
Data types

In many programming languages, variables have types: e.g., int32 , char * , or dict .
The type of a variable tells us what kind of values we can assign to it: e.g, a variable of
type int32 can hold a signed integer that fits in 32 bits, using two's complement
representation to handle negative numbers.

More importantly, a data type tells us an interface, a list of operations we can perform
on values of this type. For example, there is an operation + that takes two int32
values and produces another int32 value (handling numerical overflow in a specified
way).

The important thing about an interface is that it provides abstraction: it doesn't matter
how an int32 is represented under the hood, and in fact we rarely if ever have to think
about this. We could even swap between two different implementations of int32 ; so
long as they provide the same interface, our surrounding program shouldn't even notice.

Types as a formal system

A list of data types and their interfaces is a good example of a formal system: it tells us a
mechanical way to generate and combine values of different types. If we follow the rules
of the formal system, we're guaranteed to get values that make sense: e.g., we won't try
to divide a char * by a dict . This guarantee applies no matter what specific
implementations we use for the individual types.

What about an expression like 1/0 ? Is this an exception to the above rule?

Example: the set data type

A set is an unordered collection of objects, without duplication. Each object is called an
element of the set, written . Two sets are equal when they contain the same
elements. A set is a subset of a set , written , when all of the elements of
are also elements of .

For example, some useful sets are the integers or the real numbers . We have

The above text is an informal description of an interface for a data type: it gives the

o ∈ S

X Y X ⊆ Y X

Y

Z R

3 ∈ Z, π ∈ R, Z ⊆ R

name of the type and tells us what we can do with it. Here's a somewhat more formal
description:

Given a type E (the type of objects that we can use as elements), we can define a new
type called set(E) that supports the following operations:

set(E) make_set(E o1, E o2, ...) creates a new set

bool contains(set(E) S, E o) checks whether o is an element of S

bool subseteq(set(E) X, set(E) Y) checks whether X is a subset of or equal
to Y

bool equals(set(E) X, set(E) Y) checks whether X contains the same
elements as Y

We could add a few more operations to this interface if we wanted to: e.g., set unions
and intersections, or modifying a set by adding or deleting elements. Depending on
what options we pick, we get a different data type each time: the data type is the
interface, so different interfaces mean different types.

Subtypes

As we saw above, it's often worth having multiple related interfaces: e.g., we might have
one kind of set that supports adding and deleting elements, and another that does not.
It would be a pain to have to think of these as completely separate types — we'd have to
write a lot of code twice, violating the rule of "don't repeat yourself" and making our
program harder to maintain.

For this reason, programming languages often support ways to create multiple related
types and multiple related interfaces. The most common is probably subtyping by
extension: given a type T with a particular interface, we can extend the interface by
defining some new optionally-supported operations involving values of type T . The
result is a new type T' , which is a subtype of T : only some values of type T will
support the new operations, and so the possible values of type T' are a subset of the
values of type T .

For example, we could extend our set(E) type above to support adding and deleting
elements, to create a new type extendable_set(E) that supports the following
additional operations:

extendable_set(E) insert(extendable_set(E) S, E o) inserts a new element,
if it is not already present (and does nothing otherwise)

extendable_set(E) delete(extendable_set(E) S, E o) deletes an element, if it
was present (and does nothing otherwise)

Because extendable_set(E) is a subtype of set(E) , we can take a value of type
extendable_set(E) and interpret it as a value of type set(E) — that is, we can forget

that we have the ability to add and delete elements. (This is called type casting.) But we
can't go the other way: we can't magically force a value of type set(E) to become a
value of type extendable_set(E) , since it might have been created in a part of the
program that isn't even aware of the new insert and delete operations.

Set-builder notation

A really useful way to write new sets is with set-builder notation: we can either write a
set by explicitly listing its elements,

or by giving a recipe for constructing its elements

The empty set is the set with no elements,

The general form of a recipe is

The expression can contain variables like , , . The properties refer to the variables
and tell us what values they can take: a legal value is one that satisfies all of the
properties. is then the set that contains all of the objects that we can get by picking
legal values for all of the variables and substituting them into the expression.

A common shorthand is to write a simple logical property as part of the expression: for
example, we can write the nonnegative integers as

The comma in set-builder notation is shorthand for logical AND. So, these two
expressions are equivalent:

primary_color = {red, green, blue}

even_number = {2x ∣ x ∈ Z}

∅

∅ = {}

S = {expression ∣ property , property , …}1 2

x y …

S

N = {x ∣ x ∈ Z, x ≥ 0} = {x ∈ Z ∣ x ≥ 0}

{x ∣ x ∈ Z, x ≥ 0} = {x ∣ x ∈ Z ∧ x ≥ 0}

True or false: are these two sets the same?

