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When can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled
data expensive

Medical outcomes (x=<symptoms,treatment>, y=outcome)

Text classification (x=document, y=relevance)

Customer modeling (x=user actions, y=user intent)

Sensor interpretation (x=<video,audio>, y=who’s there)



When can Unlabeled Data help supervised learning?

Problem setting:

e Set X of instances drawn from unknown distribution P(X)
« Wish to learn target function f: X2 Y (or, P(Y|X))

* Given a set H of possible hypotheses for f

Given:
* iid labeled examples L={(z1,y1) - (Tm,ym)}
* iid unlabeled examples [/ — {xm—l—].? . g;m_l_n}

Wish to determine:
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ldea 1: Use Labeled and Unlabeled Data to Train
Bayes Net for P(X,Y)

earn Bayes net for
P(X1, X2, X3, X4,Y),
then use this to infer

P(Y|X1, X2, X3, X4)
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Accuracy

20 Newsgroups

[Nigam, et al., 2000]
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ldea 2: Use U to reweight labeled examples

* Most learning algorithms minimize errors over labeled examples

* But we really want to minimize error over future examples drawn
from the same underlying distribution

« |f we know the underlying distribution, we could weight each training
example by its probability according to this distribution

* Unlabeled data allows us to estimate this underlying distribution
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ldea 2: Use U to reweight labeled examples L

Use U — P(X) to alter the loss function
1if hypothesis

« Wish to find: h.disagr'ees
_ with true
f—aramin 3= §(h(z) # f(2))P(x) function £

heH xeX !
else O
» Usually approximate this as:
f — arg mln— > 6(h(z) #y)
c€cH L
(z,y)EL n(x.L) =
Which equals: / nun;ber of
n . (CB, L) .|.
f < argmin d(h(x) #vy) [n ] Imes X
hel xg L] occurs in L

» Can produce a better approximation by incorporating U:

n(z, L) + n(z, U)
L]+ U]

f < arg }gﬂeip[m;( 6(h(z) # f(=)) [ 6(n(z,L) > 0)



Reweighting Labeled Examples

Wish to find

- | n(CIZ,L) —|—n($,U)
f%arg}gglplxgé(h(w) 7 f(z)) |6(n(z, L) > 0) L]+ |U|

Already have algorithm (e.g., decision tree learner) to find
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Just reweight examples in L, and have algorithm minimize

f — argmin 1 > 6(h(z) # ) n(z, L) +nz,U)

heH L L]+ |U]

Or if X is continuous, use L+U to estimate p(X), and minimize

Feargmin= 3 5(h(x) #v) i)

(x,y)EL



ldea 3: CoTraining

In some settings, available data features are redundant and we can
train two classifiers based on disjoint features

In this case, the two classifiers should agree on the classification for
each unlabeled example

Therefore, we can use the unlabeled data to constrain joint training of
both classifiers
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CoTraining Algorithm #1

[Blumé&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train g1 (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, n negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L




CoTraining: Experimental Results

begin with 12 labeled web pages (academic course)
provide 1,000 additional unlabeled web pages
average error: learning from labeled data 11.1%;
average error: cotraining 5.0%
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CoTraining setting:
e wish to learn f: X = Y, given L and U drawn from P(X)
« features describing X can be partitioned (X = X1 x X2)

such that f can be computed from either X1 or X2
(391,92)(Vz € X) g1(z1) = f(z) = g2(z2)

One result [Blum&Mitchell 1998].
o |f
— X1 and X2 are conditionally independent given Y
— f is PAC learnable from noisy labeled data
 Then

— f i1s PAC learnable from weak initial classifier plus unlabeled
data
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Co-Training Rote Learner

hyperlinks pages
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Co-Training Rote Learner

hyperlinks pages
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Expected Rote CoTraining error given m examples

CoTraining setting :

learn f: X Y

where X =X, x X,

where x drawn from unknown distribution

and 39,, 0, (vx)gl(xl) — gz(xz) = f (X)

E[error]:ZP(xE g;)1-P(xeg))" gi‘éf

Where g Is the jth connected component of graph ¢
of L+U, mis number of labeled examples



How many unlabeled examples suffice?

