Nonlinear systems of equations

We saw earlier how to solve large systems of linear equations: collect them into a single matrix equation, and use an algorithm like Gaussian elimination to construct and solve a factorization.

We also saw how to make a linear approximation to a nonlinear function: if $f \in \mathbb{R}^n \to \mathbb{R}^n$, then we can get a first-order Taylor approximation by calculating the differential,

$$df(x) = f'(x)dx$$

These two tools can work together: suppose that we want to solve a nonlinear system of equations

$$f(x) = 0$$

If we start from a guess x_1 at a solution, we can construct a first-order Taylor expansion

$$df = f'(x_1)dx$$

Holding x_1 fixed, this is a *linear* equation for df in terms of dx. So we can ask to find dx that makes $f(x_1) + df = 0$ — that is, we can solve a linear approximation to the original nonlinear equations. As before, Gaussian elimination or other factorizations can solve this linear system quickly and reliably.

If $f'(x_1)$ is singular, there are two possible cases. The first is that there might be multiple solutions. In this case we need to pick one; a good choice is the least-norm solution, which we can find using the SVD. The second case is that there might be no solutions. In this case a good choice is the least-squares solution, the one that minimizes $||f(x_1) + df||^2$. We can again find this solution using the SVD.

With the solution dx in hand, we can construct a new guess

$$x_2 = x_1 + dx$$

We can then make a new Taylor expansion around x_2 , leading to a new linear approximation to our system of equations,

$$f(x_2)+df=0 \qquad df=f'(x_2)dx$$

Repeating the process lets us construct x_3 , x_4 , and so forth. Hopefully each successive x_t comes closer to satisfying $f(x_t) = 0$.

This process is called *Newton's method*, and it often converges rapidly to a solution of the nonlinear system f(x) = 0. In fact, the fixed points of Newton's method are strongly related to the solutions of our system: if f'(x) is nonsingular then a fixed point must satisfy both equations, and df = 0 is equivalent to dx = 0. However, Newton's method isn't always stable: even if there are good fixed points near our initial guess, our sequence of guesses might diverge.

If f'(x) is singular at a fixed point, then we might be in either of the two cases described above: we might satisfy the two equations but have multiple possible solutions for the second, or we might not be able to satisfy both equations and have to settle for the least-squares solution. In the first case, since we're at a fixed point we have to have dx = 0; that means df = 0 and f(x) = 0. In the second case we have $f(x) + df \neq 0$, so that we are at a fixed point that is not a solution.

If Newton's method diverges, sometimes we can rescue it by *damping*, i.e., decreasing our step size: that is, we set $x_{t+1} = x_t + \alpha_t dx$ for some $\alpha_t \in (0, 1)$. But tuning the step size (and other methods beyond damped Newton) are beyond the scope of this set of notes.

Example

Let $f(x) = e^x - 1$, so that $df = e^x dx$. The solution to f(x) = 0 is x = 0, but let's see if we can find this by Newton's method, starting from somewhere else.

x	f	df	Equation	dx
1	e-1	e	edx=1-e	$\frac{1-e}{e}$
-0.632	-0.468	0.532	0.532 dx = 0.468	0.880
0.248	0.281	1.281	1.281 dx = -0.281	-0.219

Quite rapidly we have reached x = 0.029, very close to the true solution.

Unconstrained optimization

Solving optimization problems is strongly related to solving systems of equations. In an unconstrained optimization problem

$$\min_{ heta} L(heta) \qquad L \in \mathbb{R}^n o \mathbb{R}$$

we can try to find the solution by looking for a critical point: a place where, locally, changes to θ do not change $L(\theta)$.

Critical points can be minima or maxima, and either type of optimum can be local or global. In addition, critical points can be neither minima nor maxima: they can be places where the function flattens out temporarily, or places where it looks like a saddle, curving upward in some directions and downward in others. For now, we won't be concerned with checking which is which.

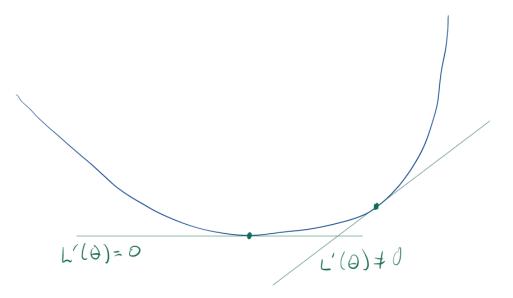
To find a critical point, we can look at the first order Taylor expansion of L:

$$dL = L'(heta) \, d heta$$

At a critical point, all possible changes $d\theta$ should leave dL = 0. That means we must have

$$L'(heta)=0$$

Since $L'(\theta) \in \mathbb{R}^{1 \times n}$, this is a system of *n* equations. These equations are the *first-order* optimality conditions for $L(\theta)$. Geometrically, they mean that the Taylor expansion is flat: a constant function of $d\theta$.



Of course, the system of equations $L'(\theta) = 0$ could be nonlinear. So, we can apply Newton's method — that is, we can set a first-order Taylor approximation of L' to zero and solve for $d\theta$:

$$L'(heta)+dL'=0 \qquad dL'=L''(heta)d heta$$

We can find L' and L'' by differentiating L twice.

This is such a common application of Newton's method that it shares the same name. If

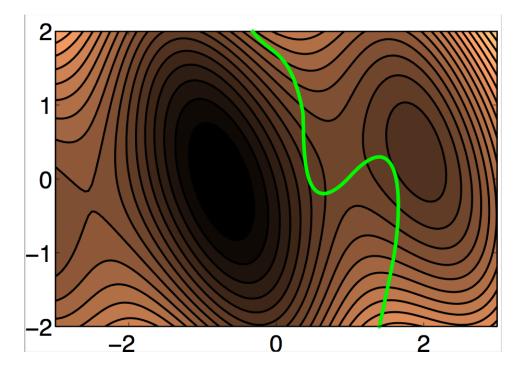
necessary, we can distinguish by calling the two algorithms "Newton's method for solving a system of equations" and "Newton's method for optimizing a function".

