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Outline

• EM1: Learning Bayes network CPT’s from partly 
unobserved data

• EM2: Learning HMM’s with unobserved hidden 
states

• EM3: Mixture of Gaussians – clustering

• EM: the general story



1. Learning Bayes net parameters 
from partly unobserved data



Learning CPTs from Fully Observed Data

• Example: Consider 
learning the parameter

• MLE (Max Likelihood 
Estimate) is

• Remember why?

Flu Allergy

Sinus

Headache Nose

kth training 
example



MLE estimate of         from fully observed data

• Maximum likelihood estimate

• Our case:

Flu Allergy

Sinus

Headache Nose



Estimate         when S unobservable, FAHN observed

• Can’t calculate maximum likelihood 
estimate

• Chicken and egg problem

• What do we want to maximize in order to 
choose          ??

Flu Allergy

Sinus

Headache Nose



EM

EM is a general procedure for solving such problems

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S})

Define

Iterate until convergence:

• E Step: Calculate              by using X and current θ to 
estimate P(Z|X,θ)

• M Step: Replace current θ by 



EM and estimating  Flu Allergy

Sinus

Headache Nose
observed X = {F,A,H,N}, unobserved Z={S})

E step:  Calculate for each training example, k 

M step:

Recall MLE was:



2. Learning HMM’s with EM  



Learning HMMs from fully observed data is easy

Learn 3 distributions:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          



Learning HMMs from fully observed data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if we need
to learn from data
with observed O’s,
unobserved X’s ?



Learning HMMs with EM
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Just 3 distributions: Observed data:

Unobserved data: 

EM: 

E step:  compute

M step:  



Learning HMMs: E step
1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z}X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Observed data:

Unobserved data: 

E step:  compute
}

use the Forward-Backward algorithm! 



The forward-backward algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

• Initialization: 
• For i = 2 to n

– Generate a forwards factor by eliminating Xi-1

• Initialization: 
• For i = n-1 to 1

– Generate a backwards factor by eliminating Xi+1

• ∀ i, probability is: 



Learning HMMs
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z}X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Observed data:

Unobserved data: 

E step:  compute

• using forward/backward algorithm

M step:

}



HMMs: M step:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z}X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          



HMM’s: M Step: 



Learning HMMs
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z}X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Observed data:

Unobserved data: 

E step:  compute

• using forward/backward algorithm

M step:

}

Repeat until converged



What you should know about EM
• For learning from partly unobserved data
• MLEst of θ = 
• EM estimate: θ = 

Where X is observed part of data, Z is unobserved

• EM for training Bayes networks
• EM for training HMMs
• Be able to derive your own EM algorithm for your own 

problem
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