
Optimization in ML

As we've seen, a lot of machine learning methods are based on optimizing something:
maximizing a likelihood, minimizing an error measure, maximizing information content,
etc. Let's say we want to solve

Here is our objective, and is a -dimensional parameter vector.

In our examples so far, the objective has often been simple (e.g., convex and quadratic);
but more generally, it could have a nearly arbitrary shape, including multiple local
optima:

In this plot, . The horizontal axes represent and , and the vertical axis is .

Optimization from data

Where does a problem like this come from? Suppose we have a model with parameters
. This model tells us the probability of an individual data point . Write for all of our
data, . Then by Bayes' rule,

L(θ) θ ∈
θ

min Rd

L(θ) θ d

3.

θ ∈ R2 θ1 θ2 L(θ)

θ

xi X

x … x1 T

In this equation,

The term doesn't depend on , so it doesn't help us prefer one value of over
another.

The term is often uninformative: we don't know ahead of time what is likely to
be, so is either uniform or near-uniform over some large region.

That leaves just one term to help us find a good value of : . This term is called
the likelihood or evidence for . The most probable is the one that maximizes the
likelihood.

Picking this way is called maximum likelihood estimation. It's a common and effective strategy.
There are alternatives, though: e.g., we could use a more-informative prior, or we could ask for a
sample of likely values of instead of a single point estimate.

If our data points are independent of one another, then

In this case, since sums can be easier to work with than products, we'll often work with
the log-likelihood

We can do something similar if our model tells us the conditional probability of a label
given input features . A derivation like the one above leads us to maximize the
conditional likelihood or the conditional log-likelihood

This sort of structure in our objective function is common in machine learning: a sum
over training examples, so that . We'll see more later about how to take
advantage of it. As a concrete example, could measure squared error for a training
example in a regression problem:

The first order

We will focus on first-order methods for optimization. These are methods that access
our loss function only through its value and gradient.

P (θ ∣ X) = P (X ∣ θ)P (θ)/P (X)

P (X) θ θ

P (θ) θ

P (θ)

θ P (X ∣ θ)

θ θ

θ

θ

P (X ∣ θ) = P (x ∣1 θ)P (x ∣2 θ) … P (x ∣T θ)

ln P (X ∣ θ) = ln P (x ∣1 θ) + ln P (x ∣2 θ) + … + ln P (x ∣T θ)

yi

xi

P (Y ∣ X, θ)

ln P (Y ∣ X, θ) = ln P (y ∣1 x , θ) +1 ln P (y ∣2 x , θ) +2 … + ln P (y ∣T x , θ)T

L(θ) = ℓ (θ)∑i i

ℓi

ℓ (θ) =i (x ⋅i θ − y)i
2

Even though they're simple, first-order methods turn out to be quite effective for a lot of
machine learning problems. This happens for a few different reasons:

Speed: each optimizer step can be fast. If we have big data or big models, we might
not be able to afford fancier optimizers.

Just enough accuracy: first-order methods are not as accurate as some other
optimizers. But in ML, we often don't care about that: those last few decimal places
of the loss function probably correspond to overfitting, and won't translate to the
test set.

Exploration: the trajectory of a first-order method can skip over small increases in
the loss, helping us find a region of better values of . It can also wander around the
region near a local optimum, and help us characterize the shape of the objective
function there.

Regularization: For reasons we don't completely understand, first-order methods
seem to pick values of that generalize better — even among those with the same

.

For these reasons, first-order methods are often the best place to start if we need to
pick an optimizer for machine learning.

Gradient descent

To solve , one place to start is the gradient descent algorithm:

Gradient descent

input
for :

The vector is the gradient of at . The parameter is the learning rate or step
size: we'll see below that it trades off optimization speed against stability.

With the conventions we've been using so far, the gradient is the transpose of the first derivative:
if , then . But you will commonly see the other convention, where
stands for the gradient itself rather than its transpose.