Constrained optimization

In a constrained problem

$$\min_{ heta} L(heta) \quad ext{s.t.} \quad g(heta) = 0 \qquad L \in \mathbb{R}^n o \mathbb{R}, \; g \in \mathbb{R}^n o \mathbb{R}$$

we don't need $L'(\theta)$ to be zero: it's OK if there's a direction of decrease in $L(\theta)$ as long the constraint prevents us from moving in this direction.



To encode this condition, we need to be a bit clever. First note that the solutions to the following problem

$$\min_{ heta} \left[L(heta) + lpha g(heta)
ight] \quad ext{s.t.} \quad g(heta) = 0$$

are the same as the solutions to our original problem, no matter what the value of α is, since $\alpha g(\theta) = 0$ for any feasible θ .

Then note that, by choosing α appropriately, we can rule out any direction of decrease in L that doesn't satisfy the constraint: if L would decrease on the side of the constraint where $g(\theta) > 0$, then we choose α to be very positive, so that any motion in this direction would cause $L(\theta) + \alpha g(\theta)$ to increase instead of decreasing. Similarly, if L would decrease on the other side if the constraint, where $g(\theta) < 0$, we choose α to be very

negative.

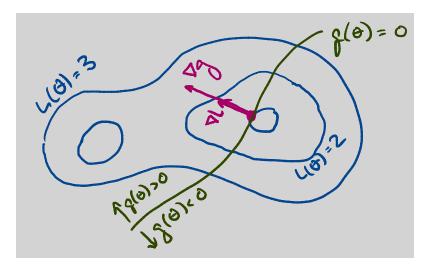
Given this new objective, we can use a Taylor expansion the same way as before. We ask for a critical point: a θ where, to first order, the objective doesn't change as we change $d\theta$. That is,

$$0=d(L(heta)+lpha g(heta))=L'(heta)d heta+lpha g'(heta)d heta$$

which implies

$$L'(\theta) + \alpha g'(\theta) = 0$$

Geometrically, this equation tells us that at a critical point we can only change $L(\theta)$ by changing θ in a direction *orthogonal* to the constraint (parallel to $g'(\theta)$): sliding in any direction along the constraint doesn't change L, at least to first order.



Interestingly, that means that we didn't have to choose α a priori: any θ and α that satisfy

$$g(heta)=0 \qquad L'(heta)+lpha g'(heta)=0$$

will represent a critical point. So, as before, we've turned our optimization problem into a possibly-nonlinear system of equations. We can solve this system with Newton's method or any other appropriate tool.

The new variable α is called a *Lagrange multiplier* or a *dual variable*. We can interpret $-L'(\theta)$ as a force that wants to push our current point θ downhill, toward a minimum of L. We can then think of $-\alpha g'(\theta)$ as a force that pushes back, keeping θ from violating the constraint. At a solution, the two forces balance exactly.

By introducing the dual variable, we've transformed our optimization problem into a

system of simultaneous equations, where the objective and the constraints are treated the same way. This transformation was what let us apply Newton's method.

Exercise: solve the following problem by introducing a Lagrange multiplier.

$$\min_{x,y} rac{1}{2} (x^2 + y^2) \quad ext{s.t.} \quad x + 2y = 1$$

Multiple constraints

Suppose we have more than one constraint:

$$\min L(heta) \quad ext{s.t.} \quad g(heta) = 0 \qquad L \in \mathbb{R}^n o \mathbb{R}, \; g \in \mathbb{R}^n o \mathbb{R}^d$$

where the output of $g(\theta)$ is in \mathbb{R}^d instead of \mathbb{R} . The solution in this case is almost identical: we can still solve

$$g(heta)=0 \qquad L'(heta)+lpha g'(heta)=0$$

But now, instead of $\alpha \in \mathbb{R}$, we need $\alpha \in \mathbb{R}^{1 \times d}$, so that $\alpha g'(\theta)$ is the same shape as $L'(\theta)$: a $1 \times n$ matrix.

Each coordinate α_i is still called a Lagrange multiplier. The geometric interpretation is only slightly different from before: we think of each α_i as controlling a separate force, in a direction that's normal to the corresponding constraint $g_i(\theta) = 0$. At a critical point, all of the forces $\alpha_i g'_i(\theta)$ combine to cancel out $L'(\theta)$.

Exercise: solve the following problem by introducing two Lagrange multipliers.

$$\min_{x,y} rac{1}{2} (x^2 + y^2 + z^2) \quad ext{s.t.} \quad x+y = 1, \; y+z = 1$$

Solution: the loss derivative is (x, y, z). The constraint derivatives are (1, 1, 0) and (0, 1, 1). So, $(x, y, z) + \alpha(1, 1, 0) + \beta(0, 1, 1) = 0$. So, the first-order optimality conditions are:

The first three rows implement $(x, y, z) + \alpha(1, 1, 0) + \beta(0, 1, 1) = 0$. The last two rows implement x + y = 1, y + z = 1. We can solve this system of equations by hand or with

assistance from a computer. Either way, we get

$$\left(egin{array}{c} x \ y \ z \ lpha \end{array}
ight) = \left(egin{array}{c} rac{1}{3} \ rac{2}{3} \ rac{1}{3} \ rac{1}{3} \ -rac{1}{3} \ -rac{1}{3} \ -rac{1}{3} \end{array}
ight)$$