
Example: radial basis functions

Since function spaces can be counterintuitive, it's good to keep some examples in mind;
these examples can help us think about their properties. One good example is the grid-
sampled functions we described above: these can be thought of either as vectors in ,
or as functions from the finite set to .

A second good example is a space spanned by Gaussian radial basis functions. A
Gaussian radial basis function (also called a squared-exponential function) is a function
of the form

Here and are parameters (part of the function definition), while is the single real-
valued argument. We call the center and the width of the radial basis function. By
convention, if we leave out , it is 1: that is, . Here is :

We can define a vector space by taking the finite span of all Gaussian radial basis
functions of a given width, say . That is, a vector in is a function of the form

where is the center for the th term in the sum. It looks like this:

(Each element of can use a different set of centers; when we add together two

Rn

{1 … n} R

q (x) =y,σ exp(∥y − x∥ /2σ)2 2

y σ x

y σ

σ q =y qy,1 q0

H

σ = 1 H

u q

i=1

∑
n

i yi

yi i

H

vectors, we take the union of their sets of centers.)

We can upgrade to an inner product space by defining an inner product for individual
radial basis functions

and then extending to functions in the finite span by linearity. For example,

We won't do it here, but it's possible to show that this definition yields a valid inner
product.

One route is to use Bochner's theorem together with the fact that the Fourier transform of a
Gaussian is another Gaussian.

The resulting inner product space is not complete, but we can complete it to get a new
space . Again we won't give the details of how this happens, but the elements of
wind up being countable-length linear combinations of radial basis functions, with
coefficient sequences that are square-summable.

This new space is very useful: like it is a complete inner product space, but unlike
 it is infinite-dimensional. It contains an arbitrarily-good approximation to any

continuous function on , so we can use it inside highly-expressive ML algorithms. And
it turns out (though this is not at all obvious) that there are efficient algorithms to solve
simple ML problems on , such as finding a function in that interpolates some given
training data, or finding a function in that passes close to some training data while
remaining as smooth as possible.

We can do this in any dimension, not just . Here's an example of a function in the
space we get from radial basis functions on :

H

⟨q , q ⟩ =y y′ q (y) =y
′ q (y)y′

⟨q , q ⟩ =1 1 exp(0) = 1

⟨q , q ⟩ =1 5 exp(−4 /2) =2 e−8

⟨q , q +1 1 3q ⟩ =5 1 + 3e−8

H̄ H̄

H̄ Rn

Rn

R

H̄ H̄

H̄

R
R2

https://en.wikipedia.org/wiki/Bochner's_theorem

Visualizing functions

In order to work in a vector space of functions, it helps to be able to visualize the
individual vectors (the functions themselves). One good tool is a contour plot. Contour
plots look like topographical maps:

The curves on this plot are called contours, isolines, or level sets. Each one is a set of

the form for some ; that is, the height of is the same anywhere
along a given contour. The color scale shows what this height is: in this case the darkest
areas are lowest and the lightest areas are highest.

When we get the decision boundary of our classifier. Other values of show what
the decision boundary would be if we shifted our function up or down by adding a
constant. Where contours are close together, the function is changing rapidly; where
they are far apart, the function is changing more gradually.

As with a linear function, the normal to a contour shows the direction of steepest
increase of (i.e., the gradient).

Linear classifiers in function space

We already saw how to learn a simple class of nonlinear decision boundaries: we use a
nonlinear feature transform to map our original space to a higher-dimensional feature
space, then we compute a linear classifier such as the Fisher linear discriminant in the
feature space.

What if we want to choose our discriminant from a much larger class — say the space
from above? This seems extremely expressive: we can get arbitrarily close to any
continuous decision boundary. But it also seems computationally difficult.

This is where it helps to think in function space directly. It turns out we can use the exact
same recipe as before: use a feature transform to map our original data points into ,
and find a Fisher linear discriminant in . Here's what that looks like:

{x ∣ f(x) = k} k ∈ R f

k = 0 k

f ∇f

H̄

H̄

H̄

Note that the decision boundary is now much more complicated than a plain line or
ellipse.

By choosing a different function space we can get a different classifier. For example, if
we reduce the width of our radial basis functions, we get a wigglier decision boundary:

In more detail, to learn a Fisher linear discriminant directly in a function space, we have
to pick a feature transform that maps our input vectors into the function space. In our
example, we might choose

so that . That is, we represent a point in the plane by a radial basis function
centered at that point.

Given this choice, the class means use exactly the same formula as before:

Unlike before, we can't simplify the sums above, unless the same exact input vector
appears twice: we just have to represent the sums as a list of terms.

The formulas for and are also the same as before. So, the weight vector is a linear

ϕ(x) = qx

ϕ ∈ R →2 H̄

μ =× ϕ(x)
n×

1

i=1

∑
n×

i
×

μ =∘ ϕ(x)
n∘

1

j=1

∑
n∘

j
∘

x

w b w

function of and . Again we can't simplify , and have to just represent it as a list of
terms.

Now when we get a new point to classify, we have to compute . We can do
this by linearity: we compute the inner product of with each term in the
representation of . Since each term in is based on a single training point, the key
step is to compute or . To do this, we can use our definition of

inner product from above: for example,

If we evaluate our discriminant at every point in a grid in , we can make a plot like the
ones above: these show the zero contour of the discriminant function, which is our
decision boundary.

μ× μ∘ w

x ⟨w, ϕ(x)⟩

ϕ(x)

w w

⟨ϕ(x), ϕ(x)⟩i
× ⟨ϕ(x), ϕ(x)⟩j

∘

⟨ϕ(x), ϕ(x)⟩ =i
× q (x)x i

×

R2

