
An exponential-time algorithm

Recall our friend the Fibonacci function:

We gave a simple recursive algorithm for calculating :

But unfortunately this algorithm is very inefficient; let's analyze it. We can write
a recurrence for , the number of function calls to calculate :

Since is strictly increasing, we have . Substituting
into the recurrence above, so long
as . The latter implies . That is,

.

In general, we say an algorithm takes exponential time if its runtime is for some
.

Dynamic programming

The reason this algorithm is so inefficient is that it recalculates multiple
times for each . This seems wasteful; can we avoid it?

Yes: we saw earlier that we can sweep upward from 2 to , calculating
just once for each . A simple way to organize the computation is with an array

:

Note that we haven't defined array types yet: they require two tools we haven't
provided, namely assignments (for modifying array elements in place) and dependent

fib(n) = fib(n − 1) + fib(n − 2) fib(0) = fib(1) = 1

fib(n)

def fib(n) [(n ≤ 1) → 1 ∣ T → fib(n − 1) + fib(n − 2)]

C(n) fib(n)

C(0) = C(1) = 1 C(n) = 1 + C(n − 1) + C(n − 2)

C(n) 1 + C(n − 2) ≤ C(n − 1)

C(n) ≤ 2C(n − 1) ≤ 4C(n − 2) ≤ 2 C(n −k k)

n − k ≥ 2 C(n) ≤ 2 C(2) =n−2 2 ⋅n−2 3 ≤ 2n

C(n) ∈ O(2)n

2O(n)d

d ≥ 1

fib(k)

k ∈ 2..(n − 1)

k n fib(k)

k

A

A(0) ← 1

A(1) ← 1

with (k ← 2)

while (k ≤ n)

do A(k) ← A(k − 1) + A(k − 2), k ← k + 1

return A(n)

types (types that take parameters, like the array size). That means we won't be able to
prove all possible theorems about programs that use arrays; but we still have enough
tools to prove many interesting properties.

This program works because all recursive calls from have to use
arguments that are strictly smaller than — which we will have already
computed in previous iterations and stored in . This strategy is called dynamic
programming.

In fact, dynamic programming works for any pattern of recursive calls. That is,
when calculating for argument , we could call recursively with or or
any other function whose output is strictly smaller than .

We can think of dynamic programming as trading memory for time: whenever
we need , we could either recalculate it (which takes time) or retrieve it
from a previous calculation (which takes memory). In this case there's a clear
advantage for storing and retrieving the calculated values: we get a huge
reduction in time for a modest increase in memory.

The tradeoff is actually even better than we said above: because of the definition of
Fibonacci numbers, we actually only need to store and at any given
time. (From these values we can calculate , discard , and increment

.) In general, though, dynamic programming might need to store all previous values of

. At least on an initial design, it's easiest to do it this way, so that we don't have to
worry about the pattern of recursive calls; once we've figured out the initial design, we
can worry about optimizations.

In general, though, the tradeoff could go either way. For example, if we had a
function that recursively called and , we'd only have
total recursive calls in the naive version; sweeping from 1 to would take just
as much time, and would require extra memory for the table of function values.

It can be subtle to compare memory use between the simple recursive approach and
the dynamic programming approach, since simple recursion tends to use more
memory on the call stack (to store its deeper sequence of recursive calls), while
dynamic programming tends to use more memory on the heap (to store its table of
function values). Typically the call stack uses only a small amount of memory, but we
still have to take this memory into account to make a fair comparison.

Multiple arguments

If we have a recursive function with more than one argument, we can apply

fib(k)

k

A

k ⌊ ⌋2
k ⌊ ⌋k

k

fib(k)

fib(k) fib(k − 1)

fib(k + 1) fib(k − 1)

k

k

R(n) R(⌈ ⌉)2
n R(⌊ ⌋)2

n O(n)

k n

dynamic programming by sweeping some or all of the arguments. And, we can
store each result only temporarily or keep it in a table for later. These are
design choices: depending on our particular pattern of reuse, it might or might
not be worth applying dynamic programming to each argument, and it might or
might not be worth storing a particular result for later.

If decide to make a table for two arguments, we need a 2d array to store the
function values. For example, Pascal's triangle looks like this:

Each number is the sum of the two numbers above it. We can write a
recurrence for Pascal's triangle as follows: if is the th number in the th
row, then

The recursive algorithm for calculating takes exponential time. But we
can calculate all the entries in the th row in time with dynamic
programming: we sweep the row index from 1 to , and within each row we
sweep from 1 to .

