
Nonlinear systems of equations

We saw earlier how to solve large systems of linear equations: collect them into a single
matrix equation, and use an algorithm like Gaussian elimination to construct and solve a
factorization.

We also saw how to make a linear approximation to a nonlinear function: if ,
then we can get a first-order Taylor approximation by calculating the differential,

These two tools can work together: suppose that we want to solve a nonlinear system of
equations

If we start from a guess  at a solution, we can construct a first-order Taylor expansion

Holding  fixed, this is a linear equation for  in terms of . So we can ask to find 
that makes  — that is, we can solve a linear approximation to the original
nonlinear equations. As before, Gaussian elimination or other factorizations can solve
this linear system quickly and reliably.

If  is singular, there are two possible cases. The first is that there might be multiple
solutions. In this case we need to pick one; a good choice is the least-norm solution, which we
can find using the SVD. The second case is that there might be no solutions. In this case a good
choice is the least-squares solution, the one that minimizes . We can again find this
solution using the SVD.

With the solution  in hand, we can construct a new guess

We can then make a new Taylor expansion around , leading to a new linear
approximation to our system of equations,

Repeating the process lets us construct , , and so forth. Hopefully each successive 
 comes closer to satisfying .
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This process is called Newton's method, and it often converges rapidly to a solution of
the nonlinear system . In fact, the fixed points of Newton's method are strongly
related to the solutions of our system: if  is nonsingular then a fixed point must
satisfy both equations, and  is equivalent to . However, Newton's method
isn't always stable: even if there are good fixed points near our initial guess, our
sequence of guesses might diverge.

If  is singular at a fixed point, then we might be in either of the two cases described above:
we might satisfy the two equations but have multiple possible solutions for the second, or we
might not be able to satisfy both equations and have to settle for the least-squares solution. In
the first case, since we're at a fixed point we have to have ; that means  and 

. In the second case we have , so that we are at a fixed point that is not a
solution.

If Newton's method diverges, sometimes we can rescue it by damping, i.e., decreasing
our step size: that is, we set  for some . But tuning the step
size (and other methods beyond damped Newton) are beyond the scope of this set of
notes.

Example

Let , so that . The solution to  is , but let's see if we
can find this by Newton's method, starting from somewhere else.

Equation

Quite rapidly we have reached , very close to the true solution.

Unconstrained optimization

Solving optimization problems is strongly related to solving systems of equations. In an
unconstrained optimization problem
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we can try to find the solution by looking for a critical point: a place where, locally,
changes to  do not change .

Critical points can be minima or maxima, and either type of optimum can be local or global. In
addition, critical points can be neither minima nor maxima: they can be places where the function
flattens out temporarily, or places where it looks like a saddle, curving upward in some directions
and downward in others. For now, we won't be concerned with checking which is which.

To find a critical point, we can look at the first order Taylor expansion of :

At a critical point, all possible changes  should leave . That means we must
have

Since , this is a system of  equations. These equations are the first-order
optimality conditions for . Geometrically, they mean that the Taylor expansion is flat:
a constant function of .

Of course, the system of equations  could be nonlinear. So, we can apply
Newton's method — that is, we can set a first-order Taylor approximation of  to zero
and solve for :

We can find  and  by differentiating  twice.

This is such a common application of Newton's method that it shares the same name. If
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necessary, we can distinguish by calling the two algorithms "Newton's method for
solving a system of equations" and "Newton's method for optimizing a function".

Constrained optimization

In a constrained problem

we don't need  to be zero: it's OK if there's a direction of decrease in  as long
the constraint prevents us from moving in this direction.

To encode this condition, we need to be a bit clever. First note that the solutions to the
following problem

are the same as the solutions to our original problem, no matter what the value of  is,
since  for any feasible .

Then note that, by choosing  appropriately, we can rule out any direction of decrease in
 that doesn't satisfy the constraint: if  would decrease on the side of the constraint

where , then we choose  to be very positive, so that any motion in this direction
would cause  to increase instead of decreasing. Similarly, if  would
decrease on the other side if the constraint, where , we choose  to be very
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negative.

Given this new objective, we can use a Taylor expansion the same way as before. We ask
for a critical point: a  where, to first order, the objective doesn't change as we change 

. That is,

which implies

Geometrically, this equation tells us that at a critical point we can only change  by
changing  in a direction orthogonal to the constraint (parallel to ): sliding in any
direction along the constraint doesn't change , at least to first order.

Interestingly, that means that we didn't have to choose  a priori: any  and  that
satisfy

will represent a critical point. So, as before, we've turned our optimization problem into a
possibly-nonlinear system of equations. We can solve this system with Newton's
method or any other appropriate tool.

The new variable  is called a Lagrange multiplier or a dual variable. We can interpret 
 as a force that wants to push our current point  downhill, toward a minimum of 

. We can then think of  as a force that pushes back, keeping  from violating the
constraint. At a solution, the two forces balance exactly.

By introducing the dual variable, we've transformed our optimization problem into a
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system of simultaneous equations, where the objective and the constraints are treated
the same way. This transformation was what let us apply Newton's method.

Exercise: solve the following problem by introducing a Lagrange multiplier.

Multiple constraints

Suppose we have more than one constraint:

where the output of  is in  instead of . The solution in this case is almost
identical: we can still solve

But now, instead of , we need , so that  is the same shape as : a
 matrix.

Each coordinate  is still called a Lagrange multiplier. The geometric interpretation is
only slightly different from before: we think of each  as controlling a separate force, in
a direction that's normal to the corresponding constraint . At a critical point, all
of the forces  combine to cancel out .

Exercise: solve the following problem by introducing two Lagrange multipliers.

Solution: the loss derivative is . The constraint derivatives are  and .
So, . So, the first-order optimality conditions are:

The first three rows implement . The last two rows
implement . We can solve this system of equations by hand or with
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assistance from a computer. Either way, we get
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