
Matrices and linear functions

We can make a coordinate representation for linear functions out of a coordinate
representation for vectors. Suppose we have a linear function , a basis

 for , and a basis for . We can apply to one of our vectors ,
and expand the result in terms of our basis for : we pick coefficients so
that

We can do the same for all of the other basis vectors in , expanding each one's image
under in terms of our basis for . The resulting coefficients form a basis
representation for : we can map the abstract vector space of linear operators to the
concrete vector space of -dimensional real vectors.

We typically write out the coordinates of as a matrix:

That is, instead of writing our coordinates as one long vector in , we write them
as an matrix. (Formally these are two separate coordinate representations, since
we are using two different concrete vector spaces — but often people will move back
and forth freely between them since the numerical coordinates are the same.)

This representation agrees with our usual idea of matrix-vector multiplication: take a
vector whose coordinate representation is . Then by linearity,

Expanding each term , we get

The th coordinate of is the coefficient of in the above expression, namely
 — which is exactly the th entry of the vector we get by multiplying the

L ∈ U → V

b … b1 n U c … c1 n V L b ∈j U

Lbj V ℓ , ℓ , …1j 2j

Lb =j ℓ c +1j 1 ℓ c +2j 2 … + ℓ cmj m

U

L V ℓij

L

mn

L

L ∈ U → V ↔ ∈⎝
⎛ ℓ11

⋮
ℓm1

…

⋱
…

ℓ1n

⋮
ℓmn

⎠
⎞

Rm×n

mn Rmn

m × n

x u b +1 1 u b +2 2 … + u bm m

Lx = L u b =
i=1

∑
m

j j u Lb

j=1

∑
m

j j

Lbj

Lx = u ℓ c =
j=1

∑
m

j

i=1

∑
n

ij i u ℓ c

i=1

∑
n [

j=1

∑
m

j ij] i

i Lx ci

v =i u ℓ∑j=1
m

j ij i

matrix coordinate representation of by the vector coordinate representation of .

As was the case for vectors, picking different bases will result in different coordinate
representations for . So, we can get two completely different matrices that represent
the same linear function: as before, the function hasn't changed, just our representation
of it.

It's helpful to think of the matrix as a linear function in , as compared
to , which is a linear function in . Our coordinate representations for , , and

 agree in such a way that we can perform corresponding operations in the
abstract and concrete vector spaces:

Transpose and adjoint

Let and be inner product spaces, and let be a linear function. We define
the adjoint function by the property

(Note that the inner product on the LHS is in , while the one on the RHS is in .) It's
not obvious from the definition, but

The adjoint function always exists and is unique.

The matrix representation of is the transpose of the matrix representation of .
That is, if the coordinate of is , then the coordinate of is . We write

 for the matrix transpose.

We can easily check the above statements: suppose that is a linear function
represented by a matrix . Suppose is a vector, with concrete coordinates . Then

Here we have written for the th coordinate of the matrix-vector product . Writing
out the matrix-vector product, we have

so

L x

L

ℓ = (ℓ)ij ij R →m Rn

L U → V U V

U → V

Lx = y ↔ ℓu = v

U V L ∈ U → V

L ∈∗ V → U

⟨Lx, y⟩ = ⟨x, L y⟩ ∀x ∈∗ U , y ∈ V

V U

L∗ L

i, j L ℓij i, j L∗ ℓji

ℓT

L

ℓ x u

⟨x, Lx⟩ = u ⋅ ℓu = u [ℓu]
i

∑ i i

[ℓu]i i ℓu

[ℓu] =i ℓ u

j

∑ ij j

∑

On the other hand,

by a similar argument. So, we have verified that, if we take to be the matrix
representation of , we achieve as desired.

We can view adjoint and transpose themselves as linear functions: the adjoint maps
 to , while the transpose maps to . If we take

the adjoint twice, we get back the original linear function: . Similarly, taking the
transpose twice gets back to the original matrix: .

