
This work by John Galeotti and Damion Shelton, © 2004-2023, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

Methods in Medical Image Analysis - Spring 2023
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

ITK Filters: How to Write
Them, etc.

1

http://creativecommons.org/licenses/by/3.0/

Where we are

§You should understand
§What the pipeline is and how to connect filters

together to perform sequential processing
§How to move through images using iterators
§How to access specific pixels based on their location

in data space or physical space

2

What we’ll cover

§How to write your own filter that can fit into
the pipeline

§For reference, read Chapters 6 & 8 from book 1
of the ITK Software Guide

3

Is it hard or easy?

§Writing filters can be really, really easy
§But, it can also be tricky at times
§Remember, don’t panic!

4

“Cheat” as much as possible!

§Never, ever, ever, write a filter from scratch
§Unless you’re doing something really odd, find

a filter close to what you want and work from
there

§Recycling the general framework will save you a
lot of time and reduce errors

5

Much of the filter is already written

§Most of the interface for an
is already coded by the

base classes
§For example, and are not

functions you have to write
§You should never have to worry about

particulars of the pipeline infrastructure.

6

The simple case

§You can write a filter with only one* function!
§ (* well, sort of)

§Overload to produce
output given some input

§We’ll look at as
an example
§ Located in SimpleITK-

build/ITK/Modules/Filtering/Smoothing/include

7

The header - stuff that’s “always
there”

sets up the object factory (for
reference counted smart pointers)

allows you to use run time
type information

and are
used to access private member variables

8

The header cont.

§Prototypes for functions you will overload:

§ For multi-threaded filters, the latter will instead be:

9

More header code

§You will also see:
§ Many typedefs, some of which are particularly important:

§ Constructor and destructor prototypes
§ Member variables (in this example, only one)

§Things not typically necessary:

§ Concept checking stuff

10

Pay attention to...

, , are used to enforce
single inclusion of header code

§Use of
§The three lines at the bottom starting with:

control whether the .hxx file should be included
with the .h file.

§There are often three lines just before that,
starting with ,
which allow for explicitly precompiling certain
combinations of template parameters.

11

Does this seem complex?

§That’s why I suggested always starting with an
existing class

§You may want to use find and replace to change
the class name and edit from there

§Moving on to the .hxx file...

12

The constructor

§In BinomialBlurImageFilter, the constructor
doesn’t do much
§ Initialize the member variable

13

GenerateData()

§This is where most of the action occurs
is called during the pipeline

update process
§It’s responsible for allocating the output image

(though the pointer already exists) and filling
the image with interesting data

14

Accessing the input and output

§First, we get the pointers to the input and
output images

15

Filters can have multiple inputs or outputs,
in this case we only have one of each

Allocating the output image

16

The meat of GenerateData()

§Make a temporary copy of the input image
§Repeat the desired number of times for each

dimension:
§ Iterate forward through the image, averaging each

pixel with its following neighbor
§ Iterate backward through the image, averaging each

pixel with its preceding neighbor

§Copy the temp image’s contents to the output
§We control the number of repetitions with

17

PrintSelf

is a function present in all classes
derived from which permits easy
display of the “state” of an object (i.e. all of its
member variables)

§ITK’s testing framework requires that you
implement this function for any class
containing non-inherited member variables
§Otherwise your code will fail the “PrintSelf test”…
§ If you try to contribute your code to ITK

§Important: users should call instead
of

18

PrintSelf, cont.

§First, we call the base class implementation

§And second we print all of our member
variables

19

This is the only time you should
ever call directly!

Questions?

§How can we make multithreaded filters?
§What if the input and output images are not

the same size? E.g., convolution edge effects,
subsampling, etc.

§What about requested regions?

20

We’ll address these questions
when we discuss advanced filters

Another Question for Today

How do I deal with neighborhoods
in N-Dimensions…

Such as for convolution?

21

Neighborhoods in ITK

§An ITK neighborhood can be any collection of
pixels that have a fixed relationship to the
“center” based on offsets in data space.
§Not limited to the max- or min-connected

immediately neighboring pixels!

§See 6.4 in the ITK Software Guide, book 1

22

Neighborhoods in ITK, cont.

§In general, the neighborhood is not completely
arbitrary
§Neighborhoods are rectangular, defined by a “radius”

in N-dimensions
§ ShapedNeighborhoods are more arbitrary, defined by

a list of offsets from the center
§The first form is most useful for mathematical

morphology kinds of operations, convolution,
etc.

