Math Foundations for ML 10-606

Geoff Gordon

Notes and reminders

• HW2 is out

xGR ffR->R Nonlinear systems $n f(x) = e^{x} - 1$ start w/x. f(x) = 0start u/ X. $df(x) = e^{x} dx$ df(x) = f'(x)dxMatis f(x+dx)? $f(x_i) + f'(x_i) dx = 0$ $\eta t = t_{(x)} q_x$ = solve for dx $\chi_2 := \chi_1 + \lambda_1 \chi_2$ f + df = f + f'(x)dx $f(x_2) + f'(x_2) dx = 0 g(x_2)$ XZ

Newton's method $f(x) = e^{x}-1$

 $\boldsymbol{\mathcal{X}}$

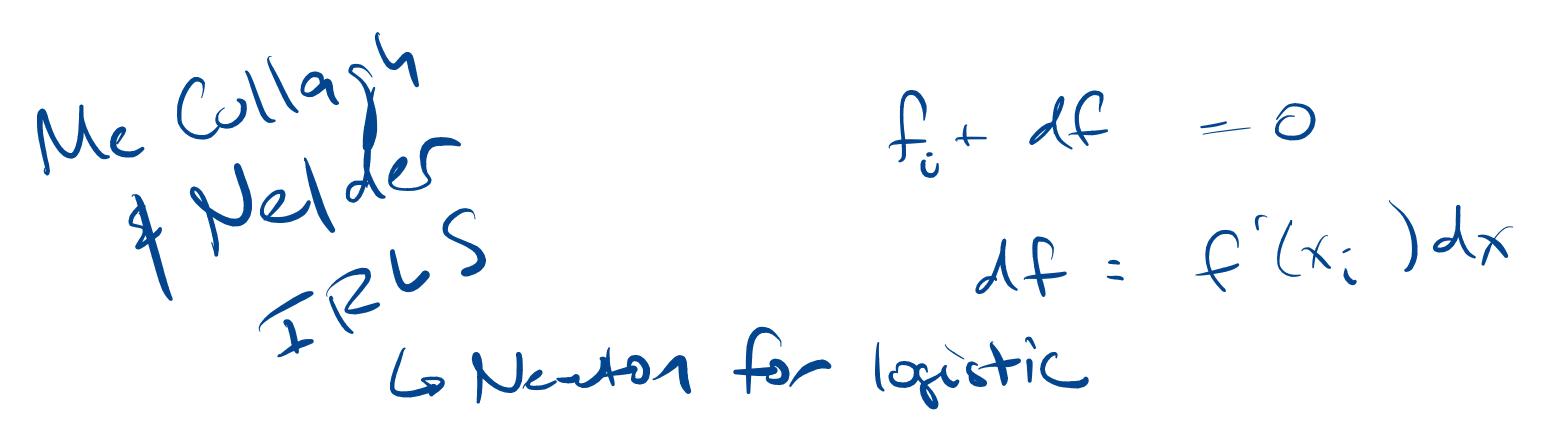
1

-0.632

0.248

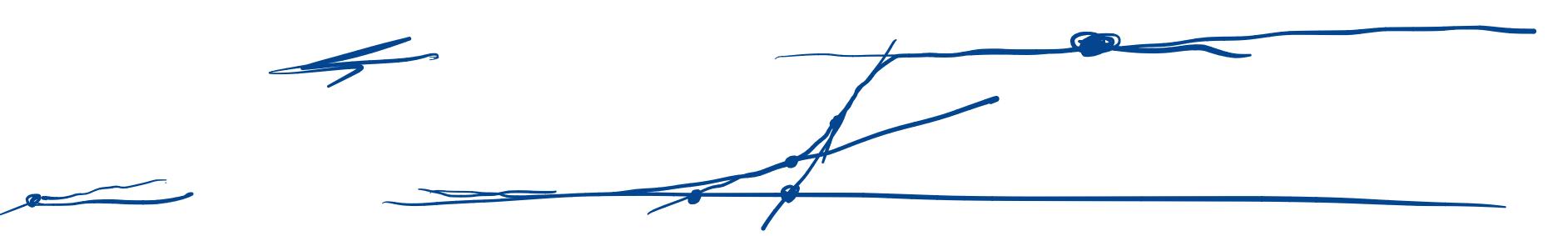
	f	df	Equation	dx
	e-1	e	edx=1-e	$\frac{1-e}{e}$
	-0.468	0.532	0.532dx = 0.468	0.880
	0.281	1.281	1.281dx = -0.281	-0.219
final: x=0.029				