If then we can potentially have ; such an operator is called self-adjoint.
Similarly, if , we can have ; such a matrix is called symmetric. Self-adjoint
operators correspond to symmetric matrices.

Range and nullspace

The range of a function is the set of all its possible outputs:

Suppose that is linear. Then its range is a subspace of — possibly all of . In fact, if
we have a matrix that represents , then the range of is equal to the span of the
columns of . This follows directly from the expression for matrix multiplication and the
definition of the span: is a linear combination of the columns of , with weights given
by the entries of .

The rank of a linear function is defined as the dimension of its range. Similarly, the rank
of a matrix is defined as the rank of its corresponding linear function. For example, if our
function is

then its range is the set of all vectors whose second component is twice the first,
. This is a one-dimensional set, so the rank of is 1.

u ⋅ ℓu = u u ℓ
ij

∑ i j ij

⟨L x, x⟩ =∗ (ℓ u) ⋅T u = u u ℓ
ij

∑ i j ij

ℓT

L∗ ⟨x, Lx⟩ = ⟨L x, x⟩∗

L ∈ U → V L ∈∗ V → U ℓ ∈ Rm×n ℓ ∈T Rn×m

L =∗∗ L

ℓ =TT ℓ

U = V L = L∗

m = n ℓ = ℓT

f ∈ (U → V)

range(f) = {f(x) ∣ x ∈ U} ⊆ V

f V V

L f f

L

Lx L

x

f =[(x

y
)] (x + y

2x + 2y
)

span((1, 2))T f

Suppose now that is an operator, so that . If the rank of is less than the
dimension of , then there will be some vectors such that . The set of all
such is the nullspace or kernel of :

The dimension of the nullspace is called the nullity of . The nullspace and nullity of a
matrix are defined similarly.

For example, for the function defined above, the vector

is in the nullspace — in fact the nullspace is equal to the span of this vector, so the
nullity of is 1.

The rank and nullity of a linear function are equal to the rank and nullity of its adjoint.
(And so the rank and nullity of a matrix are equal to the rank and nullity of its transpose.)
For example, the adjoint of the function defined above is

We can check that nullspace of is the span of the vector , which has
dimension 1 as claimed. Notice that this vector is orthogonal to the range of :

It turns out that this is always true: the range of a function and the nullspace of its
adjoint are always orthogonal. (That is, any vector in the range is orthogonal to any
vector in the nullspace of the adjoint. Similarly for the range of a matrix and the
nullspace of its transpose.) In fact, these two subspaces together span all of : the sum
of the rank and nullity of a linear operator is the dimension of the corresponding vector
space. These statements are sometimes called the fundamental theorem of linear
algebra.

Finding coordinate representations

Suppose we have a vector space with a basis . We noted above
that any abstract vector has a unique coordinate representation in terms of ; this

f U = V f

V x ∈ V f(x) = 0

x f

null(f) = {x ∣ f(x) = 0}

f

(1
−1

)

f

f

f =∗ [(u

v
)] (u + 2v

u + 2v
)

f ∗ (2, −1)T

f

⋅(1
2

) =(2
−1

) 0

V

V B = {b , b , … b } ⊆1 2 n V

x ∈ V B

coordinate representation is a concrete vector . If we want to work with
coordinate representations, one option is to assume that someone gives us a subroutine
that computes them: that is, given and , it returns .

If we assume a bit more structure on — if we assume it is an inner product space —
then we can write this subroutine ourselves. That is, given and , we can calculate the
coordinates .

Since and are vectors in an abstract inner product space, we can only use the
abstract inner product space interface to interact with them: for example, we can add
pairs of vectors or take inner products between them. We will use this ability to write
down a system of linear equations that the coordinates must satisfy. We can then solve
this system to find the desired coordinates.

A system of equations

To get our system, suppose we take the inner product between and one of the basis
vectors . By linearity we have

Define and . The above equation then becomes

or in matrix form

So, we can compute and by taking inner products between pairs of vectors; then we
can solve the linear system to find the coordinates .

