Scalar derivatives

Some notation for scalar derivatives:

- For a function $f \in \mathbb{R} \to \mathbb{R}$, we write $f' \in \mathbb{R} \to R$ for its derivative with respect to its argument. If the argument is called x, we can also write $\frac{d}{dx}f$. If the argument represents time, we sometimes write \dot{f} .
- If a function depends on more than one variable, we write $\frac{\partial}{\partial x}f$ or $\frac{\partial}{\partial y}f$ to indicate a *partial* derivative: the derivative with respect to one variable while holding the others constant.
- Second and higher derivatives are f'', \ddot{f} , $\frac{d^2}{dx^2}f$, or $\frac{\partial^2}{\partial x \partial y}f$.
- For a function f, we write f |_x or f(x)|_{x=x} to represent evaluation at x̂. This means the same thing as f(x̂) but is sometimes clearer: it lets us keep one name (x) for the variable we are differentiating, and another name (x̂) for the value we are substituting at the end.

Scalar identities

Some of the most common identities for working with scalar derivatives:

- Differentiation and partial differentiation are linear operators: for example, (af + bg)' = af' + bg'.
- Chain rule: if we want $\frac{d}{dx}f(g(x))$, then we use

$$\frac{df}{dx} = \frac{df}{dg}\frac{dg}{dx}$$

(As a mnemonic, we can "cancel the dg" — but since $\frac{df}{dg}$ isn't really division, this is just a mnemonic.) Another way to write the same thing:

$$rac{d}{dx}f(g(x))=f'(g(x))\,g'(x)$$

• Product rule:

$$(fg)^\prime = f^\prime g + fg^\prime$$

Common functions

Here are some useful derivatives of scalar functions. In each expression, x is the variable of interest; all other symbols represent constants.

- The derivative of a constant is zero: $\frac{d}{dx}a = 0$.
- The derivative of a monomial x^k is kx^{k-1} . This works even for negative and fractional values of k. One special case is x^0 , where by convention we treat $0x^{-1}$ as equal to zero everywhere.
- The derivative of $\sin x$ is $\cos x$; the derivative of $\cos x$ is $-\sin x$.
- The derivative of e^{ax} is ae^{ax} . If we're using some other base *b*, we rewrite $b^x = e^{x \ln b}$ and then use the identity above.
- The derivative of $\ln x$ is x^{-1} . Again we can easily switch to another base: $\log_b x = \ln x / \ln b$.

Vector derivatives

It's also useful to think about functions that return vectors or take vectors as arguments. If f is a vector-valued function of a real argument, $f \in \mathbb{R} \to \mathbb{R}^n$, we can write it as a vector whose components are real-valued functions,

$$f(x)=\left(egin{array}{c} f_1(x)\ f_2(x)\ dots\ f_n(x)\end{array}
ight)$$

Its derivative is then also a vector-valued function, of the same shape as f. Its components are the derivatives of the component functions:

$$rac{d}{dx}f=\left(egin{array}{c} rac{df_1}{dx}\ rac{df_2}{dx}\ dots\ rac{df_1}{dx}\ dots\ rac{df_2}{dx}\ dots\ rac{df_n}{dx}\end{array}
ight)$$

We can think of f as representing a curve in \mathbb{R}^n . The derivative $\frac{df}{dx}$ represents a tangent vector to this curve: the instantaneous velocity of a point moving along the curve as the argument x changes at a unit rate. The length of the tangent vector tells us the speed of the point, and the components tell us its direction.

Here's an example of a function in $\mathbb{R} \to \mathbb{R}^3$ and its derivative at a particular point:



Note that this plot doesn't show the argument x explicitly: instead it is implicit in the position of the point along the curve. If we wanted to show x explicitly, we could color the curve or add grid marks to show what values of x correspond to what values of f(x).

More vector derivatives

If the function f has multiple inputs instead of multiple outputs, $f \in \mathbb{R}^n \to \mathbb{R}$, we can collect all of the arguments into a column vector:

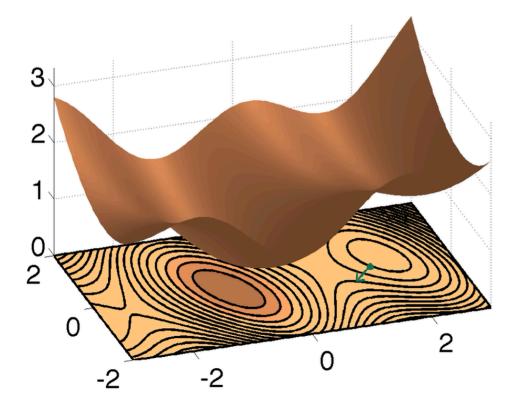
$$x=\left(egin{array}{c} x_1\ x_2\ dots\ x_n\end{array}
ight)$$

Then $\frac{df}{dx}$ means the row vector of partial derivatives of f:

$$rac{df}{dx} = \left(egin{array}{ccc} rac{\partial f}{\partial x_1} & rac{\partial f}{\partial x_2} & \dots & rac{\partial f}{\partial x_n} \end{array}
ight)$$

We can think of f as representing a surface in \mathbb{R}^{n+1} : the argument x varies across \mathbb{R}^n while f(x) determines the height. In this case the tangent vector tells us the direction of steepest increase of the function.

Here's an example of a function in $\mathbb{R}^2 \to \mathbb{R}$ together with its derivative at a point:



The derivative is the vector in \mathbb{R}^2 (shown in green at the bottom of the plot) that points in the direction of steepest increase. Note that it is orthogonal to a contour line.

Chain rule for vectors

With the above notation, the chain rule for vector functions looks just like it did for scalar functions. Suppose $f \in \mathbb{R}^n \to \mathbb{R}$ takes multiple arguments and $g \in \mathbb{R} \to \mathbb{R}^n$ returns multiple values, so that f(g(x)) makes sense. Then we have

$$rac{df}{dx} = rac{df}{dg}rac{dg}{dx}$$

This looks just like the scalar chain rule (we "cancel the dg"). But now $\frac{df}{dg}$ is a row vector in $\mathbb{R}^{1 \times n}$ and $\frac{dg}{dx}$ is a column vector in $\mathbb{R}^{n \times 1}$, so that when we multiply them we get their dot product. For clarity we can indicate the values of the arguments to each function:

$$\left. rac{df}{dx}
ight|_x = \left. rac{df}{dg}
ight|_{g(x)} \left. rac{dg}{dx}
ight|_x$$

If we write out the dot product, we get

$$rac{df}{dx} = \sum_{i=1}^n rac{\partial f}{\partial g_i} rac{dg_i}{dx}$$

which may be familiar as the rule for calculating the *total derivative* of f with respect to x. In words, to calculate the change in f, we sum up the effects of all of the changes in all of the inputs to f.