Exercise on <u>repl.it</u>

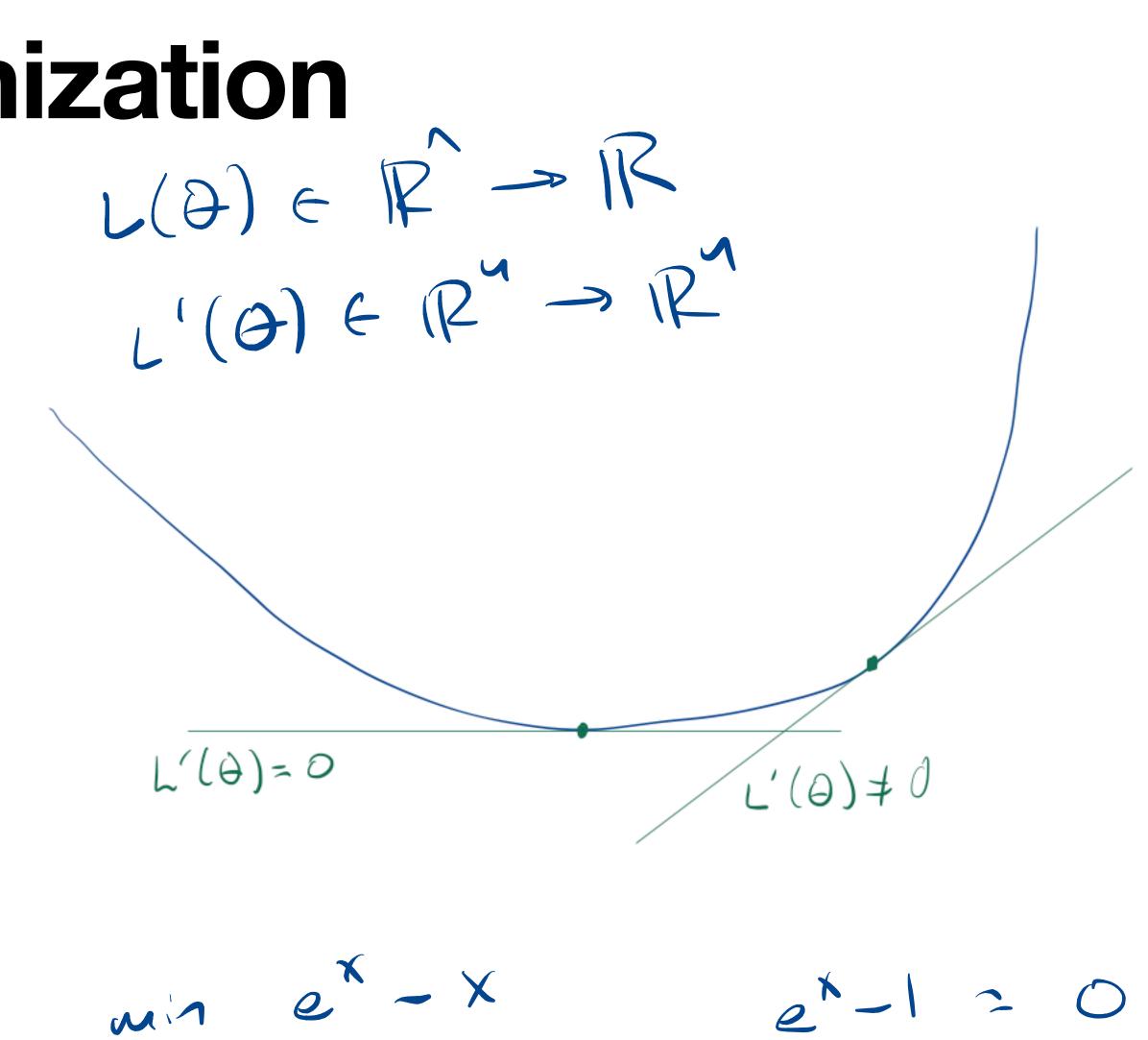


- Try out Newton's method for one of the functions provided
- Then pick a different simple function and implement your own version of newton_step; see what happens for various initial points