Comprehensions

Set-builder notation is so useful that some programming languages implement a version
of it. For example, Python has list comprehensions and set comprehensions: the Python
code

{ x**2 for x in range(4) }

implements the set-builder notation

and therefore builds the set . The clauses for and if in Python correspond
to the logical properties in set-builder notation: for lists the range of a variable (like
for x in range(4) above), and if filters by testing a property. So we can build the

set of squares of even numbers between 0 and 10 with

{ x**2 for x in range(11) if x % 2 == 0 }

which returns

set([0, 64, 4, 16, 100, 36])

Just don't try to translate something like

directly into a Python comprehension...

Write a comprehension that uses Python's set-builder notation to find all the numbers
between 1 and 7 that are not divisible by 2, 3, or 5. As a check, the output should be

.

A reminder: x % 3 in Python gives the remainder when we divide x by 3 .

Set operations: union, intersection, difference, complement

After membership and subset testing, the next most basic operations on sets are union
and intersection: in set-builder notation,

{2x ∣ x ∈ Z} =
? {x ∈ Z ∣ x mod 2 = 0}

{x ∣2 x ∈ {0, 1, 2, 3}}

{0, 1, 4, 9}

{2x ∣ x ∈ Z}

{1, 7}

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#sets

Another useful operation is set difference, everything that's in one set but not another:

(Note the use of as a shorthand for .)

Finally, sometimes we'll fix a universe : a set that contains all possible objects we're
considering as elements for other sets. (In our data type set(E) above, E is the
universe.) Given a fixed universe, the set complement means everything that's not in a
given set :

Tuples and set products

Given two objects and , we write for the ordered pair whose first element is
and second element is . More generally, a tuple is a fixed-length list of values, like

A tuple is a new data type, distinct from a set: e.g., in a tuple the order matters, while in
a set it does not.

We can nest tuples, like

and we can flatten them by removing internal pairs of angle brackets: if we flatten the
above nested tuple, we get again. In some situations it makes sense to flatten
tuples implicitly, while in others it makes sense to distinguish nested tuples from their
flattened counterparts.

Given two sets and , the set product is the set of ordered pairs where the first
element comes from and the second comes from :

We use implicit flattening in this context, so that set product is associative:

X ∩ Y = {x ∣ x ∈ X, x ∈ Y }

X ∪ Y = {x ∣ x ∈ X ∨ x ∈ Y }

X ∖ Y = {x ∣ x ∈ X, x ∈ Y }

∈ ¬(x ∈ Y)

U

S

S =C =S̄ U ∖ S

x y ⟨x, y⟩ x

y

⟨x, y, z, w⟩

⟨⟨x, y⟩, z, ⟨w⟩⟩

⟨x, y, z, w⟩

X Y

X Y

X × Y = {⟨x, y⟩ ∣ x ∈ X, y ∈ Y }

X × (Y × Z) = (X × Y) × Z

and so we can write for both: the set of 3-tuples built from one element each
of , , and .

We'll write for the set of -tuples with elements in : e,g.,

If is the empty set and is the set , what is ?

Combining types

Because a data type is based on a set of allowed values, we can use a lot of the above
set operations to combine data types and make new ones. The difference is that when
types are involved, we need to say how the interfaces combine as well.

An example is unions. In C, the expression

union {int a, char *b}

defines a type that we can interpret as the mathematical union between two simpler
types: the type of values that are either integers or C strings. The interpretation is a bit
subtle, though:

Where do we have to be careful when describing a C union type this way?

Whenever we use a value of the above C type, we have to know ahead of time whether
we want to interpret it as an int or a char * . C is effectively treating both types as
sets of bit strings and taking the union. By doing so, C is effectively violating our
description of an interface: since a given bit-string could be interpreted either way, if
we're not careful, we could assign an int to a variable, then read it as a char * , and
get unexpected results. That is, C is providing a loophole that lets us use the char *
interface on values of type int . There have been many heated arguments over
whether this is a good idea. But certainly if we do it unintentionally, bad things can
happen: e.g., we can get a program with a bad security vulnerability.