Similarly, with three arguments to index, we would need a 3d array to store our
table of function values, and so forth. Dynamic programming can take a lot of
time if we need to sweep lots of arguments, and can take a lot of memory if we
need to store a high-dimensional table — but it can still be worth it if it avoids a
naive recursion that takes exponential time.

For example, we can use dynamic programming to parse a string according to a
context-free grammar; one common method for this problem (the CKY chart
parser) takes time and uses a table of size for a string of length
and a grammar of size . The dynamic program sweeps four variables: three
indices into the string and one index into the grammar. But the inner two loops
produce results that only need to be stored temporarily, so the table indices
correspond only to the outer two loops.

1
1

1

4

1

3

1

2

6

1

3
1

4
1

1

P (i, j) j i

P (i, j) = P (i − 1, j) + P (i − 1, j − 1)

P (i, 1) = P (i, i) = 1

P (i, j)

n O(n)2

i n

j i

O(n g)3 O(n)2 n

g

Memoizing

To implement dynamic programming, we had to change the structure of our
recursive function — we had to calculate in order of increasing instead of
decreasing . Sometimes it's convenient to being able to switch to dynamic
programming while still keeping almost the same code. To do this, we'll use a
strategy called memoizing. (For contrast, we'll call the previous dynamic
programming strategy sweeping.)

We use an array just as before to store our calculated function values. For
concreteness we'll write two indices, , but everything below works for one
index or for three or more indices.

We initialize to a sentinel such as for all . The important property of
a sentinel is that it should be a value that our function can't possibly return.

Whenever we calculate our function for a new pair of arguments , we store it
in . This is called a memo, since it is a reminder for us of the value of

. Finally, as the first line in our function, we check for memos: if
there is no memo, and we continue as before. On the other hand, if ,
we have a stored memo; so, we return instead of making any recursive
calls.

Because of the check for memos, we will compute at most once for each
 — just like in our sweeping strategy. But unlike sweeping, we compute

lazily and as needed; we'll touch pairs of indices in an order that is
determined by the computation, instead of precomputed.

Both memoizing and sweeping count as dynamic programming. In most cases
there's not a big benefit to doing it one way or the other; the decision is mostly
based on ease of implementation.

Two places where there can be a difference that matters:

For some functions (like Fibonacci) we might be able to discard some
entries of once they are no longer relevant. In these cases we would
need less memory for sweeping, since we can ensure the values are
computed in a favorable order.

On the other hand, in some cases we might not need to touch some
elements of at all; this can happen if recursive calls skip down to smaller

k

k

A

A[i, j]

A[i, j] F i, j

i, j

A[i, j]

A[i, j] A[i, j] = F

A[i, j] = F

A[i, j]

A[i, j]

i, j A[i, j]

i, j

A

A

indices like instead of proceeding from to to and so forth.
In these cases memoizing can use less memory.

To take advantage of skipping some indices, we'd need to replace the array of memos
 by a dictionary: a data structure that can store and look up for a sparse set of

index pairs .

But even in these cases, the difference between sweeping and memoizing can
be small enough that other considerations outweigh it.

DP example: longest common subsequence

A subsequence of a string is a sequence of characters from that are in the
same order as but not necessarily contiguous. For example, if is ,
then and are both subsequences, but is not.

Given two strings , the LCS problem is:

Find a string which is a subsequence of both and , and which is as
long as possible.

This problem sometimes comes up in computational biology: we have a
database of DNA sequences, and we want to check whether a given sequence
fragment matches anything in the database. Since the sequences can have
errors including insertions, deletions, and changes, and since the sequences
can be changed by mutations, we want to find the database entry that has the
longest common subsequence with our query.

A naive recursive algorithm for the LCS problem works as follows: each
recursive call finds the longest common subsequence of with

.

If , then the last character of will be the common value,
say . We can recursively call and append .

If , then we must discard either or . We can recursively
call and and return the longer one.

If either sequence is empty (i.e., if or) then the LCS is empty.