Want to assure that connected components in the underlying
distribution, Gy, are connected components in the observed
sample, Gq¢

s

ANV

Gp Gs

O(log(N)/a) examples assure that with high probability, G¢ has same
connected components as G, [Karger, 94]

N is size of Gy, a Is min cut over all connected components of G,



PAC Generalization Bounds on CoTraining
[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probability ut leust 1 — & over the choice of the sample S, we have thuat
for all ha and ha, if yi(h1,h2,0) > 0 for1 < i < k then (a) f is u permutation and (b) for
all1 < i <k,

P(hy #1| f(y) =i, # 1) < Pla il ha=thn # 1)+ e, 12, 0)
Yi(h1, ha, d)

The theorem states, in essence, that if the sample size 1s large, and hy and hs largely agree
on the unlabeled data, then P(hy # i | ho =i, hy # L) is a good estimate of the error rate

P(hy #4 | f(y) =i, hi # L).



What if CoTraining Assumption
Not Perfectly Satisfied?

® -
® @

» |dea: Want classifiers that produce a maximally
consistent labeling of the data

 If learning is an optimization problem, what
function should we optimize?
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What Objective Function?

E=El1+E2+c,E3+C,E4

Error on labeled examples
YRV
S yek Disagreement over unlabeled
E2= > (y-G,(x,))° /

<X,y>elL

E3= Z (Ql (Xl) - QZ (X2 ))2 Misf:}to estimated class priors
xeU

6,(4)+6,06) )
[(luélj (|L|+|U|XELZuU 2 B




What Function Approximators?

. 1 n 1
gl(x) — W X gZ(X) — > W oX;]

1+e’ 1+e’

« Same functional form as logistic regression

e Use gradient descent to simultaneously learn g1 and
g2, directly minimizing E=E1+E2+ E3 + E4

 No word independence assumption, use both labeled
and unlabeled data
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Classifying Jobs for FlipDog

= Employers = Support

FllpDog fHomel ! Find Johs W Research Employers

Search Results
Mid-Sr. Sun HW :raﬂ_cmlg?ge Gradwl Wy wark for one
Engineer Pleasantan, it T F:l | Shock  starfup when you can
CA F'E!rsnna_h_’rg.f. Jain aur ./ work for many?
=N SSCNS IT Recruiting Team,
Sort results by [Date Posted x] Search these jobs for: | &5 Search tips
26 - 50 of 159 jobs shown below (_Previous ] (More Resuits
C++/Java Consultants at Elite Placement Services ® Navernber 01, 2000
Job Mumber: C1 Salary Range; $80K Job Description: Functions of this position include the consulting, development HDUStDﬂ_. T
and implementation of EAl solutions supporting e-commerce and B2B initiatives for,., Computing/MIs
software Development
Chief Software architect at Elite Placement Services © Novernber 01, 2000
Job Mumber: C3A1 Salary Range: to $1801 Job Description: Responsible far the end-to-end architecture of all n- HDUS’IDH_. TX
tiered web-based applications and complementary products, Provide design direction for the. . Cornputing/MIS
Software Development
Web Application Developers at MI Systems, Inc. © November 01, 2000
Location: Houston, T Last Updated: 10/04/00 Job Type: Full-Time Contract Length: O Salary: apen Hourly Pay: See HDUStDﬂ_. Tx
hn Synopsis: Permanent Opportunities (2) Application Developers with... Cormputing/MIS
X1: job title . - Internet Development
Sares consulting Engineer at Visual Numerics, Inc. X2 J(_)b_ Movernber 01, 2000
Job Code 00-022-H Back to Top WHAT'S THE JOB? Performs pre-sales tech deSCI’IptIOI’l ducts to HDUS’[DU. T
customers and non-customers, Technical support includes providing verbal a TTETT TE SO Computing/MIS
Technical Support/Help Des
Peoplesoft Software Analyst (Systems Analyst 111 [.T. Staffing, Inc. October 27, 2000

Date Pasted; 10/12/00 Location; Houston, T4 (Some international travel required) Job Description; CLIENT/SERVER  |Houston, TX

APPLICATION ADMINISTRATION, SETTING UP USERS AND SECURITY FOR DATABASE AND APPLICATION. .. |Computing/MIS
software Development

Peoplesoft Software Analyst (Systems Analyst II1) at LT, Staffing, Inc October 27, 2000
Date Posted; 10/12/00 Location; Houston, T¥ (Some international travel required) Job Description; CLIENT/SERYER  Houston, TX
APPLICATION ADMINISTRATION, SETTING UP USERS AND SECURITY FOR DATABASE AND APPLICATION..., CDmF"—'T'”EIfM'S




Gradient CoTraining
Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer

jobDoc-L13-U1 275-W0.5-R2500-Etal 01 -Init0-0IdObjFn
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Gradient CoTraining

Classifying Capitalized sequences as Person Names

Eg., “Company president Mary Smith said today...”