https://replit.com/team/professorgeoff/Newtons-method

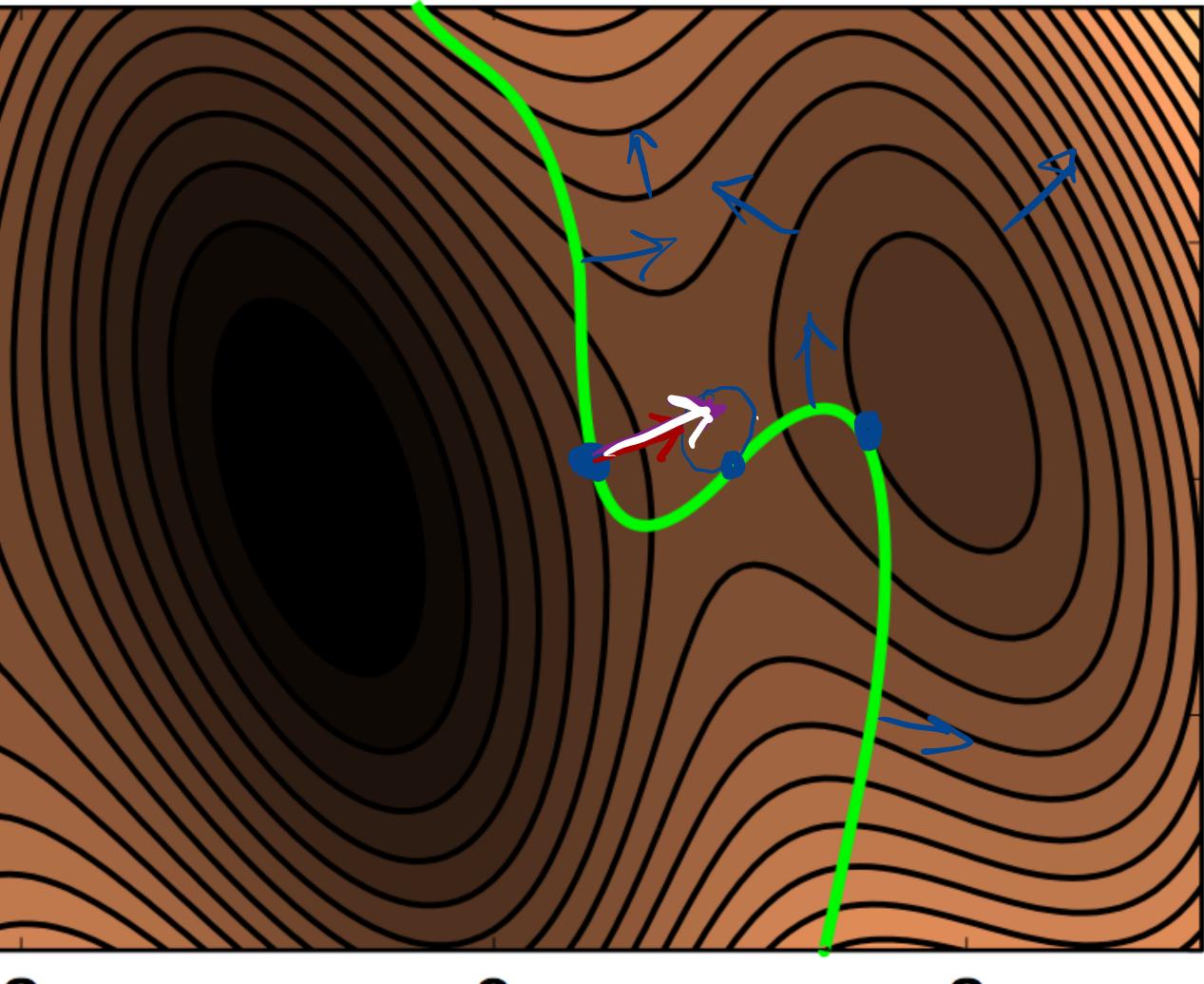


Unconstrained optimization min L(Q) J $dL = L'(\Theta) d\Theta$ L'(0) = 0 $\mathcal{AL}'(\Theta) = \mathcal{L}'(\Theta)\mathcal{A}\Theta$ $L'(\Theta_{1}) + dL' = O$ $L'(\Theta_{1}) + dL' = O$ $L'(\Theta_{1}) + dL' = O$

