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Notes and reminders

• HW2 is out



Nonlinear systems
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Newton’s method
f(x) = ex–1

This process is called Newton's method, and it often converges rapidly to a solution of
the nonlinear system . In fact, the fixed points of Newton's method are strongly
related to the solutions of our system: if  is nonsingular then a fixed point must
satisfy both equations, and  is equivalent to . However, Newton's method
isn't always stable: even if there are good fixed points near our initial guess, our
sequence of guesses might diverge.

If  is singular at a fixed point, then we might be in either of the two cases described above:
we might satisfy the two equations but have multiple possible solutions for the second, or we
might not be able to satisfy both equations and have to settle for the least-squares solution. In
the first case, since we're at a fixed point we have to have ; that means  and 

. In the second case we have , so that we are at a fixed point that is not a
solution.

If Newton's method diverges, sometimes we can rescue it by damping, i.e., decreasing
our step size: that is, we set  for some . But tuning the step
size (and other methods beyond damped Newton) are beyond the scope of this set of
notes.

Example

Let , so that . The solution to  is , but let's see if we
can find this by Newton's method, starting from somewhere else.

Equation

Quite rapidly we have reached , very close to the true solution.

Unconstrained optimization

Solving optimization problems is strongly related to solving systems of equations. In an
unconstrained optimization problem
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x = 0.029
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final: x=0.029



Exercise
on repl.it

• Try out Newton’s method for one of the functions provided


• Then pick a different simple function and implement your own version of 
newton_step; see what happens for various initial points


• https://replit.com/team/professorgeoff/Newtons-method
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Unconstrained optimization
LCQ) c-

→ IR
main

LCQ)

L' (0-7 c- IR
"
→ pi

DL =L '( 0-1
do

L' (a) = 0

dL
'

/ 0-1 =L
" /0-1

DOL' (G) + dl
'

= O

IL"(0-1 do
any

ex - ✗ ex - I = 0



Constrained optimization
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