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Abstract

This paper presents an approach that incorporates
Canonical Correlation Analysis (CCA) for monocular 3D
face pose and facial animation estimation. The CCA is used
to find the dependency between texture residuals and 3D
face pose and facial gesture. The texture residuals are ob-
tained from observed raw brightness shape-free 2D image
patches that we build by means of a parameterized 3D geo-
metric face model. This method is used to correctly estimate
the pose of the face and the model’s animation parameters
controlling the lip, eyebrow and eye movements (encoded in
15 parameters). Extensive experiments on tracking faces in
long real video sequences show the effectiveness of the pro-
posed method and the value of using CCA in the tracking
context.

1. Introduction

Head pose and facial gesture estimation is a crucial task
in several computer vision applications, like video surveil-
lance, human-computer interaction, biometrics, vehicle au-
tomation, etc. It poses a challenging problem because of
the variability of facial appearance within a video sequence.
This variability is due to changes in head pose (particularly
out-of-plane head rotations), facial expression, or lighting,
to occlusions, or a combination of all of them.

Different approaches exist for tracking moving objects,
two of them being feature-based and model-based. Feature-
based approaches rely on tracking local regions of interest,
like key points, curves, optical flow, or skin color [5, 10].
Model-based approaches use a 2D or 3D object model that
is projected onto the image and matched to the object to be
tracked [9, 7]. These approaches establish a relationship
between the current frame and the information that they
are looking for. Some popular methods to find this rela-
tion use a gradient descent technique like the active appear-
ance models AAMs [4, 15], a statistical based technique
using support or relevant vector machines (SVM and RVM)
[2, 14], or a regression technique based on the Canonical

Correlation Analysis (CCA) (linear or kernel based). CCA
is a statistical method which relates two sets of observa-
tions, and that is well suited for regression tasks. CCA has
recently been used for appearance based 3D pose estimation
[11], appearance-based localization [12] and to improve the
AAM search [6]. These works highlight the advantages of
the CCA to obtain regression parameters that outperform
standard methods in speed, memory requirements and ac-
curacy (when the parameter space is not too small).

In this paper we present a model-based approach that in-
corporates CCA for monocular 3D face pose and facial an-
imation estimation. This approach fuses the use of a para-
meterized 3D geometric face model with the CCA in order
to correctly track the facial gesture corresponding to the lip,
eyebrow and eye movements and the 3D head pose encoded
in 15 parameters.

Although model-based methods and CCA are tradition-
ally used in the computer vision domain, these two methods
together were not already used in the tracking context. We
will show experimentally on different public and our own
video sequences that, indeed, our CCA approach is well
suited to obtain a simple and effective facial pose and ges-
ture tracker.

2. Face representation

The use of a 3D generic face model for tracking purposes
has been widely explored in the computer vision commu-
nity. In this section we show how we use the Candide-3
face model to acquire the 3D geometry of a person’s face
and the corresponding texture map for tracking purposes.

2.1. 3D geometric model

The 3D parameterized face model Candide-3 [1] is con-
trolled by Animation Units (AUs). The wireframe consists
of a group of n 3D interconnected vertices to describe a
face with a set of triangles. The 3n-vector g consists of
the concatenation of all the vertices, and can be written in a
parametric form as:
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g = gs + Aτa, (1)

where the columns of A are face Animation Units and the
vector τa contains 69 animation parameters [1] to control
facial movements so that different expressions can be ob-
tained. gs = g+∆g+Sτs corresponds to the static geom-
etry of a given person’s face: g is the standard shape of the
Candide model, the columns of S are Shape Units and the
vector τs contains 14 shape parameters [1] used to reshape
the wireframe to the most common head shapes. The vec-
tor ∆g can be used if necessary to adapt the 3D model to
non-symmetric faces locally by moving vertices individu-
ally. ∆g, τs and τa are initialized manually, by fitting the
Candide shape to the face shape facing the camera in the
first video frame (see Figure 1).

a.

b.

c.

d.
Figure 1. (a) 3D Candide model aligned on the target face in the
first video frame with the 2D image patch mapped onto its surface
(upper right corner) and three other semi-profile synthesized views
(left side). (b),(c) and (d) Stabilized face images used for tracking
the pose: SFI 1, the eyebrows and the eyes: SFI 2, the mouth:
SFI 3, respectively.