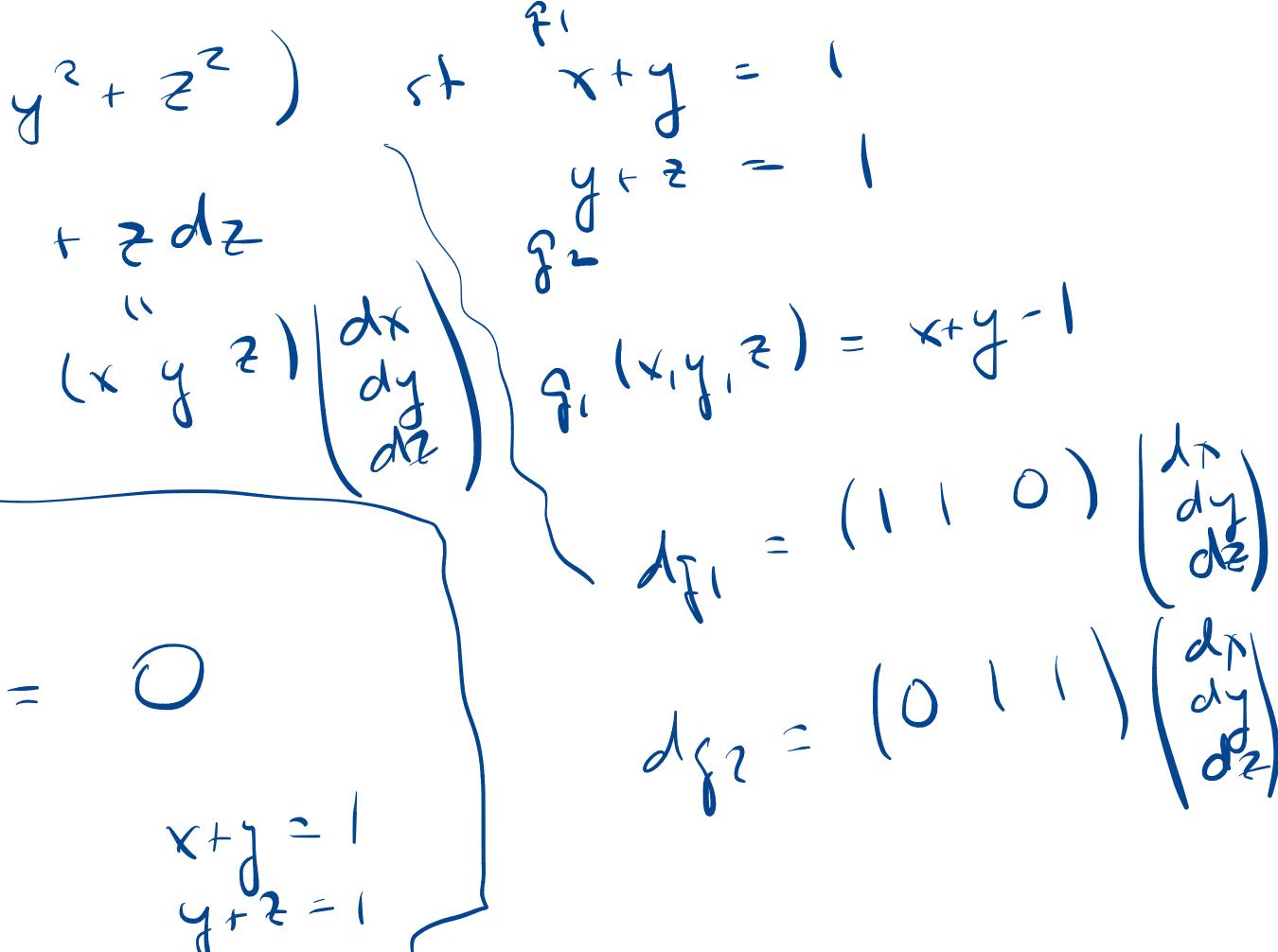


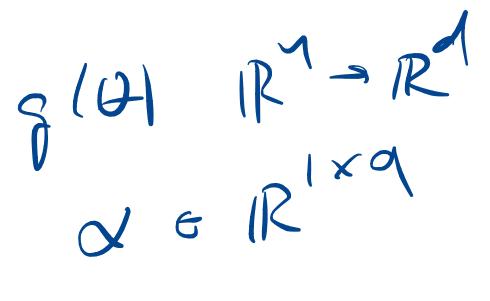
0×-1 2 0

Constrained optimization min L(θ) s.t. $g(\theta)=0$ θ $T_{R}^{n} \rightarrow R$ $T_{R}^{n} \rightarrow R$ or a Rd. min $L(\Theta) + dg(\Theta)$ st. $g(\Theta)=0$ Θ $d(l(0) + \alpha g(0))$ = $dl(0) + \alpha dg(0) -1$ $= L'(\Theta) d\Theta + K g'(\Theta) d\Theta$ $\equiv O$



 $L'(\Theta) + \alpha g'(\Theta) = 0 \qquad \text{first order} \\ g(\Theta) = 0 \qquad \text{optimality} \\ f(\Theta) = 0 \qquad \text{for all the set of the set of$ $\begin{array}{c} \min \left(\frac{1}{2} \left(x^{2} + y^{2} + z^{2} \right) & \text{sf} \quad x + y = 1 \\ y + z = 1 \\ dL = x \, dx + \frac{1}{2} \, dy + z \, dz \\ L' = \left(x, y, z \right) & \left(x, y, z \right) \left(dx \\ dx \\ dz \end{array} \right) \left(\frac{1}{2} \left(x, y, z \right) - \frac{1}{2} \left(\frac{1}{2} \left(x, y, z \right) - \frac{1}{2} \left(\frac{1}{2} \left(x, y, z \right) - \frac{1}{2} \left(\frac{1}{2} \left(x, y, z \right) - \frac{1}{2} \left(\frac{1}{2} \left($ (x, y, z) + d(110) $+\beta(O(1)) = O$





 \bigcirc X 5 \bigcirc 2 Ø B $(\)$ 3 $\langle \rangle$ $x = \frac{1}{3}$ 2/2 2 y 2 x = b = - '/3