The matrix satisfies a couple of interesting properties: first, since the inner product is
symmetric, the matrix is symmetric, . Second, it is positive definite, a property that
we'll define below. These two properties guarantee that the above system of equations has a
unique solution.

Once we have our system , there are a variety of algorithms for solving it to find
. Probably the best advice is to hand the system to an appropriate library function: for

u ∈ Rn

x B u

V

x B

u

x B

x

bj

⟨x, b ⟩ =j u b , b =⟨
i=1

∑
n

i i j⟩ u ⟨b , b ⟩
i=1

∑
n

i i j

g =j ⟨x, b ⟩j G =ji ⟨b , b ⟩i j

g =j G u

i=1

∑
n

ji i

g = Gu

G g

u

G

G G =ij Gji

Gu = g u

example, Matlab provides the \ operator, while Python provides
scipy.linalg.solve . If you need to solve a small system by hand, the best method is

probably Gaussian elimination: repeatedly eliminate a variable by adding multiples of
one equation to all of the others. (We'll see an example below.)

Do not try to solve the system by inverting the matrix . While this works with exact
arithmetic, it can cause all sorts of problems if we try to do it with the approximate
arithmetic that happens in a CPU or GPU. (We'll give more details later.)

What if is not a basis?

What happens if we accidentally start from a set that is not really a basis for ? There
are two ways that could fail to be a basis:

 might be too big. That is, there might be a vector we could remove: a vector that
we can express as a linear combination of the other vectors in .

Or, might be too small: there might be vectors in that cannot be expressed as
linear combinations of vectors in .

It's even possible for both of these problems to happen at once.

In the first case, our software library will typically complain when we ask it to solve the
system of equations: e.g., it might throw a division-by-zero exception, it might return
Inf or NaN , or it might warn of numerical problems such as roundoff errors. In some

cases our library might try to be clever: e.g., it could set some of the coefficients to
zero, perhaps in combination with a warning. This sort of cleverness is usually OK: we'll
still have , even if some components of are superfluous.

In the second case, the library will fail silently: it thinks it found the correct coordinates
, but we do not have .

We'll still get something interesting: the best possible approximation of within the span of .
This behavior can be desirable: e.g., we might use it to find a good-enough low-dimensional
representation of a very high-dimensional vector.

On the other hand, the library might give us a failure or a warning even if in principle it
could have succeeded. This typically happens due to numerical problems: there might
be some vector in that is extremely close to being a linear combination of the other
vectors, so that within machine precision we can't tell the difference.

G

B

B V

B

B

B

B V

B

ui

x = u b∑i=1
n

i i u

u

x = u b∑i=1
n

i i

x B

B

To guard against all of the above problems and to catch silent errors, it's wise to check
our residual — the difference between and . If all goes really well this residual
should be tiny, e.g., with coordinates around in 64-bit arithmetic. If we run into
mild numerical problems the residual can be a bit bigger, say on the order of or
; and if we run into severe numerical problems the residual can even be larger than our
original vector .

Gaussian elimination

Suppose we have a system of equations like

A good way to solve for is Gaussian elimination. We'll do this example in lecture.

There are lots more examples online — for example, on Wikipedia: Gaussian elimination.

Slicing and stacking

Given a matrix , we sometimes need to refer to smaller matrices or vectors formed by
keeping some rows or columns from and crossing out others. These smaller matrices
or vectors are called slices. If and are sets of indices, then
we'll write for the slice formed by keeping only the elements with indices
and . For example, if

then

We will sometimes use colon notation for index sets: in a mathematical expression,
start:end represents the set of integers from start to end , and start:skip:end

represents the set of integers from start to end , skipping by skip between
successive elements. For example, means , and means .
Just a colon on its own is shorthand for the entire set of indices in some dimension. So

x u b∑i=1
n

i i

10−12

10−6 10−8

x

x

2x

−x

+y

+y

+y

+z

−2z

=
=
=

3
5
4

x, y, z

ℓ

ℓ

I ⊆ {1 … m} J ⊆ {1 … n}

ℓI,J ℓij i ∈ I

j ∈ J

ℓ = I =⎝
⎛ 1

4
7

2
5
8

3
6
9 ⎠

⎞
{1, 3} J = {1, 2}

ℓ =I,J (1
7

2
8

)