The facial 3D pose and animation state vector b is then
given by:

b =
[
θx, θy, θz, tx, ty, tz, τ

T
a

]T
, (2)

where θ. and t. components stand respectively for the model
rotation around three axes and translation.
In this work, the geometric model g(b) will be used to crop
out underlying image patches from the video frames and to
transform faces into a normalized facial shape for tracking
purposes, as described in the next section. We will limit the
dimension of τa to 9, in order to only track eyebrows, eyes
and lips. In that case, the state vector b ∈ R

15.

2.2. Stabilized face image

We consider here a stabilized 2D shape free image patch
(also called a texture map) to represent the facial appear-
ance of the person facing the camera and to represent ob-
servations from the incoming video frame Y. The patch is

built by warping the rawbrightness image vector lying un-
der the model g(b) into a fixed size 2D projection of the
standard Candide model without any expression (i.e. with
τa = 0). This patch augmented with two semi-profile views
of the face, to track rotation in a wider range, is written as
x = W(g(b),Y), where W is a warping operator (see Fig-
ure 1.b). We will see in section 4 how to use other stabilized
face images to represent and track the upper and lower fa-
cial features of the face (Figures 1.c and 1.d).

3. Integrated tracking framework

In this section, we describe our algorithm for face and
facial animation tracking. It is composed of three steps: ini-
tialization, learning and tracking. In step one, the shape of
the Candide model is aligned to the face in the first video
frame. Using the stabilized face image (we call it the ref-
erence stabilized face), we train the system, in step two, by
synthesizing new views of the face with standard computer
graphics texture-mapping techniques. CCA is used to learn
the relation between the changes in the model parameters
and the corresponding residuals between the reference sta-
bilized face and the synthesized faces. Then, the tracking
process at time t consists in obtaining the stabilized face im-
age from the incoming frame Yt using the estimated state
vector bt−1 at time t−1 and in computing the difference be-
tween this image and the reference stabilized face. The er-
ror vector is used to predict the variation in the state vector.
Once the state vector is updated, we update the reference
stabilized face image and continue with the next incoming
frame. The three steps are more precisely described in the
following sub-sections.

3.1. Initialization

The Candide model is placed manually over the first
video frame Y0 at time t = 0 and reshaped to the person’s
face. From this model we generate three semi-profile syn-
thesized views (see Figure 1.a) in order to verify the accu-
racy of the alignment. Once the model is aligned, we obtain
the state vector b0, and the reference stabilized face image:

x(ref)
0 = W(g(b0),Y0). (3)

3.2. Training

Due to the high dimensionality that arises when working
with images, the use of a linear mapping to extract some lin-
ear features is common in the computer vision domain. One
of the most prominent methods for dimensionality reduc-
tion is Principal Component Analysis (PCA) which deals
with one data space and identifies directions of high vari-
ance. However, in our case, we are interested in identify-
ing and quantifying the linear relationship between two data



sets: the change in state of the Candide model and the cor-
responding facial appearance variations. Using first a PCA
and then trying to find the linear relation between two pro-
jected data sets can lead to a loss of information, as PCA-
features might not be well suited for regression tasks. In
our case we propose to use a Canonical Correlation Analy-
sis (CCA) to find linear relations between two sets of ran-
dom variables [3, 13]. CCA finds pairs of directions or basis
vectors for two sets of m vectors, one for Q1 ∈ R

m×n and
the other for Q2 ∈ R

m×p, such that the projections of the
variables onto these directions are maximally correlated.