Using
labeled data
only

Cotraining

Cotraining
without

fitting class
priors (E4)

x1 X2 x1

Error Rates

25 labeled 2300 labeled
5000 unlabeled 5000 unlabeled
24 13
15 ° A1 7
27

* sensitive to weights of error terms E3 and E4

L R



CoTraining Summary

* Unlabeled data improves supervised learning when example features
are redundantly sufficient
— Family of algorithms that train multiple classifiers

* Theoretical results
— Expected error for rote learning

— If X1,X2 conditionally independent given Y, Then
 PAC learnable from weak initial classifier plus unlabeled data
 error bounds in terms of disagreement between g1(x1) and g2(x2)

 Many real-world problems of this type
— Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
— Web page classification [Blum, Mitchell 98]
— Word sense disambiguation [Yarowsky 95]
— Speech recognition [de Sa, Ballard 98]
— Visual classification of cars [Levin, Viola, Freund 03]



4. Use U to Detect/Preempt Overfitting

« OQverfitting is a problem for many learning algorithms (e.g., decision
trees, neural networks)

 The symptom of overfitting: complex hypothesis h2 performs better
on training data than simpler hypothesis h1, but worse on test data

* Unlabeled data can help detect overfitting, by comparing predictions
of hl and h2 over the unlabeled examples

— The rate at which h1l and h2 disagree on U should be the same as the
rate on L, unless overfitting is occuring
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4. Use U to Detect/Preempt Overfitting

Define metric over H U {f}
definition ——d(h1,he) = [0 (hl(?’) # ho(x))p(x)dx

h — Z d(hi(x;) # v
estimates < 1 f) = |L| ;€ (i) # 9i)

d(hy, hy) = ﬁ > §(hi(x) # ha(x))

-

Organize H into complexity classes, sorted by P(h)

Let h? be hypothesis with lowest d(h, f)in H,
Prefer h}, h3, or h3?

"r'-!_? —_— fr’!; S h_h;}"

W




« Definition of distance metric
— Non-negative d(f,g) >0;
— symmetric d(f,g)=d(g,f);
— triangle inequality d(f,g) <d(f,h)+d(h,q)

e Classification with zero-one loss:
A(h1,h2) = [ 6(ha(@) # ho(@))p(2)da

* Regression with squared loss:

d(h1,h2) = | [ (h1(@) = ha(2))?p(w)de




Idea: Use U to Avoid Overfitting

}'1? _____ _l'i_;
N *
/7
A 7,
f

Note:
o d(h:, f) optimistically biased (too short)
o d(h;, h?) unbiased
e Distances must obey triangle inequality!

d(hy,ha) < d(hy, )+ d(f, ha)

— Heuristic:

e Continue training until rf(h,h h;y1) fails to satisty
triangle inequality



Procedure TRI

e Given hypothesis sequence hg, hq, .

e Choose the last hypothesis hy in ‘rhe sequence that satisfies the triangle
inequality d(hg, he) < d(hg, Bx)+d(hy, YW) with every preceding hypoth-
esis hy, 0 < k < £. (Note that the inter-hypothesis distances d(hy, h¢) are
measured on the unlabeled training data.)

1{!:; - hg . r‘E::;;i=

W
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Experimental Evaluation of TRI
[Schuurmans & Southey, MLJ 2002]

 Use it to select degree of polynomial for regression

« Compare to alternatives such as cross validation,
structural risk minimization, ...

- -1 B -
® Bl BI O3 I oM O ©° oOF O 10 B B B O3 Ol OF o BT OF o 100 B @l G O Od GF O BT o oF | 0B O BI 0 Ol OF D& oo oF  GE o |

Figure 5: Target functions used in the polynomial curve fitting experiments
(in order): step(z > 0.5), sin(1/z), sin®(27z), and a fifth degree polynomial.



