
This work by John Galeotti and Damion Shelton, © 2004-2024, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

Methods in Medical Image Analysis - Spring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

Lecture 7
Registration with ITK

1

http://creativecommons.org/licenses/by/3.0/

For more info/gory detail…

§Please see the following for exhaustive detail:
§ Chapter 3 in the ITK Software Guide Book 2
§ Insight into Images
§ ITK Source Tree
§ Examples/RegistrationITKv4/
§ E.g. Examples/RegistrationITKv4/ImageRegistration1.cxx

§ ITK Doxygen
§ http://www.itk.org/Doxygen53/html/group__Group-Registration.html
§ https://itk.org/Doxygen53/html/group__ITKRegistrationMethodsv4.html
§ http://www.itk.org/Doxygen53/html/group__Group-Numerics.html

§ SimpleITK:
§ http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/

§ See all the Python Registration (6x) notebooks, especially:
§ http://insightsoftwareconsortium.github.io/SimpleITK-

Notebooks/Python_html/60_Registration_Introduction.html
§ https://simpleitk.org/doxygen/v2_3/html/classitk_1_1simple_1_1ImageRegistra

tionMethod.html

2

What is registration?

§The process of aligning a target image to a
source image

§More generally, determining the transform that
maps points in the target image to points in the
source image

3

Transform types

§Rigid (rotate, translate)
§Affine (rigid + scale & shear)
§Deformable = non-rigid (affine + vector field)
§Many others

4

Registration in ITK

§ ITK uses an extensible registration framework
§ Various interchangeable classes exist
§ Relatively easy to “twiddle” the part you’re interested in while

recycling prior work

§ The newer ITKv4 Registration framework is separate from the
legacy framework.
§ The legacy framework follows traditional practice
§ Version 4 registration is more flexible and thus more complex
§ Use the v4 framework whenever practical

§ SimpleITK also supports registration

§ For “simplified” complex registration, consider using ANTS instead:
§ http://picsl.upenn.edu/software/ants/
§ http://stnava.github.io/ANTs/

5

New since ITKv4
(ImageRegistrationMethodv4, etc.)
§ New unified, improved, and fully multi-threaded optimization and

registration framework (including multi-threaded metrics)
§ Dense deformation fields (including a new transform that encapsulates a

dense deformation field)
§ Point Set registration methods (landmark or label guided registration)

§ Automatic parameter scale estimation for transforms
§ Automatic step-size selection for gradient-based registration optimizers
§ Composite Transforms (grouping multiple transforms into a single one)
§ Symmetric registration (where the Fixed and Moving images make

unbiased contributions to the registration)

§ New metrics for Demons and Mutual Information
§ Diffeomorphic (velocity field) deformable registration
§ Additional evolutionary optimizers
§ Improved B-Spline registration approach available and bug fixes to old

framework
§ Accurately transform and reorient covariant tensors and vectors

6List taken from http://www.itk.org/Wiki/ITK_Release_4/Why_Switch_to_ITKv4 and
http://www.itk.org/Wiki/ITK_Release_4/Migration_Plan/Release_Notes/ITKv4_Final_Release_Notes

ITKv4 Registration

§Uses a different framework than “traditional” ITK
registration. The new framework is designated with a
“v4” suffix.

§ You must use a v4 metric and a v4 optimizer when
doing a v4 registration!

§ Take a look here:
http://www.itk.org/Doxygen53/html/group__ITKRegistrationMethodsv4.html
http://www.itk.org/Doxygen53/html/group__ITKMetricsv4.html
http://www.itk.org/Doxygen53/html/group__ITKOptimizersv4.html
ITK source code: Modules/Registration/RegistrationMethodsv4/include/
ITK source code: Modules/Registration/Metricsv4/include/
ITK source code: Modules/Numerics/Optimizersv4/include/

§Pay special attention to:
§ MattesMutualInformationImageToImageMetricv4
§ DemonsImageToImageMetricv4
§ QuasiNewtonOptimizerv4 (an improved gradient descent)

7

Typical registration terminology

§Fixed image f(x) - stationary in space
§Moving image m(x) - the fixed image with an

unknown transform applied
§Goal: recover the transform T(x) which maps

points in f(x) to m(x)

8

Typical registration framework

§2 input images, fixed and moving
§Metric - determines the “fitness” of the current

registration iteration
§Optimizer - adjusts the transform in an attempt

to improve the metric
§Interpolator - applies transform to image and

computes sub-pixel values

9

Figure 8.2 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

10

Typical registration flowchart

Figure 3.3 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al.