Let A1 and A2 be the centered versions of Q1 and Q2

respectively. The maximum number of basis vectors that
can be found is min(n, p). If we map our data to the direc-
tions w1 and w2 we obtain two new vectors defined as:

z1 = A1w1 and z2 = A2w2. (4)

and we are interested in finding the correlation between
them, which is defined as:

ρ =
zT
2 z1√

zT
2 z2

√
zT
1 z1

. (5)

Our problem consists in finding vectors w1 and w2 that
maximize (5) subject to the constraints zT

1 z1 = 1 and
zT
2 z2 = 1.

In this work, we use the numerically robust method pro-
posed in [13]. We compute singular value decompositions
of the data matrices A1 = U1D1VT

1 and A2 = U2D2VT
2 ,

and then, the following the singular value decomposition:
UT

1 U2 = UDVT , to finally get:

W1 = V1D−1
1 U and W2 = V2D−1

2 V, (6)

where matrices W1 and W2 contain the full set of canon-
ical correlation basis vectors. In our case, the matrix
A1 contains the difference between the training observa-
tion vectors xTraining = W(g(bTraining),Y0) and the

reference x(ref)
0 , and the matrix A2 contains the varia-

tion in the state vector ∆bTraining given by bTraining =
b0 + ∆bTraining . The m training points were chosen em-
pirically from a non-regular grid around the vector state ob-
tained at initialization (Figure 2).

Once we have obtained all the canonical correlation ba-
sis vectors, the general solution consists in performing a lin-
ear regression between z1 and z2. However, if we develop
(5) for each pair of directions with the assumptions made
above, we get ‖A1w1 − A2w2‖2 = 2(1 − ρ) similarly as
in [8]. Based on our experiments, we observe that ρ ≈ 1,
and so, we can substitute matrices A1 and A2 by ∆bt and
(xt − x(ref)

t ) in the relation A1w1 ≈ A2w2 to come to:

∆btw2 = (xt − x(ref)
t )w1. (7)

This is true for all the canonical variates, so we substitue
equations (6) to get a result for all the directions:

∆bt = (xt − x(ref)
t )G, (8)

where the matrix G = V1D−1
1 UVT D2VT

2 encodes the
linear model used by our tracker, which is explained in the
following section.

3.3. Tracking

The tracking process consists in estimating the state vec-
tor ∆bt when a new video frame Yt is available. In order
to do that, we need, first, to obtain the stabilized face im-
age, from the incoming frame by means of the state at the
preceding time, as:

xt = W(g(bt−1),Yt), (9)

and then make the difference between this image and the
reference stabilized face image x(ref)

t . This gives an error
vector from which we estimate the changes in state with (8).
Then we can write the state vector update equation as:

b̂t = bt−1 + (xt − x(ref)
t )G. (10)

We iterate a fixed number of times (5, in practice) and
estimate another b̂t according to equation (10) and update
the state vector. Once the iterations are done, we update the
reference stabilized face image according to:

x(ref)
t+1 = αx(ref)

t + (1 − α)x̂t (11)

with α = 0.99 obtained from experimental results. In [16],
CCA is compared KCCA for pose tracking. We observe
similar tracking performances, with larger run-time require-
ments for the KCCA-based method.

4. Implementation

The algorithm has been implemented on a PC with a
3.0 GHz Intel Pentium IV processor and a NVIDIA Quadro
NVS 285 graphic card. Our non optimized implementation
uses OpenGL for texture mapping and OpenCV for video
capture. We used a standard desktop Winnov analog video
camera to generate the sequences we use for tests.

