxiliary functions of Con

con-delta : Con ! ((Nat� Term� �) ! �

0

)

con-delta (mk-con�) hn; t; ci = �hn; t; ci

end

�-functions often need synthesized information,

but this information will typically be cached; hence

�-functions should involve little computation. Our

implementation of the attribute ADT relies on the as-

sumption that �-functions can be executed quickly to

obtain context for the subterms of a given term if the

necessary synthesized information has been cached.

If this assumption should fail, it would be possible to

cache the result of �-functions without changing the

abstract data type speci�cation, but we not yet found

a need for this.

In the following two examples of contexts, Unit is

the unit type with \h i" as its sole element, which we

use to denote the empty context. A path is a sequence

of indices determining a path through the abstract

syntax tree representing a term, and pcons extends a

path by an index. A number of useful contexts such

as these are prede�ned in our implementation.

empty-con : Con

empty-con = mk-con (�hn; t; ci : h i)

path-con : Con

path-con = mk-con (�hn; t; ci : (pcons hn; ci))

4



attribution.

This conclusion has been con�rmed by our ex-

perience with three major applications that have

been completed using the Ergo Attribute Sys-

tem: a language-generic program 
ow analyzer [14],

the attribute-grammar compiler itself, and a pro-

grammable formatting unparser with an interface to

the X window system supporting mouse pointing and

real-time highlighting.

2.2 An Abstract Data Type

One of the guiding principles in the design of the ESS

is the use of formally speci�ed abstract interfaces as

the \glue" binding together the system components.

As far as we know, this principle has never been ap-

plied to attributes. An abstract data type of attribute

should ful�ll the requirements laid out above, and also

satisfy the following criteria.

Genericity. It should not unduly constrain the

class of attribute grammars that may be compiled

into the attribute ADT.

E�ciency. It must be possible to implement the

speci�cation of the abstract data type faithfully and

e�ciently.

With these goals in mind we formulated the follow-

ing main principle guiding the design of the abstract

data type.

Functional character of attributes.

An attribute value should be completely de-

termined by the term and the context it ap-

pears in, where the de�nition of context is

made together with the de�nition of an at-

tribute.

Roughly, the abstract data type allows the de�ni-

tion of an attribute as a function from a term and

selected information about its context to a value. In

our implementation, a mapping from this context in-

formation to the attribute value is cached in the term

as an association list between contexts and values.

2.3 An Attribute Speci�cation Language and

Compiler

Our attribute speci�cation language and the underly-

ing compiler are both very 
exible and can easily be

(and have often been) changed. In part, this is due

to the fact that it is completely bootstrapped within

the ESS, that is, it is written using our parser genera-

tor (for the speci�cation language) and the attribute-

grammar facility itself (for the compilation into code

using the abstract data type of attributes). Another

reason is that the underlying data type of attributes

makes few constraints on the attribute-grammar.

The Ergo Attribute System is similar to the MUG2

[21] system in many respects, including the lan-

guage and class of grammars accepted. The language

is nonterminal-oriented like Lisa, a language devel-

oped by the HLP group [10] rather than production-

oriented like most other systems. There is a similarity

to the Cornell Synthesizer [18] where (unlike MUG2,

for example) equivalence between transformed terms

cannot be presumed.

The Ergo Attribute System compiles an attribute-

grammar written in the attribute speci�cation lan-

guage into a collection of attribute evaluator func-

tions that rely on the attribute ADT. These evaluator

functions can be viewed (1) as operating on abstract

syntax to produce an attributed abstract syntax tree,

or (2) as an algorithm for computing attributes on de-

mand.

3 An Abstract Data Type of At-

tributes and Its Implementation

In Section 2 we listed the requirements that must be

ful�lled by the abstract data type of attributes. We

will reiterate here one of the principal requirements.

Attribute Consistency. The data type

should be formulated in such a way that con-

sistent attribution is ensured by the data

type and is not the responsibility of the

client, that is, every attribute accessed is

guaranteed to be valid with respect to its

de�nition.

A natural consequence of this goal is that caching is

not part of the speci�cation, but merely of our imple-

mentation. In other words, the speci�cation does not

distinguish between attribute access and attribute

computation, though, of course, the implementation

will. The principle idea underlying our abstract data

type speci�cation is that an attribute value is com-

pletely determined by a term and the context it ap-

pears in. Thus attributes in the abstract data type

are speci�ed through a function which maps a term

and information about its context to a value.

A context is a tuple of values that distills rele-

vant information from the total of the environment

3



To this end we have designed and implemented a col-

lection of tools called the Ergo Support System (ESS,

see [13]), which includes a parser/unparser genera-

tor, an attribute-grammar compiler, a program 
ow

analyzer, a higher-order uni�er, a facility for de�ni-

tion of user interfaces, and some system management

utilities. These tools are integrated by means of ab-

stract interfaces, two principal ones being an abstract

data type of terms (for representing abstract syntax

of speci�cations, programs, proofs, etc.) and an ab-

stract data type of attributes.

