
Scalar derivatives

Some notation for scalar derivatives:

For a function , we write  for its derivative with respect to its
argument. If the argument is called , we can also write . If the argument
represents time, we sometimes write .

If a function depends on more than one variable, we write  or  to indicate a

partial derivative: the derivative with respect to one variable while holding the
others constant.

Second and higher derivatives are , , , or .

For a function , we write  or  to represent evaluation at . This means

the same thing as  but is sometimes clearer: it lets us keep one name ( ) for the
variable we are differentiating, and another name ( ) for the value we are
substituting at the end.

Scalar identities

Some of the most common identities for working with scalar derivatives:

Differentiation and partial differentiation are linear operators: for example, 
.

Chain rule: if we want , then we use

(As a mnemonic, we can "cancel the " — but since  isn't really division, this is

just a mnemonic.) Another way to write the same thing:

Product rule:
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Here are some useful derivatives of scalar functions. In each expression,  is the
variable of interest; all other symbols represent constants.

The derivative of a constant is zero: .

The derivative of a monomial  is . This works even for negative and fractional
values of . One special case is , where by convention we treat  as equal to
zero everywhere.

The derivative of  is ; the derivative of  is .

The derivative of  is . If we're using some other base , we rewrite 
and then use the identity above.

The derivative of  is . Again we can easily switch to another base: 
.

Vector derivatives

It's also useful to think about functions that return vectors or take vectors as arguments.
If  is a vector-valued function of a real argument, , we can write it as a
vector whose components are real-valued functions,

Its derivative is then also a vector-valued function, of the same shape as . Its
components are the derivatives of the component functions:

We can think of  as representing a curve in . The derivative  represents a tangent
vector to this curve: the instantaneous velocity of a point moving along the curve as the
argument  changes at a unit rate. The length of the tangent vector tells us the speed of
the point, and the components tell us its direction.

Here's an example of a function in  and its derivative at a particular point:

x

a =
dx
d 0

xk kxk−1

k x0 0x−1

sin x cos x cos x − sin x

eax aeax b b =x ex ln b

ln x x−1

log x =b ln x/ ln b

f f ∈ R → Rn

f(x) =

⎝
⎛ f (x)1

f (x)2

⋮
f (x)n

⎠
⎞

f

f =
dx

d

⎝

⎛ dx
df1

dx
df2

⋮

dx
dfn ⎠

⎞

f Rn
dx
df

x

R → R3



Note that this plot doesn't show the argument  explicitly: instead it is implicit in the
position of the point along the curve. If we wanted to show  explicitly, we could color
the curve or add grid marks to show what values of  correspond to what values of .

More vector derivatives

If the function  has multiple inputs instead of multiple outputs, , we can
collect all of the arguments into a column vector:

Then  means the row vector of partial derivatives of :
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We can think of  as representing a surface in : the argument  varies across 
while  determines the height. In this case the tangent vector tells us the direction of
steepest increase of the function.

Here's an example of a function in  together with its derivative at a point:

The derivative is the vector in  (shown in green at the bottom of the plot) that points in
the direction of steepest increase. Note that it is orthogonal to a contour line.

Chain rule for vectors

With the above notation, the chain rule for vector functions looks just like it did for scalar
functions. Suppose  takes multiple arguments and  returns
multiple values, so that  makes sense. Then we have

This looks just like the scalar chain rule (we "cancel the "). But now  is a row vector

in  and  is a column vector in , so that when we multiply them we get their dot
product. For clarity we can indicate the values of the arguments to each function:
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If we write out the dot product, we get

which may be familiar as the rule for calculating the total derivative of  with respect to 
. In words, to calculate the change in , we sum up the effects of all of the changes in

all of the inputs to .
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