
This work by John Galeotti and Damion Shelton, © 2004-2024, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

Methods in Medical Image Analysis - Spring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

Lecture 16
Images in ITK

1

http://creativecommons.org/licenses/by/3.0/

Great News! ITK in Python

§ Reminder: You should already have full ITK’s Python
wrapper installed from the previous homework.
§ If not, can now install a (slightly) simplified version of full ITK in

Python:

§ Great news if you need some of ITK’s more advanced
functionality for your final project, but want to use Python

§ Examples: https://discourse.itk.org/t/itk-5-0-beta-1-
pythonic-interface/1271

§ More Documentation:
https://itkpythonpackage.readthedocs.io/en/master/Quick_
start_guide.html

2

Data storage in ITK

§ITK separates storage of data from the actions
you can perform on data

§The class is the base class for
the major “containers” into which you can
place data

3

Data containers in ITK

§Images: N-d rectilinear grids of regularly
sampled data

§Meshes: N-d collections of points linked
together into cells (e.g. triangles)
§Meshes are outside the scope of this course
§ (Meshes are covered in section 4.3 of the ITK

Software Guide, Book 1.)
§ITK Spatial Objects
§May discuss in a future lecture

§ITK Path Objects
§Final Lecture

4

What is an image?

§For our purposes, an image is an N-d rectilinear
grid of data

§Images can contain any type of data, although
scalars (e.g. grayscale) or vectors (e.g. RGB
color) are most common

§We will deal mostly with scalars, but keep in
mind that unusual images (e.g. linked-lists as
pixels) are perfectly legal in ITK

5

Images are templated

Examples:

6

Pixel type Dimensionality (value)

An aside: smart pointers

§In C++ you typically allocate memory with
and deallocate it with

§Traditional C++ for a keyboard class :

7

Danger!

§Suppose you allocate memory in a function and
forget to call delete prior to returning… the
memory is still allocated, but you can’t get to it

§This is a memory leak
§Leaking doubles or chars can slowly consume

memory, leaking 200 MB images will bring your
computer to its knees

8

Smart pointers to the rescue

§Smart pointers get around this problem by
allocating and deallocating memory for you

§You do not explicitly delete objects in ITK, this
occurs automatically when they go out of scope

§Since you can’t forget to delete objects, you
can’t leak memory

9

(ahem, well, you have to try harder at least)

Smart pointers, cont.

§This is often referred to as garbage collection -
languages like Java have had it for a while, but
it’s fairly new to C++

§Keep in mind that this only applies to ITK
objects - you can still leak arrays of
floats/chars/widgets until your heart’s
content…or your program crashes.

10

Why are smart pointers smart?

§Smart pointers maintain a “reference count” of
how many copies of the pointer exist

§If Nref drops to 0, nobody is interested in the
memory location and it’s safe to delete

§If Nref > 0 the memory is not deleted, because
someone still needs it

11

Scope

§Refers to whether or not a variable exists within
a certain segment of the code.
§When does a variable cease to exist?

§Local vs. global
§Example: variables created within member

functions typically have local scope, and “go
away” when the function returns

12

Scope, cont.

§Observation: smart pointers are only deleted
when they go out of scope (makes sense,
right?)

§Problem: what if we want to “delete” a SP that
has not gone out of scope; there are good
reasons to do this, e.g. loops

13

Scope, cont.

§You can create local scope by using
§Instances of variables created within the

will go out of scope when execution moves out
of the

§Therefore… “temporary” smart pointers
created within the will be deleted

§Keep this trick in mind, you may need it

14

A final caveat about scope

§Don’t obsess about it
§99% of the time, smart pointers are smarter

than you!
§1% of the time you may need to haul out the

previous trick

15

Images and regions

§ITK was designed to allow analysis of very large
images, even images that far exceed the
available RAM of a computer

§For this reason, ITK distinguishes between an
entire image and the part which is actually
resident in memory or requested by an
algorithm

16

Image regions

§Algorithms only process a region
of an image that sits inside the
current buffer

 is the portion
of image in physical memory

is the portion
of image to be processed

describes the entire dataset

17

LargestPossibleRegion::Index

BufferedRegion::Index

RequestedRegion::Index

RequestedRegion::Size

BufferedRegion::Size

LargestPossibleRegion::Size

Image regions, cont.