3 : 5 {3, 4, 5} 1 : 2 : 8 {1, 3, 5, 7}

https://en.wikipedia.org/wiki/Gaussian_elimination

for example, is column 3 of , while is rows 1 and 2.

Many programming languages have similar slicing conventions. For example, Matlab
allows indexing expressions like A(:,3:2:7) , meaning columns 3, 5, and 7 of A .

Python has a similar slicing convention, both with constructs like range and with colon
notation. But unlike math notation, Python indexing is zero-based and Python excludes
end from the range. So for example, range(3) in Python means the set , and
a[1:3] means indices 1 and 2 of a (which are the second and third elements). This

notation mismatch can often be confusing, and is a common source of bugs.

In the other direction, it's often useful to construct a matrix by gluing together smaller
pieces. This is called stacking. For example, if

then we can form a matrix by stacking:

The original matrices are now slices of : for example, .

Inverse

Let and be inner product spaces, and let be a linear function. We define
the inverse function by the property

or equivalently

Unlike the adjoint, the inverse doesn't always exist. If it does, we say is invertible. If
is invertible, then .

An inverse can only exist if and have the same dimension. If and have different
dimensions, we might be able to find a left inverse or a right inverse. These act like
inverses when they are applied in the correct order:

ℓ:,3 ℓ ℓ1:2,:

{0, 1, 2}

A ∈ R B ∈2×2 R C ∈2×3 R D ∈3×2 R3×3

5 × 5

X = (A

C

B

D
)

X X =1:2,3:5 B

U V L ∈ U → V

L ∈−1 V → U

y = Lx ⇔ x = L y−1

x = L Lx, y =−1 LL y ∀x ∈−1 U , y ∈ V

L L

(L) =−1 −1 L

U V U V

x = L Lx ∀x ∈left U

right

If is not invertible, it is called singular. We might still want a function that acts like an
inverse "whenever that makes sense". Such an operator is called the pseudoinverse,
written . Formally, we define so that, if , then the error is as small
as possible.

We can define an inverse operation on matrices as well: if and are matrices that
satisfy

for all , then we say that the is the inverse of .

As we might hope, matrix inverses are related to linear function inverses: if the matrix
is a coordinate representation of the linear function , and if is invertible, then
exists and is a coordinate representation of the linear function .

Similarly, there is a matrix representation of the pseudoinverse as well. If the linear
function is not invertible, then none of its representation matrices are invertible (no
matter what basis we use). If is one of these representation matrices, then is the
corresponding coordinate representation of .

Like adjoint and transpose, both inverse and pseudoinverse swap the roles of input and
output vector spaces: for example, if , then .

As a reminder, the inverse is much more useful as a mathematical tool than a
computational one. It's rarely a good idea to compute the inverse of a matrix explicitly,
since it tends to incur numerical errors. Instead, it's typically better to use an algorithm
like Gaussian elimination, which lets us apply the inverse matrix to one or more vectors
directly, without ever computing the inverse itself.

Of course, there are exceptions to the rule above. In case an example helps: suppose we want to
minimize , where is a square symmetric matrix and is some
differentiable function. As part of the minimization, we might want to compute the gradient of ,
which is ; so to get the gradient we have to explicitly compute a matrix
inverse. We may incur numerical errors while doing so, but this is OK: minimization algorithms
like gradient descent are often quite robust to numerical errors in computing the gradient.

