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Linear Operators

§D is a linear operator iff:
D( αf1 + βf2 )  =  αD( f1 ) + βD( f2 )

Where f1 and f2 are images,
and a and b are scalar multipliers

§Not a linear operator (why?):
g = D( f ) = af + b
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“If and only if”



Kernel Operators
§Kernel (h) =

“small image”
§Often 3x3 or 5x5

§Correlated with
a “normal” image ( f )

§Implied correlation (sum of products) makes a kernel an 
operator.  A linear operator.

§Note:  This use of correlation is often mislabeled as 
convolution in the literature.

§Any linear operator applied to an image can be 
approximated with correlation.
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Kernels for Derivatives

§Task:  estimate partial spatial derivatives
§Solution:  numerical approximation
§ [ f (x + 1) - f (x) ]/1
§ Really Bad choice:  not even symmetric

§ [ f (x + 1) - f (x - 1) ]/2
§ Still a bad choice: very sensitive to noise

§We need to blur away the noise (only blur orthogonal to 
the direction of each partial):
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or
The Sobel kernel
is center-weighted

Correlation
(sum of products)



Derivative Estimation #2:
Use Function Fitting
§ Think of the image as a surface

§ The gradient then fully specifies the orientation of the tangent 
planes at every point, and vice-versa.

§ So, fit a plane to the neighborhood around a point
§ Then the plane gives you the gradient

§ The concept of fitting occurs frequently in machine vision.  
Ex:
§ Gray values
§ Surfaces
§ Lines
§ Curves
§ Etc.
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Derivative Estimation:  Derive a 
3x3 Kernel by Fitting a Plane
§ If you fit by minimizing squared error, and you use symbolic 

notation to generalize, you get:
§ A headache
§ The kernel that we intuitively guessed earlier:
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Vector Representations of 
Images
§Also called lexicographic representations
§ Linearize the image

§ Pixels have a single index (that starts at 0)
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Vector Representations of 
Kernels
§Can also linearize a kernel
§ Linearization is unique for each pixel coordinate 

and for each image size.
§ For pixel coordinate (1,2) (i.e. pixel F9) in our image:

§Can combine the kernel vectors for each of the 
pixels into a single lexicographic kernel matrix (H)

§H is circulant (columns are rotations of one 
another).  Why?
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This is
HUGE
(N2)
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Convolution in Lexicographic 
Representations
§Convolution becomes matrix multiplication!
§Great conceptual tool for proving theorems
§H is almost never computed or written out
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Basis Vectors for 
(Sub)Images
§Carefully choose a set of basis 

vectors (image patches) on which 
to project a sub-image (window) 
of size (x,y)
§ Is this lexicographic?

§ The basis vectors with the largest 
coefficients are the most like this 
sub-image.

§ If we choose meaningful basis 
vectors, this tells us something 
about the sub-image
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Cartesian Basis Vectors

Frei-Chen Basis Vectors



§ Image areas where:
§ Brightness changes suddenly =
§ Some derivative has a large 

magnitude
§Often occur at object 

boundaries!
§ Find by:

§ Estimating partial derivatives 
with kernels

§ Calculating magnitude and 
direction from partials

Positive step edge

Negative step edge

Positive roof edge

Negative roof edge

Positive ramp edges

Negative ramp edges

Noisy Positive Edge

Noisy Negative Edge
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Edge Detection
(VERY IMPORTANT) Easy to

Find

Harder
To Find



Edge Detection
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Then threshold the
gradient magnitude image

Diatom image 
(left) and its 
gradient 
magnitude 
(right).
(http://bigwww.epfl.ch/theve
naz/differentials/)

Detected edges are:
• Too thick in places
• Missing in places
• Extraneous in places



§ Sometimes, the fastest way 
to convolve is to multiply in 
the frequency domain.

§Multiplication is fast.  
Fourier transforms are not.

§ The Fast Fourier Transform 
(FFT) helps

§Pratt (Snyder ref. 5.33) 
figured out the details
§ Complex tradeoff depending 

on both the size of the kernel 
and the size of the image

*For almost all image sizes
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Convolving w/ Fourier

For kernels £ 7x7,
normal (spatial domain)
convolution is fastest*.

For kernels ≥ 13x13,
the Fourier method
is fastest*.



§ A series of representations of 
the same image

§ Each is a 2:1 subsampling of the 
image at the next “lower level.
§ Subsampling = averaging = down 

sampling
§ The subsampling happens across all 

dimensions!
§ For a 2D image, 4 pixels in one layer 

correspond to 1 pixel in the next 
layer.

§ To make a Gaussian pyramid:
1. Blur with Gaussian
2. Down sample by 2:1 in each 

dimension
3. Go to step 1
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Image Pyramids
Increasing Scale



Scale Space

§Multiple levels like a pyramid
§Blur like a pyramid
§But don’t subsample

§ All layers have the same size
§ Instead:

§ Convolve each layer with a Gaussian of variance s.
§ s is the “scale parameter”
§ Only large features are visible at high scale (large s).
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Quad/Oc Trees
§Represent an image
§Homogeneous blocks
§ Inefficient for storage

§ Too much overhead

§Not stable across small 
changes

§But: Useful for 
representing scale space.
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Gaussian Scale Space

§ Large scale = only large objects are visible
§ Increasing s® coarser representations

§ Scale space causality
§ Increasing s® # extrema should not increase
§ Allows you to find “important” edges first at high scale.

§How features vary with scale tells us something about the 
image

§Non-integral steps in scale can be used
§Useful for representing:

§ Brightness
§ Texture
§ PDF (scale space implements clustering)
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§ Receptive fields
§ Representable by Gabor 

functions
§ 2D Gaussian +
§ A plane wave

§ The plane wave tends to 
propagate along the short axis of 
the Gaussian

§ But also representable by 
Difference of offset Gaussians
§ Only 3 extrema

18

How do People Do It?



Canny Edge Detector

1. Use kernels to find at every point:
§ Gradient magnitude
§ Gradient direction

2. Perform Nonmaximum suppression (NMS) on 
the magnitude image

§ This thins edges that are too thick
§ Only preserve gradient magnitudes that are 

maximum compared to their 2 neighbors in the 
direction of the gradient
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Canny Edge Detector, contd.

§ Edges are now properly located and 1 pixel wide
§But noise leads to false edges, and noise+blur lead to 

missing edges.
§ Help this with 2 thresholds
§ A high threshold does not get many false edges, and a low threshold 

does not miss many edges.
§ Do a “flood fill” on the low threshold result, seeded by the high-

threshold result
§ Only flood fill along isophotes

20