§It may be helpful for you to think of
 as the “size” of the

image
§When creating an image from scratch, you must

specify sizes for all three regions - they do not
have to be the same size

§Don’t get too concerned with regions just yet,
we’ll look at them again with filters

18

Data space vs. “physical” space

§Data space is what you probably think of as
“image coordinates”

§Data space is an N-d array with integer indices,
each indexed from 0 to (Li - 1)
§e.g. pixel (3,0,5) in 3D space

§Physical space relates to data space by defining
the origin and spacing of the image

19

Length of side i

20Figure 4.1 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

Creating an image: step-by-step

§Note: this example follows 4.1.1 from the ITK
Software Guide’s Book 1, but differs in content -
please be sure to read the guide as well

§This example is provided more as a
demonstration than as a practical example - in
the real world images are often/usually
provided to you from an external source rather
than being explicitly created

21

Declaring an image type

Recall the keyword… we first define an
image type to save typing later on:

We can now use in place of the full class
name, a nice convenience

22

A syntax note

It may surprise you to see something like the
following:

Classes can have typedefs as members. In this case,
SizeType is a public member of itk::Image.
Remember that ImageType is itself a typedef, so
we could express the above more verbosely as

23

(well, not if you were paying attention during the ITK background lecture)

Syntax note, cont.

§This illustrates one criticism of templates and
typedefs—it’s easy to invent something that
looks like a new programming language!

§Remember that names ending in “Type” are
types, not variables or class names

§Doxygen is your friend - you can find developer-
defined types under “Public Types”

24

Creating an image pointer

An image is created by invoking the New() operator
from the corresponding image type and assigning the
result to a SmartPointer.

25

Pointer is typedef’d in itk::Image Note the use of “big New”

A note about “big New”

§Many/most classes within ITK (all that derive from
itk::Object) are created with the ::New() operator,
rather than new

§
§Remember that you should not try to call delete on

objects created this way

26

When not to use ::New()

§“Small” classes, particularly ones that are
intended to be accessed many (e.g. millions of)
times will suffer a performance hit from smart
pointers

§These objects can be created directly (on the
stack) or using (on the free store)

27

Setting up data space

The ITK Size class holds information about the
size of image regions

28

SizeType is another typedef

Setting up data space, cont.

Our image has to start somewhere - how about
starting at the (0,0,0) index?

 Don’t confuse (0,0,0) with the physical origin!

29

Note that the index object start
was not created with ::New()

Setting up data space, cont.

Now that we have defined a size and a starting
location, we can build a region.

30

region was also not created with ::New()

Allocating the image

Finally, we’re ready to actually create the image.
The SetRegions function sets all 3 regions to
the same region and Allocate sets aside
memory for the image.

31

Dealing with physical space

§At this point we have an image of “pure” data;
there is no relation to the real world

§Nearly all useful medical images are associated
with physical coordinates of some form or
another

§As mentioned before, ITK uses the concepts of
origin and spacing to translate between
physical and data space

32

Image spacing

We can specify spacing by calling the SetSpacing function in
Image.

33

Image origin

Similarly, we can set the image origin

34

Origin/spacing units

§There are no inherent units in the physical
coordinate system of an image—i.e. referring to
them as mm’s is arbitrary (but very common)

§Unless a specific algorithm states otherwise, ITK
does not understand the difference between
mm/inches/miles/etc.

35

Direct pixel access in ITK

§There are many ways to access pixels in ITK
§The simplest is to directly address a pixel by

knowing either its:
§ Index in data space
§Physical position, in physical space

36

Why not to directly access pixels

§Direct pixels access is simple conceptually, but
involves a lot of extra computation (converting
pixel indices into a memory pointer)

§There are much faster ways of performing
sequential pixel access, through iterators

37

Accessing pixels in data space

The Index object is used to access pixels in an
image, in data space

38

Pixel access in data space

To set a pixel:

And to get a pixel:

39

(the type of pixel stored in the image)

Why the runaround with PixelType?

§It might not be obvious why we refer to
rather than (in this

example) just say
§In other words, what’s wrong with…?

40

PixelType, cont.

§Well… nothing is wrong in this example
§But, when writing general-purpose code we

don’t always know or control the type of pixel
stored in an image

§Referring to ImageType will allow the code to
compile for any type that defines the =
operator (float, int, char, etc.)

41

PixelType, cont.

That is, if you have a 3D image of doubles,

works fine, while

will produce a compiler warning, and probably
result in a runtime error

42

Accessing pixels in physical space

§ITK uses the Point class to store the position of a
point in N-d space

§Example for a 2D point:

§ Using here has nothing to do with the pixel type
specifies the precision of the point’s positioning

§ Points are usually of type float or double.