If we do need to compute the inverse of a matrix , we can do so by solving linear
systems of equations: if we write for the th column of the identity matrix (that is, a
in coordinate and zeros everywhere else) and if is the th column of , then

y = LL y ∀y ∈right V

L

L† L† x = L b† ∥Lx − b∥

ℓ ℓ−1

ℓ ℓx =−1 x ℓℓ y =−1 y

x ∈ U , y ∈ V ℓ−1 ℓ

ℓ

L L ℓ−1

L−1

L†

L

ℓ ℓ†

L†

L ∈ U → V L ∈† V → U

L(A) = ln detA + f(A) A f

L

∇L = A +−1 ∇f(A)

A

ei i 1

i x i A−1 x

satisfies

(This follows from the matrix equation , since it is the th column of that
equation.) So, we can find by solving this linear system, and we can find all of by
repeating the process for each .

We can do something similar to find left and right inverses: we can use to
solve for a column of at a time, and we can use to solve for a row of
at a time.

Matrix patterns

Consider a linear operator and its matrix representation under some bases
for and . Depending on which bases we pick for and , the matrix can look quite
different. If we can pick these bases so that many elements of are zero, then some
computational operations involving become faster. If the nonzero elements follow a
simple pattern, then operations can become even faster.

For example, is square (the dimensions of and are the same) and if all of the
nonzeros of fall on the main diagonal (that is, if when), we say that is
diagonal. Writing for a possibly-nonzero entry and for an entry that must be zero, a
diagonal matrix matches the pattern

The simplest diagonal matrix is the identity matrix , which has entries of 1 on the main
diagonal and 0 off of it. (That is, all of the entries above are 1.) If , the identity
matrix corresponds to the identity function: that is, the function that satisfies
for all .

Another useful pattern is lower triangular: a square matrix is lower-triangular if it
matches the pattern

Ax = ei

AA =−1 I i

x A−1

ei

AA =right I

Aright A A =left I Aleft

L ∈ U → V ℓ

U V U V ℓ

ℓ

ℓ

ℓ U V

ℓ ℓ =ij 0 i = j ℓ

× 0

⎝

⎛ ×
0
0

⋮
0

0
×
0

⋮
0

0
0
×

⋮
0

…
…
…

⋱
…

0
0
0

⋮
× ⎠

⎞

I

× U = V

L Lx = x

x ∈ U

⎛ ⎞

that is, if when . An upper triangular matrix follows the opposite pattern: the
nonzeros are on and above the main diagonal, so that its transpose is lower triangular.

A matrix with lots of zero entries but no particular pattern is called sparse. We can save
computation by working with just a list of the nonzero entries and their indices, instead
of storing and manipulating all of the zeros. Typically, though, we need a high fraction of
nonzero entries to make it worthwhile to do this: say at least 80% zeros, and preferably
much more. (The reason for the penalty is that we spend some storage to explicitly
represent the indices of the nonzeros, and we waste some computation because of the
less-uniform structure of the list.) Fortunately, very sparse matrices are common in
some applications: it's perfectly typical to see matrices where 99.9% of the entries are
zero.

If a matrix follows multiple patterns, it can be even more convenient to work with: e.g., a
sparse lower triangular matrix is more convenient than a matrix that is just sparse or just
lower triangular.

Orthogonality

A column-orthogonal matrix is one whose columns are orthogonal vectors. This is
equivalent to saying that the matrix is diagonal. A row-orthogonal matrix is one
whose rows are orthogonal vectors, so that is diagonal. A row- or column-
orthonormal matrix is one whose rows or columns are orthonormal.

If is square and its rows are orthonormal, then its columns must also be orthonormal.
Similarly, if the columns are orthonormal, the rows must be too. In this case

. We can interpret this equation three ways:

The dot products of columns of are either 0 (for distinct columns) or 1 (for the dot
product of a column with itself).

Similarly, the dot products of rows of are either 0 or 1.

The inverse of is .