The motivation for including the Ergo Attribute

System in the ESS comes from the need for seman-

tic analysis within the context of a derivation system

[20]. Flow analysis for instance, has a critical role in

computing global information to complement more

\local" pattern matching and rewriting in program

transformation systems.

The ESS itself has been used to a great extent to

develop the ESS. In the case of the Ergo Attribute

System, both the Ergo Syntax Facility [2], which gen-

erates parsers and unparsers from grammar speci�ca-

tions, and the attribute-grammar compiler itself (af-

ter an initial bootstrap) were used.

2.1 Requirements

The use of attributes to represent semantic informa-

tion is a well-studied formalism. There are numerous

strategies for evaluating attributes, see for example,

Bochmann [1], Farrow [3], Jourdan [6], Kastens [7],

and Kennedy and Warren [9]. Raiha [17] provides an

extensive bibliography on attribute-grammars. The

notion of attribute is well-known from compilers and

compiler writing systems, (e.g. GAG [8], MUG2 [4],

HLP [11]) and systems like the Cornell Program Syn-

thesizer [18]. Attributes are also very useful in a pro-

gram derivation environment. Many natural transfor-

mations depend upon non-local conditions that must

be checked, and attributes provide for a convenient

way of de�ning and localizing this information. More-

over the syntax-directed nature of many applications

within the derivation system can be re
ected within

an attribute-grammar.

In this section we outline the requirements that

should be ful�lled by an attribute-grammar system,

in particular in the context of a program derivation

environment. Our implementation satis�es these re-

quirements at the expense of some loss of e�ciency

over conventional implementations for some conven-

tional applications. However, the conceptual sim-

plicity, the degree of independence between tools

achieved through the abstract data type, and the ef-

�ciency gained when there are many related versions

of a program more than make up for this loss of e�-

ciency.

Attribute consistency. Attributes should always

be correct with the respect to the current version of

the program and the de�nition of the attribute (typi-

cally in the form of an attribute-grammar). This is an

obvious requirement that should be de rigeur for any

attribute-grammar system, but it can be violated in

many of them. Attribute consistency in such systems

is typically ensured by the client through an explicit

attribution phase. In the Ergo Attribute System, at-

tribute consistency is guaranteed by the abstract data

type and cannot be violated by the client.

Inter-program structure sharing. During a se-

quence of transformation steps, many di�erent, but

closely related versions of a program may exist. Since

programs are generally large, but most transforma-

tions local, it is important that the di�erent versions

of a program share structure. This presents a con-

sistency problem with respect to attributes, because

even though a subprogram may be una�ected by a

transformation, its attributes may have changed.

Demand-driven attribute evaluation. Clearly,

many attributes may be very expensive to compute,

but are needed for only a small subset of the trans-

formations. Moreover, the system cannot predict in

general when an attribute may be needed. Therefore,

demand-driven attribute evaluation is extremely de-

sirable in this setting.

Incremental attribute update. The simple solu-

tion of complete attribute recomputation after each

transformation step is unnecessarily expensive, since

many attributes in a program will not change during

a transformation. Thus incremental attribute update

is a highly desirable feature.

Attribute persistence. The user or transforma-

tion metaprogram may backtrack or explore the space

of programs in an unpredictable fashion, thus requir-

ing attribute values from earlier versions of a pro-

gram. These should not always have to be recom-

puted. This also explains why destructive changes of

the program during transformations are generally not

desirable.

Our solution combines demand-driven evaluation

and incremental attribute update in a new way. The

overhead in storing and accessing attributes incurred

by our scheme is more than o�set by the gains

from structure and attribute sharing, and from the

demand-driven, incremental, and persistent nature of
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1 Introduction

The major features that distinguish the Ergo At-

tribute System from other attribute-grammar sys-

tems are (1) a formal speci�cation of an abstract data

type (ADT) of attribute separated from the attribute-

grammar compiler and (2) a new way of ensuring

attribute consistency while allowing demand-driven

attribute evaluation and a large amount of sharing

of attribute values between di�erent generations of a

program. The attribute-grammar compiler itself is

written as an attribute-grammar.

The novel features were developed in direct re-

sponse to the requirements imposed by a language-

generic program derivation system. These require-

ments di�er from those in a compiler or compiler gen-

erator system in that potentially many more distinct,

but closely related versions of a program or speci�-

cation exist. Moreover, the relationship between dif-

ferent versions and the time when an attribute value

may be needed are much less predictable. As far as

we know, other systems do not deal with this matter

directly, since they are only concerned with the latest

version of a program and thus attributes for previous

versions do not persist.

The body of this paper consists of three sections:

Section 2 presents an overview of the Ergo Attribute

System and its motivation, Section 3 describes the

abstract data type of attributes and its implemen-

tation, Section 4 describes the attribute speci�ca-

tion language and the process of compiling attribute-

grammars into the attribute ADT.

2 The Ergo Attribute System

The Ergo Attribute System is part of the Ergo

Project's [12] ongoing e�ort to build an environment

that supports experimentation in program derivation.