We retain the following nine animation parameters of
the Candide model, for tracking facial gestures:

(1) upper lip raiser
(2) jaw drop
(3) mouth stretch
(4) lip corner depressor
(5) eyebrow lowerer

(6) outer eyebrow raiser
(7) eyes closed
(8) yaw left eyeball
(9) yaw right eyeball

Based on the algorithm described in section 3, we have
implemented, for comparison purposes, three versions of



the tracker combining different stabilized face images. The
first version of the algorithm uses a stabilized face image
(SFI 1, in Figure 1) to estimate simultaneously the 6 head
pose parameters and the 9 facial animation parameters. The
second version uses a stabilized face image (SFI 1) to es-
timate simultaneously the head pose and the lower face ani-
mation parameters (parameters (1) to (4)) and then, starting
from the previously estimated state parameters, we use a
stabilized face image (SFI 2, in Figure 1) to estimate the
upper face animation parameters (5) to (9). Finally, the third
version of the tracker uses three stabilized face images se-
quentially: one to track the head pose (SFI 1), one to track
the lower face animation parameters (SFI 3, in Figure 1),
and a last one (SFI 2) to track the upper face animation pa-
rameters. SFI 1, SFI 2 and SFI 3 are respectively com-
posed of 96 × 72, 86 × 28, and 88 × 42 pixels.

For training, we use 317 training state vectors with the
corresponding appearance variations for the pose, 240 for
the upper face region and 200 for the mouth region. The
same points are used in the three implemented versions.
These vectors correspond to variations of ±20◦ for the rota-
tions, ±10.5% of the face width for translations, and anima-
tion parameter’s values corresponding to valid facial expres-
sions. We chose these points empirically, from a symmetric
grid centered on the initial state vector. The sampling is
dense close to the origin and coarse as it moves away from
it (see Figure 2). Due to the high dimensionality of our state
vectors, even after the separation into three models, we did
not use all the combinations between the chosen points. It
is important to say that we consider the lower and the upper
face animation parameters as mutually independent.

Figure 2. 2D representation of the sampled Candide parameters.

5. Experimental results

For validation purposes, we use in this paper the video
sequences described in [9] 1 for pose tracking, and the
talking face video made available from the Face and Ges-
ture Recognition Working group 2, for both pose and fa-
cial animation tracking as these sequences are supplied with

1www.cs.bu.edu/groups/ivc/HeadTracking/
2www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html

ground truth data. In this section, we show and analyze
quantitatively the performance of the tracker over the two
types of video sequences.

3D pose tracking. Video sequences provided in [9] are
200 frames long, with a resolution of 320 × 240, 30 fps.,
taken under uniform illumination, where the subjects per-
form free head motion including translations and both in-
plane and out-of-plane rotations. Ground truth has been col-
lected via a “Flock of Birds” 3D magnetic tracker. Figure
3 shows the estimated pose compared with the ground data.
We use here the first version of our tracker based on the sta-
bilized face image SFI 1. Temporal shifts can be explained
because the center of the coordinate systems used in [9] and
ours are slightly different. In our case, the three axes cross
close to the nose, due to the Candide model specification,
and in the ground truth data, the 3D magnetic tracker is at-
tached on the subject’s head. We check experimentally (on
all the provided video sequences) the stability and precision
of the tracker and do not observe divergences of the tracker.

Figure 4. Candide model with the corresponding talking face
ground truth’s points used for evaluation.

Simultaneous pose and facial animation tracking. The
talking face video sequence consists of 5000 frames, with
a resolution of 720 × 576, taken from a video of a per-
son engaged in conversation. This corresponds to about
200 seconds of recording. The sequence was taken as part
of an experiment designed to model the behavior of the
face in natural conversation. For practical reasons (to dis-
play varying parameter values on readable graphs) we used
1720 frames of the video sequence, where the ground truth
consists of characteristic 2D facial points annotated semi-
automatically. From 68 annotated points per frame, we se-
lect 52 points that are closer to the corresponding Candide
model points, as can be seen in Figure 4. In order to eval-
uate the behavior of our algorithm we calculated for each
point the standard deviation of the distances between the
ground truth and the estimated coordinates divided by the
face width. Figure 5 depicts the standard deviation over the
whole video sequence for each point using the three imple-
mentations of our algorithm. We can see that the points
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Figure 3. 3D pose tracking results: the graphs show the estimated 3D pose parameters during tracking compared to ground truth.