Why does gradient descent work? In the neighborhood of , the function decreases
most rapidly in the negative gradient direction :

θ

θ

L(θ)

min L(θ)θ

θ , η, T1

t ← 1, … , T

g ←t dθ
dL

∣
∣
θt

θ ←t+1 θ −t ηgt

g ∈t Rd L θt η

dL = L (θ) dθ′ g =t L (θ)′
t

T L′

θt L

−gt

So, if we take a small-enough step in this direction, it should reduce . But if we step too
far, the curvature of can mean that we don't actually reduce . Strong curvature
shows up in the figure as contour lines that bend sharply or change spacing suddenly.

One of the main bottlenecks in using gradient descent is computing the gradients —
both in the sense that it takes up a lot of compute time and in the sense that it takes up
a lot of of our effort in applying gradient descent to any given problem. To help with the
latter difficulty, we can use automatic differentiation toolkits; these are commonly
included for example in libraries for working with neural networks. However, autodiff
toolkits can't always handle every case we need, and may even fail silently, so it's wise
to consider them as a potential source of bugs. (Though perhaps fewer bugs than if we
tried to differentiate by hand.)

A lot of times, we won't wind up using gradient descent itself, for reasons to be
discussed below. But its cousin, stochastic gradient descent, can often work quite well.
The two methods share a lot of the same intuition and analysis; so we'll start by looking
at plain gradient descent, and then cover the stochastic version.

Local quadratic model

Above we gave a handwavy intuition for why a gradient step decreases . Can we
make this intuition precise? Let's look at a 1d slice of our objective by restricting to
the line that goes through and .

We can make a first-order Taylor expansion:

L

L L

L(θ)

L(θ)

θt θt+1

1

Here the residual is an unknown function — but by the mean value theorem, we
know that is equal to the second derivative of our slice of , evaluated at some
point along the line segment between and .

Suppose we know that the second derivative is bounded, at least in the neighborhood of
. In particular, let's say for some constant . Remembering that our

step is equal to , we get

So, as long as and , we get a decrease in . If we set , we will
reduce by at least

on each step.

In other words, we make progress as long as we take a small enough step; the best step
size depends on the local curvature of . For fast progress we want the gradient to be
big compared to the local curvature. If we know the curvature, the size of the gradients,
and the difference between the initial and final values of , we can predict how long our
optimization will take.

Setting the learning rate

Of course, we often have no idea what the local curvature of is like. So what happens
if we set the step size wrong?

If we set too small, we slow down our progress: as long as is small compared to the
local curvature, the gradient direction will be more or less the same as . So, if we
halve our step size, it will just take us twice as many steps to go the same distance.

On the other hand, if we set too big, the result can be much more dramatic. Imagine
minimizing a simple 1d quadratic:

The gradient descent update is

L(θ) = L(θ) +t (θ − θ) ⋅t g +t ∥θ −
2
1

θ ∥ R(θ)t
2

R(θ)

R(θ) L

θt θ

θt ∣R(θ)∣ ≤ H H ≥ 0

(θ −t+1 θ)t −ηgt

L(θ) ≤t+1 L(θ) −t η∥g ∥ +t
2 η ∥g ∥ H

2
1 2

t
2

g =t 0 0 < η < 2/H L η = 1/H

L

2H

∥g ∥t
2

L

L

L

η η

gt+1 gt

η

L(θ) = Hθ
2
1 2

If we set , so that , we get

so that the sequence flips back and forth from positive to negative while blowing up
exponentially!

Exercise: what happens to gradient descent if we multiply the objective by a
constant ?

Conditioning

It gets worse: if the dimension of is higher than 1, we can run into both of the above
problems at once: the learning rate can simultaneously be too small and too large. If
we're lucky, we get a nice objective function like this one:

Image credit: Boyd & Vandenberghe

In the above picture, the curvature is similar in all directions, so the same learning rate is
appropriate no matter what is.

But more typically, this happens:

θ =t+1 θ −t ηHθ =t (1 − ηH)θt

η = 3/H 1 − ηH = −2

θ =t (−2) θt−1
1

θt

L

α

θ

θt

Image credit: Boyd & Vandenberghe

In the above picture, the objective is flat (low second derivative) in the horizontal
direction, but sharply curved (high second derivative) in the vertical direction. So, we
have to choose a small learning rate to avoid diverging in the vertical direction — which
means that we can only make slow progress in the horizontal direction.