11

ITK v4 registration flowchart

ITK v4: key differences

§Both input images are transformed into a
common virtual domain, which determines:
§ The output resampled-image dimensions and spacing
§ The sampling grid (not necessarily a uniform grid)
§Defaults to the fixed image domain

§Only the Moving Transform is Optimized
§Fixed Transform defaults to identity transform
§But it could be set to the result of a previous

registration, etc.

12

Figure 3.8 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 13

ITK v4 Virtual Domain

ITK’s “Hello world” registration
example

§Uses ITK’s v4 framework, but in the “typical”
traditional style

§Please see the software guide (Book 2, Section
3.2) for code specifics

§I am going to cover what each piece does, not
look at code per se

14

Figure 8.5 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

15

ITK’s “Hello World” Example:
Flow Chart for Everything

Input images

§2D floating point
§Floating point avoids loss of precision problems

with integer pixel types

16

Transform

§TranslationTransform
§Permits translation only in 2D

§ITKv4 still uses the same legacy transforms
§ITKv4 also supports new composite transforms:
§ Two or more successive transforms…
§Combined into a single transform object
§Can initialize with one transform and optimize

another

17

Metric

§MeanSquaresImageToImageMetricv4
§Sum of squared differences between 2 images

on a “pixel-by-pixel” basis
§Remember that both images are transformed to the

virtual domain before doing the comparisons

§A bit naïve
§Works for 2 images that were acquired with the

same imaging modality

18

Optimizer

§RegularStepGradientDescentOptimizerv4
§Follows the derivative of the metric
§Step size depends on rapid changes in the

gradient’s direction
§Step size eventually reaches a user-defined

value that determines convergence

19

Interpolator

§LinearInterpolateImageFunction
§Fast and conceptually simple

20

Wrapper

§ImageRegistrationMethodv4
§Combines all of the previous classes into a

master class

§Registration method automatically instantiates
its own internal transform
§Based on its template parameters

21

Other steps

§ Read the input images
§ Setup the virtual domain

§ Defaults to the fixed image
§ Set the region of the fixed image the registration will

operate on
§ Useful for ignoring bad data

§ Initialize the transforms
§ Fixed transform defaults to identity

§ Setup multi-level registration
§ Like image-pyramids, but better
§ Defaults to a single level

§ Use a C++ try/catch block to avoid crashing on errors
§ Twiddle the optimizer for best performance*

22

*may involve pain and suffering

Figure 8.3 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

23

Hello world input

Figure 3.7 (left) from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 24

X & Y translation vs. time

Figure 3.7 (left) from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al. 25

Metric vs. time

Registration results

§After registration converges/terminates, you
recover the optimized transform with:

§For the Hello World example there are 2
parameters, X & Y translation

§If you used a separate initial moving transform,
create a composite to get the total transform:

26

Double checking results

§Use ResampleImageFilter to apply the
transform for the fixed and moving images

§Take the outputs, and compute their difference
§In this case, just subtract the registered images
§Good registration results in nothing much to see

27

Figure 8.4 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

28

Image comparison

Difference before
registration

Difference after
registration

Registered
moving image

Keeping tabs on registration

§Registration is often time consuming
§It’s nice to know that your algorithm isn’t just

spinning it’s wheels
§Use the observer () mechanism in

ITK to monitor progress
§ ITK software guide, book 1: 3.2.6 and book 2: 3.4

§We’ll see this again later, when we discuss how
to write your own ITK filters

is one example

29

Observer steps

§Write an observer class that will process
“iteration” events
§ (Just copy some code from an example)

§Add the observer to the optimizer
§As a generic note, observers can observe any class

derived from

§Start registration as usual

30

Things observers can do

§Print debugging info
§Update GUI
§Other small management functions
§Should not do anything too processor intensive

31

Figure 3.9 from the ITK Software Guide Book 2, Fourth Edition, by Hans J. Johnson, et al.