23

Neighborhood iterators

§The cool & useful thing about neighborhoods is
that they can be used with neighborhood
iterators to allow efficient access to pixels
“around” a target pixel in an image

24

Neighborhood iterators

§Remember that I said access via pixel indices
was slow?
§Get current index = I
§Upper left pixel index IUL = I - (1,1)
§Get pixel at index IUL

§Neighborhood iterators solve this problem by
doing pointer arithmetic based on offsets

25

Neighborhood layout

§Neighborhoods have one primary vector
parameter, their “radius” in N-dimensions

§The side length along a particular dimension i is
2*radiusi + 1

§Note that the side length is always odd because
the center pixel always exists

26

A 3x5 neighborhood in 2D

27

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Stride

§Neighborhoods have another parameter called
stride which is the spacing (in data space) along
a particular axis between adjacent pixels in the
neighborhood

§In the previous numbering scheme, stride in Y
is amount then index value changes when you
move in Y

§In our example, Stridex = 1, Stridey = 5

28

Neighborhood pixel access

§The lexicographic numbering on the previous
diagram is important!
§ It’s ND
§ It’s how you index (access) that particular pixel when

using a neighborhood iterator

§This will be clarified in a few slides...

29

NeighborhoodIterator access

§Neighborhood iterators are created using:
§ The radius of the neighborhood
§ The image that will be traversed
§ The region of the image to be traversed

§Their syntax largely follows that of other
iterators (++, IsAtEnd(), etc.)

30

Neighborhood pixel access, cont.

31

1.2 1.3 1.8 1.4 1.1

1.8 1.1 0.7 1.0 1.0

2.1 1.9 1.7 1.4 2.0

Let’s say there’s some region of an image that has
the following pixel values

Pixel access, cont.

§Now assume that we place the neighborhood
iterator over this region and start accessing
pixels

§What happens?

32

Pixel access, cont.

33

1.2
0

1.3
1

1.8
2

1.4
3

1.1
4

1.8
5

1.1
6

0.7
7

1.0
8

1.0
9

2.1
10

1.9
11

1.7
12

1.4
13

2.0
14

returns 0.7
so does

lexicographic
index within
neighborhood

Intensity of
currently
underlying
pixel in the
image

Pixel access, cont.

Get the length & stride length of the iterator:

returns the #pixels in the neighborhood
Ex: find the center pixel’s index:

returns the stride of dimension N:

34

Pixel access, cont.

35

1.2
0

1.3
1

1.8
2

1.4
3

1.1
4

1.8
5

1.1
6

0.7
7

1.0
8

1.0
9

2.1
10

1.9
11

1.7
12

1.4
13

2.0
14

returns 0.7
returns 1.1

Pixel access, cont.

36

1.2
0

1.3
1

1.8
2

1.4
3

1.1
4

1.8
5

1.1
6

0.7
7

1.0
8

1.0
9

2.1
10

1.9
11

1.7
12

1.4
13

2.0
14

returns 1.8
returns 1.3

The ++ method

§In Image-Region Iterators, the ++ method
moves the focus of the iterator on a per pixel
basis

§In Neighborhood Iterators, the ++ method
moves the center pixel of the neighborhood
and therefore implicitly shifts the entire
neighborhood

37

An aside: “regular” iterators

§Regular ITK Iterators are also lexicographic
§ That is how they, too, are ND

§The stride parameters are for the entire image
§Conceptual parallel between:
§ ITK mapping a neighborhood to an image pixel in an

image
§ Lexicographically unwinding a kernel for an image

§The linear pointer arithmetic is very fast!
§Remember, all images are stored linearly in RAM

38

Convolution (ahem, correlation)!

To do correlation we need 3 things:
1. A kernel
2. A way to access a region of an image the same size

as the kernel
3. A way to compute the inner product between the

kernel and the image region

39

Item 1 - the kernel

§A is a set of pixel
values that can be applied to a Neighborhood
to perform a user-defined operation (i.e.
convolution kernel, morphological structuring
element)

is derived from

40

Item 2 - image access method

§We already showed that this is possible using
the neighborhood iterator

§Just be careful setting it up so that it’s the same
size as your kernel

41

Item 3 - inner product method

§The computes
the inner product between two neighborhoods

§Since is derived from
, we can compute the IP of the

kernel and the image region

42

Good to go?

1. Create an interesting operator to form a
kernel

2. Move a neighborhood through an image
3. Compute the IP of the operator and the

neighborhood at each pixel in the image

Voila – correlation in N-dimensions

43

Inner product example

itk::NeighborhoodInnerProduct<ImageType> IP;

itk::DerivativeOperator<TPixel,
ImageType::ImageDimension>
operator ;

operator->SetOrder(1);
operator->SetDirection(0);
operator->CreateDirectional();

itk::NeighborhoodIterator<ImageType> iterator(
operator->GetRadius(),
myImage,
myImage->GetRequestedRegion()
);

44

Inner product example, cont.

iterator.SetToBegin();
while (! iterator. IsAtEnd ())
{

std::cout << "Derivative at index "
<< iterator.GetIndex ()
<< " is " << IP(iterator, operator)
<< std::endl;

++iterator;
}

45

Note

§No explicit reference to dimensionality in
neighborhood iterator

§Therefore easy to make N-d

46

This suggests a filter...

wraps
this procedure into a filter that operates on an
input image

§So, if the main challenge is coming up with an
interesting neighborhood operator, ITK can do
the rest

47

Your arch-nemesis…
image boundaries

§One obvious problem with inner product
techniques is what to do when you reach the
edge of your image

§Is the operation undefined?
§Does the image wrap?
§Should we assume the rest of the world is

empty/full/something else?