Tuples in programming languages

Many programming languages use tuples explicitly: e.g., in LISP (one of the oldest
programming languages), a cons is a basic data type representing an ordered pair. The
interface to a cons is two operations: car and cdr retrieve the first and second

X × Y × Z

X Y Z

Xn n X

⟨3, 1, 4, 1, 5⟩ ∈ Z5

X Y {1, 2, 3} X × Y

element of the pair, respectively. (Then we can use the appropriate interfaces to operate
on these values individually.)

Or, in C, we can use struct s to represent tuples: the type

struct {int a, char *b}

represents an ordered pair (a length-2 tuple) of an integer and a C-style string. We can
write the legal values for this type as a set product: , where stands for the set of
C-style strings. (Well, almost: stands for the set of all integers, not just the ones that
are representable in 32 bits.)

In databases like MySQL or Postgres, each database record is effectively a tuple. For
example, a record in the student database could have fields for first name, last name,
and mailing address. In both databases and C, we refer to the elements of a tuple by
position names, while in LISP we refer to them by position numbers; these are different
interfaces, but equivalently powerful.

Lots of languages use tuples implicitly as well. For example, when we define a function
like

void main(int argc, char *argv[])

the argument list can be viewed as a tuple: in this case an ordered pair of an argument
count and a C-style array of C-style strings.

Disjoint unions

Let's return to the C union type above. What we might expect, instead of C's default
behavior, is that we know whether every value is intended as an integer or a string. This
kind of combination of types is called a tagged union or a disjoint union: the same bit
string is treated differently depending on whether it arrived as an int or a char * .
Disjoint unions prevent us from (accidentally or on purpose) treating an object of one
type as if it were an object of another type.

We can achieve the same effect in a programming language by requiring the types in a
union to be disjoint. While C doesn't do this, some languages use the first few bits of a
value to indicate its type. Or, we can achieve a similar effect in C by manually tagging
the elements: e.g.,

struct {int tag, union {int a, char *b}}

Z × S S
Z

It should be clear at this point that it's important to be explicit about which convention
we're using: we have to pick a single formal system and stick with it if we want to get
results that make sense. Either we do or we don't automatically remember what type of
value we're currently storing, but if we think we do when we don't, bad stuff can
happen.

Functions

One of the most interesting ways to combine types is to define a function: e.g.,

The function here is an object of a new type, which we can write as

This expression stands for the set of functions that take two real arguments and return a
single real output.

In the above expression the new type is implicit: we infer it automatically based on the
assumed types of the arguments.

Some programming languages are like this as well; e.g., Python doesn't require us to
annotate function types, and will infer types automatically. (In fact, Python is quite
aggressive about guessing types; this can be convenient but sometimes leads to
unexpected behavior.) In other languages, like C, we have to annotate function
definitions explicitly with input and output types: e.g.,

float p(float x, float y) { ... }

If we have a function , then for every value , there is a unique value
. That is, functions are complete (defined for every input) and single-valued

(never have ambiguous outputs).

An alternate notation for a function type is . This is by analogy to the set
product notation : in we assign a unique value of type to every integer in .
Similarly, in we assign a unique value of type to every input value of type .

Anonymous functions

When we talk about function types, it's convenient to use anonymous functions — that
is, functions without explicit names. In C, all functions have to have names:

p(x, y) = 3x +2 xy

p

R × R → R

p ∈ X → Y x ∈ X

p(x) ∈ Y

X → Y Y X

Y n Y n Y 1 … n

Y X Y X

float square(float x) { return x**2; }

But sometimes the name is arbitrary, so it's useful to be able to skip it. For example, it's
much shorter just to talk about a function instead of having to write out the above
definition of square .

To define an anonymous function, we can use lambda notation: the expression

tells us the argument list and the definition for a function. With lambda notation it's
common to leave types implicit: if we assume real inputs, then the above function has
type . But we can explicitly annotate the types if desired, either just the input
types:

(in which case we can infer the output type from the definitions of addition,
multiplication, and exponentiation) or the output type as well:

In general, the syntax is

where is a comma-separated list of input variables, optionally with types,
and tells us how to compute the function.

Many programming languages implement anonymous functions. For example, in LISP,
we can write the above function as

(lambda (x y) (+ (* x x) (* 3 x y)))

while in Python we can write

lambda x, y: x*x + 3*x*y

x2

λx, y. 3x +2 xy

R × R → R

λx : R, y : R. 3x +2 xy

λx : R, y : R. (3x +2 xy) : R

λ argument_list. expression

argument_list

expression