32

ITK v4 Registration Observer

Multi-modality registration

§Remember how I said sum-of-squares
difference is relatively naïve?

§Mutual information helps overcome this
problem

§Section 3.5 shows how to implement a simple
MI registration
§Note that Mattes MI is usually easier to use than

Viola-Wells MI

33

Notes about the MI example

§Significantly, largely the same piece of code as
Hello World

§Mutual Information is a metric, so we can keep
the optimizer, the interpolator, and so on

§Majority of differences are in tweaking the
metric, not in rewriting code

34

Figure 8.9 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

35

MI Inputs

T1 MRI Proton density MRI

Taken from Figure 8.10 of the ITK Software Guide v 2.4, by Luis Ibáñez, et al. 36

MI Output: Image Comparison

Before After
This is an example of a checkerboard visualization

Centered transforms

§More natural (arguably) reference frame than
having the origin at the corner of the image

§Big picture is not appreciably different from
other rigid registrations

§But, for the moment there are implementation
complexities and differences, see 3.6

37

An aside: “Twiddling”

§A common criticism of many/most registration
techniques is their number of parameters

§A successful registration often depends on a
very specific fine-tuning of the algorithm

§“Generalized” registration is an open problem

38

Multi-Resolution registration

§Useful to think of this as algorithmic
“squinting” by using image pyramids

§Start with something simple and low-res
§Use low-res registration to seed the next higher

step
§Eventually run registration at high-res
§Also called “coarse to fine”

39

Figure 8.36 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

40

Multi-resolution idea

Figure 8.37 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

41

Image pyramids

Optimization

§Parameter dependency rears its ugly head
§You often/usually need to adjust optimizer

parameters as you move through the pyramid
§You can do this using the Observer mechanism

42

Multi-resolution example

§Again, mostly the same code as Hello World
§Multi-Resolution is now built into all of ITKv4

registration, so no need for extra classes or
image pyramids

43

Benefits of multi-resolution

§Often faster
§More tolerant of noise (from “squinting”)
§Minimizes initialization problems to a certain

extent, though not perfect

44

Multi-resolution

§Remember, at large (high) scale only large
objects are visible

§Higher scale is higher in the image pyramid
§ So higher scale has lower resolution

§Lower scale is lower in the image pyramid
§ So lower scale has higher resolution

45

See the software guide for…

§Detailed list of:
§ Transforms
§Optimizers
§ Interpolation methods

§You’re encouraged to mix and match!

46

Deformable registration

§Three common techniques:
§ Finite element: treat small image regions as having

physical properties that control deformation
§Bsplines: deform a mapping grid
§Demons: images are assumed to have iso-intensity

contours (isophotes); image deformations occur by
pushing on these contours

47

Model based registration

§Software guide, book 2, ch. 3, section 16.

§Build a simplified geometric model from a
training set

§Identify parameters that control the
characteristics of the model

§Register the model to a target image to adapt
to a particular patient

48

Model based, cont.

§Uses the Spatial Objects framework for
representing geometry

§Useful because it derives analytical data from
the registration process, not just a pixel-to-pixel
mapping

49

Figure 8.60 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al. 50

Model-based example

Note: This is what we want, NOT the output of an actual registration

Figure 8.59 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al.

51

Model-based reg. schematic

Model-based registration: Warning!

§ ITK does not yet directly support generic model-
based registration “out of the box”

§ ITKv4 does support point-set to image registration
§Otherwise, model-based reg. requires writing your

own custom ITK transform, with new parameters
§ Transform’s new parameters à Spatial Object parameters
§ You must individually map your custom transform’s new

parameters to the specific spatial object parameters you
want to allow registration to adjust

§ This isn’t too complicated if you know what you’re doing
§ Search Insight Journal for examples

52

Speed issues

§Execution time can vary wildly
§Optimizer (more naïve = faster)
§ Image dimensionality (fewer = faster)
§ Transform (fewer DOF = faster)
§ Interpolator (less precise = faster)

53

Take home messages

§Exactly what parameters do what is not always
obvious, even if you are familiar with the code

§Successful registrations can be something of an
art form

§Multi-resolution techniques can help
§Work within the framework!

54