The first two interpretations come from looking at the matrix equation element by

⎝

⎛ ×
×
×

⋮
×

0
×
×

⋮
×

0
0
×

⋮
×

…
…
…

⋱
…

0
0
0

⋮
× ⎠

⎞

ℓ =ij 0 j > i

D = A AT

AAT

A

AA =T A A =T I

A

A

A AT

element; the last comes from matching the entire equation to the definition of the
inverse.

Positive (semi)definite operators and matrices

A linear operator is called positive semidefinite or PSD if for all
vectors . It is called positive definite if the inequality is strict: when

. We also apply the terms positive semidefinite and positive definite to any matrix
representation of .

Self-adjoint PSD operators have some nice properties we will see below, as do
symmetric PSD matrices. In fact, these properties are so nice that some authors include
symmetry or self-adjointness in the definition of PSD. (We won't do that, since there are
also some uses for asymmetric or non-self-adjoint PSD matrices or operators.) For
example, we can test positive definiteness or semidefiniteness of a symmetric matrix
easily using Gaussian elimination; this is called Cholesky factorization in the definite
case, and factorization in the semidefinite case. (Therefore, we can test
definiteness of a self-adjoint operator by using Cholesky or factorization on any
coordinate representation for it.)

To test definiteness of an asymmetric matrix and its corresponding non-self-adjoint
operator, we can use the following fact: a matrix is positive definite (or semidefinite) if
and only if is. (It's a fun exercise to try to prove this fact.) The latter is clearly
symmetric, so we can turn to Cholesky or factorization.

Matrix factorizations

Gaussian elimination is also called factorization: it allows us to represent a matrix
as a product of a lower triangular matrix and an upper triangular matrix .

This is one of many possible matrix factorizations, all of which can be really useful. For
example, factoring a matrix is often a good way to solve many copies of an equation for
different right-hand sides:

We factor once and then repeatedly use the factorization to solve for the different
right-hand sides. If we factor , then for each new vector we can do two
triangular backsubstitutions (for and then for) to find ; this is much faster than

A ∈ U → U ⟨x, Ax⟩ ≥ 0

x ∈ U ⟨x, Ax⟩ > 0

x = 0

A

LDLT

LDLT

A

A + AT

LDLT

LU A

A = LU L U

Ax =1 b , Ax =1 2 b , …2

A

A = LU bi

L U xi

https://en.wikipedia.org/wiki/Cholesky_decomposition

solving from scratch each time.

In an factorization, the matrix is the result of all of the row operations we apply: for
each diagonal element of , we use row operations to eliminate all of the off-diagonal
elements below it, leaving nonzero elements only on and above the main diagonal.

On the other hand, the matrix encodes our sequence of row operations. A single row
operation can be implemented by a matrix that looks like this:

All row operations are invertible; for example, the inverse of this one is

If we multiply by the first matrix above, we will subtract twice the first row of from
the fourth row of . On the other hand, the second matrix above adds twice the first row
of to the fourth row.

Note that both matrices above are lower triangular. Since the product of lower triangular
matrices is lower triangular, we can multiply all of the inverses of our row operations
together into a single lower triangular factor .

If we factor a symmetric positive definite matrix this way, we can require (which
forces the product to be symmetric and definite). This is called a Cholesky factorization.
A variant is to pull out the diagonal entries of and into a diagonal matrix ,
resulting in a factorization

where the matrix is lower triangular and has all diagonal entries equal to 1:

Ax =i bi

LU U

A

L

⎝

⎛ 1
0
0

−2
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1 ⎠

⎞

⎝

⎛ 1
0
0
2
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1 ⎠

⎞

A A

A

A

L

L = U T

L LT D

A = LDLT

L

⎛ ⎞

Since the original matrix is PSD, the entries of will be nonnegative. We can go back to
a Cholesky factorization by multiplying the square root of each diagonal entry into the
corresponding row and column of .