The naive algorithm takes exponential time, since it makes two recursive calls
that each reduce or by only 1. But we can get a much more efficient
algorithm with dynamic programming: we keep an array of function

,2
i

2
j i i − 1 i − 2

A A[i, j]

i, j

S S

S S XYZZY

XYZ YY ZYX

X, Y

Z X Y

LCS(i, j) X[1 : i]

Y [1 : j]

X[i] = Y [j] LCS(i, j)

q LCS(i − 1, j − 1) q

X[i] = Y [j] X[i] Y [j]

LCS(i − 1, j) LCS(i, j − 1)

i = 0 j = 0

i j

A[i, j]

values. We can either memoize or sweep; either way, we calculate each
once, at cost given the previous values. If and have lengths and
respectively, there are elements that we have to calculate, so the whole
process takes time — way better than exponential. (We do need an extra

 memory to store .)

Exercise: use this algorithm to calculate the LCS of and .

DP example: shortest paths

One place that dynamic programming shows up in machine learning is in
reinforcement learning, in the so-called Bellman equation. We'll analyze a
simplified version of this recursive equation: we'll consider only deterministic
problems where we are given a model of our environment, instead of the
general case where we can have randomness and uncertainty.

More specifically, our goal is to compute all-source single-destination shortest
paths in a weighted directed graph. That is, we have a graph with edge
costs for . Our goal is to find the lowest cost paths from all possible
starting vertices to a single marked goal vertex . Negative costs are
allowed, so long as there are no negative-cost cycles: if there were, we could
go around one forever and get a path with total cost equal to .

To this end, we want to find the cost-to-go or value function for : this
function tells us the best possible cost of a path from to the goal . We'll see
below that knowing lets us read off the shortest path from any vertex.

We can recursively define as:

That is, we can split the shortest path from into two pieces: the first edge
 and the rest of the path from to . The total cost of the path is the sum

of the costs of the two pieces, and the best path is the one that minimizes this
cost.

This recursive definition suggests a recursive algorithm: to compute we
iterate over all edges , recursively call , and set to the best cost
we find. This algorithm is not a good one, since it can turn into an infinite loop if

A[i, j]

O(1) X Y m n

mn

O(mn)

O(mn) A

XYZZY XYZXYZ

(V , E)

c ∈e R e ∈ E

s ∈ V t ∈ V

−∞

J(v) v ∈ V

v t

J

J

J(t) = 0 J(v) = [c +
(v,w)∈E
min v,w J(w)]

v

(v, w) w t

J(v)

(v, w) J(w) J(w)

there's a cycle in our graph.

But, this recursive definition and algorithm do show us how to use once we
know it: the shortest path from is the one that goes through the best . So, if
we're at , we can find the best path cheaply if we know : we loop over all
outgoing edges, pick the best one, move to , and repeat.

We can get a better recursive algorithm by including a limit on the number of
edges we'll explore: define to be the cost of the best path from to
that contains at most edges. Then

This algorithm still takes exponential time, but at least it doesn't take infinite
time!

We can improve our algorithm by using dynamic programming: we sweep the
path length up from to , since no cycle-free path can have more than

 edges. We initialize to for all , except for . Then for
 we sweep over all and calculate

We can optimize by dropping once we've computed . And, if
we sort so that we group edges that share a starting vertex, then it takes
time to compute for all .

The result is the Bellman-Ford algorithm. With the optimizations above, its total
runtime is and its total memory use is : again, dynamic
programming gives us a huge win over the original exponential-time algorithm.

Exercise: use Bellman-Ford to calculate least-cost paths for the graph below.

J

v w

v J

w

J(v, n) v t

n

J(t, 0) = 0 J(v, 0) = ∞ ∀v = t

J(v, n) = [c +
(v,w)∈E
min v,w J(w, n − 1)] ∀v, ∀n ≥ 1

n 0 ∣V ∣ − 1

∣V ∣ − 1 J(v, 0) ∞ v J(t, 0) = 0

n = 1, 2, … v ∈ V

J(v, n) = min [J(v, n − 1), [c +
(v,w)∈E
min v,w J(w, n − 1)]]

J(⋅, n − 1) J(⋅, n)

E

O(∣E∣) J(v, n) v

O(∣V ∣ ∣E∣) O(∣V ∣)

Note that this graph is undirected. That means we can traverse each edge in
either direction: if , then as well (and the cost is the same
in both directions).

Resources: notes on dynamic programming from Avrim Blum; Bellman-Ford on
Wikipedia

(v, w) ∈ E (w, v) ∈ E

https://www.cs.cmu.edu/~avrim/451f13/lectures/lect0926.pdf
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