This phenomenon, where the curvature is different in different directions, is called the
conditioning of an optimization problem. In a well conditioned problem, the curvature in
all directions is similar, and gradient descent can make fast progress. In a poorly
conditioned problem, the curvature varies a lot, and gradient descent can only make
slow progress. We can see this difference if we look at how quickly gradient descent
reduces the objective function in the above two problems:

Image credit: Boyd & Vandenberghe

To measure conditioning, it's common to define the condition number of a problem to be
the ratio between the largest and smallest curvatures that we can find in our objective

function. Locally, this is the ratio between the largest and smallest positive eigenvalues
of the Hessian (second derivative matrix) of our objective .

We can relate the condition number to the 1D bound that we computed earlier,

Here is the 1D curvature, which is bounded by the largest curvature in our objective
function .

Preconditioning

A sharp eye might notice that the two contour plots above are strongly related: the
second one is just stretched horizontally and squashed vertically compared to the first.
We can undo this stretching and squashing by redefining our parameter vector: if is
the loss function pictured in the second figure, then we can instead minimize

, where is defined as

If we know (or can guess) a good transformation, we are rewarded: gradient descent
can make progress much faster, even though we are effectively solving the same
problem. The cost is that we have to go back and forth between the two different
parameter representations on every iteration of gradient descent; if it's expensive to
apply or invert our transformation, we may lose more time than we gain.

This strategy, transforming our parameter vector to make an optimization problem
easier, is called preconditioning. In general we can precondition with any invertible
transformation that we like. But, linear preconditioners are by far the most common.
And, by far the most common linear preconditioners are diagonal ones like we used
above.

Finding a good preconditioner — one that is both efficient and effective — may be
difficult. But if we can do it, it's a great way to speed up first-order methods. For this
reason, there are a lot of methods that try to discover a reasonable preconditioner as we
go along: e.g., one of the most popular is Adam.

Momentum

L

L(θ) ≤t+1 L(θ) −t 2H

∥g ∥t
2

H

L

L(θ)

M(ϕ) = L(θ) ϕ

ϕ = θ(2
1

0
0

3
4)

We can see in the above plots, as well as in our analysis of the quadratic objective, that
gradient descent tends to oscillate when the learning rate is close to or above its
stability limit. That is, the gradient tends to point in opposite directions on adjacent
iterations. Maybe if we could get rid of this oscillation, we could push the learning rate
higher and converge faster?

In the momentum method, we keep a running average of the past gradients, and use this
average direction to update instead of the raw gradient. Intuitively, if our gradients
keep pointing in the same direction, our optimizer builds up momentum and takes larger
steps.

Gradient descent with momentum

input

for :

Note that we are weighting recent gradients more heavily in our average; -step older gradients
are scaled down by a factor of . This is called an exponentially weighted moving average. Also
note the scaling factor : this ensures that the weights in our average always sum to 1. Without
this factor, in early iterations we'd go too slowly, since it would take a while to build up
momentum even if all of our gradients point in the same direction.

Why does momentum help? If the gradients are oscillating, they'll tend to cancel each
other out. So, if our learning rate is too high for the curvature in some direction, we'll
automatically slow down our progress in that direction. Meanwhile, if our curvature is
flatter in another direction, our gradients in that direction will tend to have the same
sign, so we'll continue to make fast progress.

It turns out that, if we set the learning rate and momentum carefully, we can under some
conditions reduce at a rate proportional to without diverging. Compare this to the

earlier progress rate for plain gradient descent, which was proportional to . For poorly
conditioned objectives, the faster rate can make a huge difference. (See the
supplemental reading for a full derivation.)