with the greater standard deviation correspond to those on
the contour of the face. The precision of these points is
strongly related to the correctness of the estimated pose pa-
rameters. The best performance, as expected, is obtained
with the third version of our algorithm based on three stabi-
lized face images to estimate first the pose, then the lower
face animation parameter and finally the upper face anima-
tion parameters. When using a single model, the tracker
presents some imprecision. The second version of the al-
gorithm (based on the two stabilized face images SFI 1
and SFI 2) improves the estimation of the upper face an-
imation parameters. However, when estimating the eyes’
movement separately, the tracking is improved. The fact of
going from two to three models presented an improvement
only for the points corresponding to the mouth, but no fur-
ther improvements were obtained for the pose estimation.
Based on these results, we retain the third version of the
tracker to explore its robustness.

The α parameter affects the way we update the reference
stabilized face image in (11). From experiments we find
that α = 0.99 is a good choice. It is important to say that
when ther is no update, i.e. α = 1, the tracker diverged. We
see that the mean standard deviation of the 52 facial points
stays approximately constant with some peaks. These peaks
correspond to important facial movements. In the case of
frame 993 the rotation around the y axis corresponds to
36.62◦. In frame 1107, the rotations around on the x, y
and z axes are respectively −13.3◦, 18.9◦ and −10.5◦. We
observe on the whole video sequence that even if peak val-
ues are large, the tracker still performs correctly. Figure 7
shows sample frames extracted from the whole talking face
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Figure 5. Standard deviation of the 52 facial points w.r.t. the face
width, using the three version of our algorithm, to track both the
pose and facial animation parameters.

video sequence and from different video sequences part of
the data set in [9] and from a webcam. We can appreciate
the robustness of the tracker even in the case of cluttered
backgrounds.

Experiments were conducted to evaluate the sensitivity
of the facial animation tracker in the case of imprecise 3D
pose estimations. Given that the tracker first estimates the
3D pose of the face and then, based on this estimation, it es-
timates the lower and the upper face animation parameters,



Figure 7. Frames from different video sequences showing the pose and gesture tracking. From top to bottom: Talking face video sequence,
two La Cascia’s video sequence and two video sequences from a webcam.

we added some random noise to the six pose parameters be-
fore estimating the facial animation, within the following
intervals: ±10% of the estimated head width added to the
three translation parameters, and ±3◦ added to the three ro-
tation parameters. In order to prove the robustness of the
facial animation estimation, we have added some gaussian
noise to the estimated pose parameters with a standard devi-
ation of 10% of the training intervals described in Section 4.
Figure 8 shows the stability of the “eyebrow lowerer” ani-
mation parameter estimation even if the six pose parameters
have been previously altered.

Features like eyebrows and eye closure tend to change
rapidly during emotional expressions. We show in Figure 9
the time evolution of the “eye closed” animation parameter,
and observe on the graph that 18 eye blinks and one long
period with closed eyes around frame 100 are correctly de-
tected. This is confirmed when looking at the talking sub-
ject in natural conversation in the video sequence.

6. Conclusion

We have presented a method that is capable of tracking
both 3D pose and facial animation parameters from individ-
uals in monocular video sequences in real time. The track-
ing approach is simple from the training and tracking points
of view, robust even to slight illumination changes and pre-
cise when the out-of-plane face rotation angles stay in the

interval ±30◦. The technique can still be improved. As re-
gards immediate extensions, the method will be combined
with a facial feature detection algorithm to re-synchronize
the tracking in case of divergence. Future work will also
address the robustness of the tracker to more important illu-
mination changes (this could be integrated in the G matrix),
and its sensitivity to depth initialization of the model.
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