43

Defining a point

Hopefully this syntax is starting to look
somewhat familiar…

44

Why do we need a Point?

§The image class contains a number of
convenience methods to convert between pixel
indices and physical positions (as stored in the
Point class)

§These methods take into account the origin and
spacing of the image, and do bounds-checking
as well (i.e., is the point even inside the image?)

45

TransformPhysicalPointToIndex

§This function takes as parameters a (that
you want) and an (to store the result in)
and returns if the point is inside the
image and otherwise

§Assuming the conversion is successful, the
 contains the result of mapping the
 into data space

46

The transform in action

First, create the index:

Next, run the transformation:

Now we can access the pixel!

47

Point and index transforms

2 methods deal with integer indices:

And 2 deal with floating point indices (used to
interpolate pixel values):

48

Ways of accessing pixels

§So far we have seen two “direct” methods of
pixel access
§Using an Index object in data space
§Using a Point object in physical space

§Both of these methods look like typical C++
array access:

49

Walking through an image

If you’ve done image processing before, the
following pseudo code should look familiar:

50

Image traversal, cont.

§The loop technique is easy to understand but:
§ Is slow
§Does not scale to N-d
§ Is unnecessarily messy from a syntax point of view

§Iterators are a way around this

51

Why direct access is bad

1… It’s slow:
a) Build the index
b) Pass the index to the image
c) Build a memory address from the index
d) Access the pixel

52

Direct access = bad, cont.

2… It’s hard to make it N-d:
Let’s say I want to do something really simple,

like access all of the pixels in an image (any
data type, any dimensionality)

How would you do this using indices?

53

N-d access troubles

§You could probably come up with a fairly
complicated way of building an index

§But, nested for-loops will not work, because
you don’t know ahead of time how many loops
to nest

54

N-d access troubles, cont.

I.e. the following works on 2D images only

55

Iterators to the rescue

§There’s a concept in generic programming
called the iterator

§It arises from the need to sequentially &
efficiently access members of complex data
objects

§Iterators are not unique to ITK; the Standard
Template Library (STL) uses them extensively

56

Iterators in ITK

§ITK has many types of iterators. There are
iterators to traverse:
§ image regions
§neighborhoods
§arbitrary functions (“inside” the function)
§ random pixels in an image
§and more…

§We’ll be covering several of these in class

57

See the software guide

§All this and more can be found in Chapter 6 of
the ITK Software Guide, Book 1

58

Good news about iterators

Iterators are:
§Simple to learn and use, and make your code

easier to read (!)
§Wrap extremely powerful data access methods

in a uniform interface
§N-d
§Fast

59

An aside: “Concepts” in ITK

§One of the ways the Doxygen documentation is organized is
by concepts

§This helps sort classes by similar functionality (concepts)
even if they don’t share base classes

§http://www.itk.org/Doxygen/html/pages.html
§ Iterators are one of the concepts you can look up

60

Image region iterators

§The simplest type of iterator lets you traverse
an image region

§The class is — it
requires an image pointer, and a region of the
image to traverse

61

Creating the iterator

First, we assume we have or can get an image

Next, create the iterator

 note that each iterator is attached to a specific image

Finally, move the iterator to the start of the image

62

Using the iterator

Loop until we reach the end of the image, and
set all of the pixels to 10

63

More compact notation

We can skip the explicit “move to beginning” stage
and write the following:

64

Image regions

We initialized the iterator with:

Note that the region can be anything - pick your
favorite image region (using the requested region is
common in filters).

65

Other iterator tricks

§Access the pixel with Get()
§Figure out the Index of the pixel with GetIndex()
§Get a reference to a pixel with Value()
§Value() is somewhat faster than Get()

66

Iterator tricks, cont.

§Moving forwards and backwards
§ Increment with
§Decrement with

§Beginning/ending navigation:

67

Const vs. non-const iterators

§You will notice that most iterators have both
const and non-const versions

§Const iterators do not allow you to set pixel
values (much like const functions don’t allow
you to change class member values)

§In general, the non-const versions of each
iterator derive from the const

68

Const vs. non-const, cont.

§Good programming technique is to enforce
const access when you don’t intend to change
data

§Moreover, input images in ITK filters are const,
so you can’t traverse them using non-const
iterators

§Why? It’s very important to not accidentally
modify the input to a filter!

69

Problems with iterating regions

§It’s not easy to know “who” your neighbors are,
which is often important

§You don’t have much control over how the
iteration proceeds (why?)

§Fortunately, there are solutions to both of
these problems… stay tuned

70

