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Background
ch. 1-2 of Machine Vision by Wesley E. Snyder & Hairong Qi



General notes about the book
§The book is an overview of many concepts
§Top quality design requires:
§Reading the cited literature
§Reading more literature
§Experimentation & validation
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Two themes

§Consistency
§A conceptual tool implemented in many/most 

algorithms
§Often must fuse information from many local 

measurements and prior knowledge to make 
global conclusions about the image

§Optimization
§Mathematical mechanism
§The “workhorse” of machine vision
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Image Processing Topics

§Enhancement
§Coding
§Compression

§Restoration
§“Fix” an image
§Requires model of image degradation

§Reconstruction
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Machine Vision Topics

§ AKA:
§ Computer vision
§ Image analysis
§ Image understanding

§ Pattern recognition:
1. Measurement of features

Features characterize the image, or some part of it

2. Pattern classification
Requires knowledge about the possible classes
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Feature measurement
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Probability

§Probability of an event a occurring:
§Pr(a)

§Independence
§Pr(a) does not depend on the outcome of event b, and 

vice-versa
§Joint probability
§Pr(a,b) = Prob. of both a and b occurring

§Conditional probability
§Pr(a|b) = Prob. of a if we already know the outcome of 

event b
§Read “probability of a given b”
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Probability for continuously-
valued functions
§Probability distribution function:

P(x) = Pr(z<x)
§Probability density function:
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Linear algebra

§Unit vector:  |x| = 1
§Orthogonal vectors:  xTy = 0
§Orthonormal:  orthogonal unit vectors
§Inner product of continuous functions

§Orthogonality & orthonormality apply here too
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Linear independence

§No one vector is a linear combination of the others
§ xj ¹ Saixi for any ai across all i ¹ j

§Any linearly independent set of d vectors {xi=1…d}
is a basis set that spans the space Âd
§Any other vector in Âd may be written as a linear 

combination of {xi}
§Often convenient to use orthonormal basis sets
§Projection:  if y=Saixi then ai=yTxi
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Linear transforms

§= a matrix, denoted e.g. A
§Quadratic form:

§Positive definite:
§Applies to A if 
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More derivatives
§Of a scalar function of x:
§Called the gradient
§Really important!

§Of a vector function of x
§Called the Jacobian

§Hessian = matrix of 2nd derivatives of a 
scalar function

12



Misc. linear algebra

§Derivative operators
§Eigenvalues & eigenvectors
§ Translates “most important vectors”
§ Of a linear transform (e.g., the matrix A)

§Characteristic equation:
§A maps x onto itself with only a change in length
§l is an eigenvalue
§ x is its corresponding eigenvector
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Function minimization

§Find the vector x which produces a minimum of 
some function f (x)
§ x is a parameter vector
§ f(x) is a scalar function of x
§ The “objective function”

§The minimum value of f is denoted:

§The minimizing value of x is denoted:

14



Numerical minimization

§Gradient descent
§ The derivative points away from the minimum
§ Take small steps, each one in the “down-hill” direction

§Local vs. global minima
§Combinatorial optimization:
§ Use simulated annealing

§ Image optimization:
§ Use mean field annealing

§More recent improvements to gradient descent:
§ Momentum, changing step size

§Training CNN:  ADAM: an enhanced version of 
Stochastic Gradient Descent (SGD) w/ Momentum

15



Markov models

§For temporal processes:
§ The probability of something happening is dependent on 

a thing that just recently happened.
§For spatial processes
§ The probability of something being in a certain state is 

dependent on the state of something nearby.
§ Example:  The value of a pixel is dependent on the values 

of its neighboring pixels.
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Markov chain

§Simplest Markov model
§Example: symbols transmitted one at a time
§What is the probability that the next symbol will be w?

§For a “simple” (i.e. first order) Markov chain:
§ “The probability conditioned on all of history is identical 

to the probability conditioned on the last symbol 
received.”
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Hidden Markov models 
(HMMs)
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HMM switching

§Governed by a finite state machine (FSM)

19

Output 
1st 

Process

Output 
2nd 

Process



The HMM Task

§Given only the output f (t), determine:
1. The most likely state sequence of the switching FSM

§ Use the Viterbi algorithm (much better than brute force)
§ Computational Complexity of:
§ Viterbi:          (# state values)2 * (# state changes)
§ Brute force:  (# state values)(# state changes)

2. The parameters of each hidden Markov model
§ Use the iterative process in the book
§ Better, use someone else’s debugged code that they’ve shared
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