Stochastic gradient descent

Until now we haven't paid attention to the structure of our objective when designing or

θ

θ , η, β, T1

m ←0 0

t ← 1, … , T

g ←t dθ
dL

∣
∣
θt

m ←t (1 − β)g +t βmt−1

θ ←t+1 θ −t m1−βt

η
t

τ

βτ

1−βt
1

L
H

1

H
1

analyzing our algorithms. Let's look now at what the consequences are if our objective is
a sum over training examples:

What kind of difficulties might we run into if we use gradient descent on this kind of
objective?

If our examples are i.i.d., then every one of the terms in our objective is in some sense
equivalent. It seems like a waste to compute all of them on every iteration of gradient
descent — especially if we are only going to take a small step in the resulting direction.

This suggests that we could evaluate only a few randomly sampled terms from the
objective on each iteration without losing too much information. That is, we will pick
indices uniformly and randomly without replacement, and average together the
gradients of only the corresponding terms . If we call this method stochastic
gradient descent, while if we call it minibatch (stochastic) gradient descent.

For this purpose, have a look at numpy.random.choice .

Intuitively, we might get unlucky and increase the value of on any given iteration: we
could pick a non-representative sample and step in the wrong direction. But on average
our stochastic gradients will point in the right direction. If our learning rate is small
enough, the errors will tend to average out, and we will still tend to decrease .

ℓ (θ)
θ

min
N

1

i=1

∑
N

i

B

ℓj B = 1

B > 1

L

L

Stochastic / Minibatch Gradient Descent

input

for :
for :

 random w/o replacement

Note that we sample indices without replacement. In fact, it works best to sample
without replacement across an entire epoch (a pass through our training data). That is,
we mark each term that we sample, and never sample it again until we've hit every other
term in our objective. When we run out of unmarked terms, we clear the marks, and
continue.

θ , η, β, B, T1

m ←0 0

t ← 1, … , T

i ← 1, … , B

j ←ti 1 : N

g ←ti ℓ
dθ
d

jti ∣
∣
θt

g ←t g
B
1 ∑i=1

B
ti

m ←t (1 − β)g +t βmt−1

θ ←t+1 θ −t m1−βt

η
t

Gradient sample variance

Let's first look at how stochastic gradient descent works (). The biggest difference
from plain gradient descent is gradient sample variance: our stochastic gradient might
point in a completely different direction depending on which term we sample. If we're
lucky the gradient variance will be small compared to the size of the gradient. If we're
unlucky, the reverse might be true.

Variance can be a problem: if is locally strictly convex (e.g., near a local optimum),
Jensen's inequality says that

The RHS is what happens with plain gradient descent: we deterministically set using
the expected gradient. The LHS is what happens with SGD: we go in the right direction
on average, but gradient variance together with the curvature of mean that we won't
make as much progress — or might even tend to increase .

If our gradient samples have variance bounded by in all directions, and our learning
rate is , then our updates to will have variance bounded by . Then, if the
curvature of is , the difference between the two sides of Jensen's inequality will be
bounded by .

This analysis means that we now have two constraints on learning rate: one due to the
way the curvature of changes the deterministic gradient (as before) and one due to
variance (new for SGD). If we didn't have to worry about variance, our analysis of plain
gradient descent shows that we could improve by per iteration by setting

. But this setting of results in a penalty of due to gradient variance. So, if
 is comparable to or bigger than , we may have to reduce our learning rate to

make progress.

Behavior of SGD

Because of the differing effects of curvature and variance, SGD typically has three
different phases of convergence:

Far away from the optimum, the gradient samples all point in about the same
direction. So, dominates, and SGD behaves mostly like plain gradient
descent.

A bit nearer to the optimum, the gradient variance and squared gradient norm

B = 1

ℓj

L

E(L(θ)) >t+1 L(E(θ))t+1

θt+1

L

L

σ2

η θt η σ2 2

L H

Hη σ2 2

L

L ∥E(g)∥ /2Ht
2

η = 1/H η σ /H2

σ2 ∥E(g)∥t
2

∥E(g)∥t
2

become comparable. In this regime our progress depends on moving slowly enough
to average out the gradient variance, and SGD will make much less progress per
iteration than plain gradient descent. (It may still be faster overall, since the
iterations are a lot cheaper.)