We can also make the same factorization for a non-PSD symmetric matrix. But in
this case some of the diagonal entries of will be strictly negative, and so we can't
make a Cholesky factorization. This is in fact a great way to test whether a matrix is
positive definite: we try to build the factorization. If we get all the way to the end
with only positive elements of , we know the matrix is positive definite. If we ever run
into a negative element, we know that the matrix is not positive definite.

If we ever run into a zero element, the story is slightly more complicated: we need to try a
technique called pivoting to avoid having to divide by zero. Pivoting works by rearranging rows
and columns of our matrix so that a nonzero element is on the diagonal. If pivoting is impossible,
that means we're stuck with only zero elements remaining; so the remaining elements of and
are zero, and the matrix is PSD but not positive definite.

One last useful factorization is the singular value decomposition:

where and are column-orthonormal and is diagonal and nonnegative. We can
choose at least one of and to be square: suppose . If then we will
pick to be square, . will have the same dimensions as , and will be
rectangular: . If then we will choose to be square and to be
rectangular: and . (If then both and will be square.)

The columns of and are called the left and right singular vectors, while the diagonal
elements of are called the singular values. We'll learn more about the singular value
decomposition later, when we cover the multivariate normal distribution. But for now,
one good use of the singular value decomposition is to compute a pseudoinverse: for an
orthonormal matrix like or , the pseudoinverse is the transpose, and for a product of
matrices, the pseudoinverse reverses the order, so

⎝

⎛ 1
×
×

⋮
×

0
1
×

⋮
×

0
0
1

⋮
×

…
…
…

⋱
…

0
0
0

⋮
1 ⎠

⎞

D

L

LDLT

D

LDLT

D

L D

A = UΣV T

U V Σ

U V A ∈ Rn×m m < n

V V ∈ Rm×m Σ V U

U ∈ Rn×m m > n U V

U , Σ ∈ Rn×n V ∈ Rm×n m = n U V

U V

Σ

U V

A =† V Σ U† T

The pseudoinverse of a diagonal matrix is easy to compute: is a diagonal matrix
where we pseudoinvert each element independently. That is,

(It's not often that we get to set !)

If our matrix is close to singular, the some of the diagonal elements of will be close
to zero. Inverting them will give us huge diagonal elements of , leading to numerical
instability. In this case (say, when some diagonal elements are times smaller than
others), it can be worth giving up on the small elements and pretending that they are
actually zero: this is called thresholding the singular values. We won't be able to get an
accurate pseudoinverse this way, but when we apply the computed pseudoinverse to
solve an equation, our residual can be substantially smaller. If our matrix is built from
data, so that we only know the elements of approximately, it can be worth
thresholding singular values much more aggressively: if one singular value is even 100
times smaller than another, there's a good chance that the small one is mostly capturing
measurement noise instead of signal.

Linear algebra libraries typically provide fast routines to find matrix factorizations like
the above. These are reliable and stable — generally much better than working with
matrices and factorizations by hand. And, chip vendors often optimize these routines for
each new architecture they put out; so the routines are often substantially faster than
we'd be able to match without a lot of effort.

Linear regression

Above we saw how to learn a linear classifier — a function that maps a vector to a binary
label, i.e., an element of where is an inner product space. Sometimes we
want to predict a real number instead of a binary label: e.g., we want to predict a
patient's degree of response to a treatment, instead of just whether the patient
responds or not. This is called a regression problem. Just like for classification, it can be
simple and practical to use a linear function as our predictor; this is unsurprisingly called
linear regression.

Formally, we are given a list of input data or training data, presented as pairs for
. Here is called our input vector or our independent variable, and is

called our label, our output, or our dependent variable. We want to learn to predict a

Σ†

Σii

Σ =ii
† { Σii

−1

0
if Σ = 0ii

−1 
otherwise

1/0 = 0

A Σ

Σ†

1010

A

A

V → {−1, 1} V

(x , y)t t

t ∈ 1 : T x ∈t V y ∈ R

new pair that wasn't included in our training data, called a test example. For
this purpose, we learn a vector and a scalar , and we predict .
Here is called a parameter vector or a weight vector, and is called an intercept or a
constant term. The hat denotes a predicted quantity: we hope .