48

ImageBoundaryCondition

§Subclasses of can
be used to tell neighborhood iterators what to
do if part of the neighborhood is not in the
image

49

ConstantBoundaryCondition

§The rest of the world is filled with some
constant value of your choice

§The default is 0
§Be careful with the value you choose - you can

(for example) detect edges that aren’t really
there

50

PeriodicBoundaryCondition

§The image wraps, so that if I exceed the length
of a particular axis, I wrap back to 0 and start
over again

§If you enjoy headaches, imagine this in 3D
§This isn’t a bad idea, but most medical images

are not actually periodic

51

ZeroFluxNeumannBoundaryCondition

§This is the default boundary condition
§Simply returns the closest in-bounds pixel value

to the requested out-of-bounds location.
§Important result: the first derivative across the

boundary is zero.
§ Thermodynamic motivation
§Useful for solving certain classes of diff. eq.

52

Using boundary conditions

automatically determines
whether or not it needs to enable bounds checking
when it is created (i.e. constructed).

true/false
§ Manually forces or disables bounds checking

§ Changes which boundary condition is used
§ Can be called on both:

53

What at the types of Pixels?

How do I do math with
different pixel types…

54

Answer: numeric traits

§Provide various bits of numerical information
about arbitrary pixel types.

§Usage scenario:
§ “What is the max value of the current pixel type?”

§Need to know these things at compile time, but
templated pixel types make this hard.

§Numeric traits provide answers that are “filled
in” at compilation for our pixel type.

55

itk::NumericTraits

§NumericTraits is class that is specialized to provide
information about pixel types

§Examples include:
§ Min and max, epsilon and infinity values
§ Definitions of Zero and One
§ (I.e., Additive and multiplicative identities)

, functions
§See also:

§ Modules/ThirdParty/VNL/src/vxl/vcl/emulation/vcl_limits.h
§ http://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html
§ http://www.itk.org/Wiki/ITK/Examples/SimpleOperations/Numeri

cTraits

56

Using traits

§What’s the maximum value that can be
represented by an ?

§What about for our pixel type?

57

Get used
to coding like

this!

Excerpt from
http://www.itk.org/Wiki/ITK/Examples/Sim
pleOperations/NumericTraits

#include "itkNumericTraits.h”
// ...

std::cout << "Min: " << itk::NumericTraits< float >::min() << std::endl;
std::cout << "Max: " << itk::NumericTraits< float >::max() << std::endl;
std::cout << "Zero: " << itk::NumericTraits< float >::Zero << std::endl;
std::cout << "Zero: " << itk::NumericTraits< float >::ZeroValue() << std::endl;

std::cout << "Is -1 negative? " << itk::NumericTraits< float >::IsNegative(-1)
<< std::endl;

std::cout << "Is 1 negative? " << itk::NumericTraits< float >::IsNegative(1)

<< std::endl;
std::cout << "One: " << itk::NumericTraits< float >::One << std::endl;
std::cout << "Epsilon: " << itk::NumericTraits< float >::epsilon()

<< std::endl;

std::cout << "Infinity: " << itk::NumericTraits< float >::infinity()
<< std::endl;

// ...

58

Some Helpful Filters:

Useful “utility” filters to process images, etc.

59

Useful ITK filters

§These are filters that solve particularly common
problems that arise in image processing

§You can use these filters at least 2 ways:
§ In addition to your own filters
§ Inside of your own filters

§Don’t re-invent the wheel!
§This list is not comprehensive (obviously)
§Specific filter documentation is an EFTR

60

Padding an image

§Problem: you need to add extra pixels outside
of an image (e.g., prior to running a filter)

§Solution: and its derived
classes

61

Cropping an image

§Problem: trimming image data from the outside
edges of an image (the inverse of padding)

§Solution:

62

Rescaling image intensity

§Problem: you need to translate between two
different pixel types, or need to shrink or
expand the dynamic range of a particular pixel
type

§Solutions:

63

Computing image derivatives

§Problem: you need to compute the derivative
at each pixel in an image

§Solution: , which is a
wrapper for the neighborhood tools discussed
in a previous lecture

§See also

64

Compute the mirror image

§Problem: you want to mirror an image about a
particular axis or axes

§Solution: - you specify
flipping on a per-axis basis

65

Rearrange the axes in an image

§Problem: the coordinate system of your image
isn’t what you want; the x axis should be z, and
so on

§Solution: - you
specify which input axis maps to which output
axis

66

Resampling an image

§Problem: you want to apply an arbitrary
coordinate transformation to an image, with
the output being a new image

§Solution: - you control
the transform and interpolation technique
§ (This is used when doing registration)

67

Getting a lower dimension image

§Problem: you have read time-series volume
data as a single 4D image, and want a 3D “slice”
of this data (one frame in time), or want a 2D
slice of a 3D image, etc.

§Solution: - you specify
the region to extract and the “index” within the
parent image of the extraction region

68