When we get sufficiently close to the optimum, the gradient variance dominates,
and we stop reducing at all. Instead we bounce around at a scale determined by

, , and .

We can tune the transitions between these phases by tuning the learning rate: in the
range we care about, changing affects the variance of as , but it affects our
reduction in from the expected update as . So reducing can mitigate the
effect of gradient variance; for example, it can allow the second phase to make more
progress, getting us closer to a local optimum before we start bouncing around.

Unfortunately, though, the best value of might be different during different parts of the
overall optimization. For this reason, it's common to alter during the course of
optimization using a learning rate schedule. Designing a learning rate schedule is
unfortunately somewhat of a black art: at one point, one of my past professors set up
his workstation so that his mouse pointer controlled learning rate and momentum, and
learned to achieve the fastest possible convergence on the fly by streaming a lot of
diagnostics and developing an intuition for what could keep the network on the ragged
edge of stability.

Perhaps counterintuitively, once we fix , the three phases above do not depend on the
size of our training set: all that matters is the curvature of and the variance of . SGD
might "finish" (i.e., reach the last regime above) before even seeing all of our data.

Instead, the size of our training set influences optimization only indirectly, through our
choice of hyperparameters (learning rate schedule and, once we get to it, minibatch
size). That is, with a larger training set, we can hope to generalize better, so we may
want to select different hyperparameters to make our optimization more accurate.
These altered hyperparameters can change our convergence rate.

Behavior of minibatch SGD

What happens when we use minibatches of size ? Broadly we get similar behavior
to SGD, but there are three interacting effects we need to consider.

The first effect is computational cost: if we double , we have to compute twice as

L

σ2 H η

η ηgt O(η)2

L E(ηg)t O(η) η

η

η

η

L gt

B > 1

B

many gradients for each parameter update. The second effect is variance: if we double
, we halve the variance of our gradient estimates. The third effect is curvature: the

gradient of changes as we update , and this change might wipe out any benefit of an
accurate gradient estimate.

Looking at the first two effects together, it makes sense to compare:

two steps of SGD with minibatch size and learning rate , vs.

one step of SGD with minibatch size and learning rate .

These approaches seem similar at first glance. If the variance of a single gradient
sample is bounded by in all directions, then either of these approaches yields a total
update variance of . Either of these approaches yields a similar decrease in , at
least to first order. And, either of these approaches has to compute gradients in
total.

There are some factors that break the apparent equivalence, though. Computing
gradient samples might take a different amount of wall-clock time depending on
whether we do them all at once or split them up. This is particularly true if we can
compute the samples in parallel (e.g., on a GPU); in this case the all-at-once approach
could be much cheaper.

On the other hand, curvature kicks in if we try to grow too much. One way to see this
is to remember that step size is limited both by the variance of our stochastic gradient
estimates and by the effect of the curvature of on the deterministic gradient direction.
For small minibatches, typically the first limit will be tighter; in this case, our two
approaches will have similar performance. But bigger minibatches increase the step size
while keeping the variance approximately constant. So eventually, the second limit will
take over and keep us from increasing and too much.

Finally, our minibatch size might be limited by architectural factors. For example, we
might want to ensure that each minibatch fits within our GPU memory or our main
memory cache.

Empirically, good minibatch sizes can vary greatly depending on details of our loss
function and computational architecture. Reasonable values might range anywhere from

 to .

Over this range of , we actually have a fair bit of flexibility: we can often achieve good
performance with a wide range of different minibatch sizes and learning rates. But there

B

L θt

B η

2B 2η

σ2

2η σ /B2 2 L

2B

2B

B

L

B η

B = 10 B = 100, 000

B

is one important caveat: the analysis above tells us that we have to scale along with .
If we fail to do this, we can wind up implicitly using a mis-tuned learning rate, and
hurting performance.

Suggested reading:

For gradient descent:

Boyd & Vandenberghe, Convex Optimization, sec. 9.3

For an analysis of momentum:

http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-5-notes.pdf

η B

http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-5-notes.pdf