Just as for classification, it can be very useful to use a feature transform for regression.
That is, we replace by , where is our feature function and
the new inner product space is our feature space. That makes our new predictor

. It's still called linear regression: the overall predictor is nonlinear, but the
part we are learning is linear. For now, we'll ignore any feature transform — or
equivalently we'll assume that our training data come with the transform pre-
applied.

Linear regression and linear classification are the Swiss Army knives of machine
learning: they are rarely the perfect tool for anything, but they're decent tools for just
about everything. As such they're often a good technique to try first: since they are
simple and fast to apply, they can often get 80% of the results with 20% of the effort.
Better yet, they can reveal problems before we've gone to the effort of applying a more
complicated and expensive technique: e.g., our training data could be corrupted
somehow, or our test examples could have important but undiscovered differences from
our training data.

The most common method for learning a linear predictor is least squares: we find the
and that minimize the sum of squared prediction errors on our training data,

Commonly we also add a regularizer to make the regression more stable,

and minimize instead. Here is the regularization parameter; we'll talk
more later about how to choose .

As with linear classification, the linear regression prediction function isn't truly
linear, but affine. And as with classification, we can remove the difference by using
homogeneous coordinates if desired. Or, for some problems, we might just want to omit
the intercept and predict .

(x , y)T +1 T +1

w ∈ V b ∈ R =ŷt ⟨w, x ⟩ +t b

w b

≈ŷt yt

x ∈t V ϕ(x) ∈t W ϕ ∈ V → W

W

⟨w, ϕ(x)⟩ + b

(x , y)t t

w

b

L(w) = (y −
t=1

∑
T

t (⟨w, x ⟩ +t b))2

R(w) = λ∥w∥2

L(w) + R(w) λ > 0

λ

⟨w, x⟩ + b

b =ŷt ⟨w, x ⟩t

Solving a linear regression

To solve a linear regression problem, we can turn it into a system of linear equations. For
simplicity of notation we'll assume that either we're using homogeneous coordinates or
we don't want an intercept term, so that our predictor is just .

The first step is to collect all of our training data into a single big matrix and vector. Write
 for a concrete representation of the training input . Define

to be the matrix we get by stacking all of the concrete vectors as columns, and define

to be the row vector that we get by stacking all of the training labels. The dimensions
are and .

It's easy to check from the definition of matrix multiplication that our vector of
predictions becomes

(Here we have stacked into a row vector .) Since the squared norm of a vector
is the sum of its squared components, our sum-squared error becomes

We'll see later how to minimize by differentiating it and setting the
derivative to zero. For now, we can skip ahead to the answer: the optimal satisfies

This is a set of linear equations, called the normal equations. You will see variants: e.g.,
it's common to write the transpose of the above equations, and it's common to define
and to stack training examples as rows instead of columns.

A good way to solve the normal equations is to use the singular value decomposition
that we defined earlier. Suppose

⟨w, x⟩

u ∈t Rd xt

X = ⎝
⎛ ∣

u1

∣

∣
u2

∣
…

∣
uT

∣ ⎠
⎞

ut

y = (y1 y2 … yT)

X ∈ Rd×T y ∈ R1×T

=ŷ w XT

…ŷ1 ŷT ŷ

L(w) = ∥y − wX∥2

L(w) + R(w)

w

w (XX +T T λI) = yXT

X

y

X = UΣV T

where and . Then the normal equations become

Exercise: prove this.

Since is diagonal and is orthonormal, it's very easy to solve the above
representation of the normal equations: we compute , divide each element by the
corresponding diagonal element of , and then multiply the result by to get

.

U , Σ ∈ Rd×d v ∈ RT ×d

(Σ + λΣ)U w =−1 T V yT T

(Σ + λΣ)−1 U

V yT T

(Σ + λΣ)−1 U

w