Figure 4: An example of minimum squared error polynomials of degrees
1. 2, and 9 for a set of 10 training points. The large degree polynomial
demonstrates erratic behavior off the training set.



esults Using 200°Unlabeled, t labeled

Cross validation (Ten-fold)

AA// Structural risk minimization

t=20| TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
25 (1.00 [ 1.06 1.14 7.54 547 15.2 222 258 | 1.02
50 | 1.06 | 1.17 1.39 224 118 394 H8H 590 1.12
75 | 117 | 1.42 3.62 5.8¢3 3.9e3 9.8e3 1.2ed 1.2e4 | 1.24
95 1.44 | 6.75 56.1 6.1ed 3.7ed T.8edb 9.2e5H 8.2e¢dH | 1.54
100 | 2.41 | 1.1ed 2.2ed 1.5e8 6.0e7 1.he8 1.0e8 8.2e7 | 3.02

t=30| TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
25 ( 1.00 | 1.08 1.17 469 1.51 541 545 2.72 | 1.06
50 | 1.08 | 1.17 1.54 348 919 396 40.8 19.1 |1.14
75| 1.19 | 1.37 9.68 258 91.3 266 266 159 1.25
95 | 1.45 | 6.11 419 4.7eld 2.7e3 4.8e3 5H.1led 4.0ed | 1.51
100 | 2.18 | 643 1.6e7 1.6e7 1.6e7 1.6e7T 1.6e7 1.6e7 | 2.10

Table 1: Fitting f(z)=step(z > 0.5) with P, =U(0,1) and 0 =0.05. Tables
give distribution of approximation ratios achieved at training sample size
t = 20 and ¢ = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.



t=20| TRI | CVT SRM RIC GCV BIC AIC FPE |ADJ
201 2.04 | 1.03 1.00 1.00 1.06 1.00 1.01 1.58 | 1.02

50 | 3.11 | 1.37 1.33 1.34 1.94 135 1.61 182 | 1.32

7o |3.87 (223 230 213 100 275 414 1.2e3|1.83

95| 5.11 | 945 884 826 5.0e3 11.8 829 1.8ed | 3.94

100 | 8.92 | 105 526 105 2.0e7 2.1ed 2.Tedb 2.4e7 | 6.30

t=30|TRI | CVT SRM RIC GCV BIC AIC FPE |AD]J
251|150 | 1.00 1.00 100 1.00 1.00 1.00 1.02 |1.01

o0 ] 3.51(1.16 1.03 1.05 1.11 1.02 1.08 1.45 |1.27

75| 415|164 145 148 202 1.39 1.88 6.44 |1.60

95| 5.561 | 5.21 5.06 421 264 5.01 199 295 | 3.02

100 [ 9.75 | 124 1.4e3 20.0 9.1e3 284 9.4e3 1.0ed | 8.35

Table 4: Fitting f(z)=sin?(2xz) with B,=U(0,1) and o =0.05. Tables give
distribution of approximation ratios achieved at training sample size t = 2()
and ¢t = 30, showing percentiles of approximation ratios achieved in 1000
repeated trials.
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Bound on Error of TRI Relative to Best Hypothesis Considered

Proposition 1 Let h,, be the optimal hypothesis in the sequence hg, hq, ...
(that is, h,, = argminy, d(hg, B.x)) and let hy be the hypothesis selected by

TRI. If (i) m < £ and (i) d(hm, Pax) < d(hym, Box) then

d(hf PY|X) < Sd(hﬂm: P‘:’]X) (6)
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Extension to TRI:

Adjust for expected bias of training data estimates
[Schuurmans & Southey, MLJ 2002]

Procedure ADJ
e Given hypothesis sequence hg, hq, ...
e For each hypothesis hy in the sequence

— multiply its estimated distance to the target d(hﬁm) by the worst
ratio of unlabeled and labeled distance to some predecessor h; to

' ' : * T 5 yd(hg,!
obtain an adjusted distance estimate d(h,g, me) — d(h, . PYP{);E:,&-_:}U;-
al g, hy

——

e Choose the hypothesis h,, with the smallest adjusted distance d(h.,, Bx).

Experimental results: averaged over multiple target functions,
outperforms TRI



What you should know

1. Unlabeled can help EM learn Bayes nets for P(X,Y)
2. Use unlabeled data to reweight labeled examples

3. If problem has redundantly sufficient features, CoTrain
multiple classifiers, using unlabeled data as constraints

4. Use unlabeled data to detect/preempt overfitting



Further Reading

 EM for Naive Bayes classifiers: K.Nigam, et al., 2000. "Text
Classification from Labeled and Unlabeled Documents using
EM", Machine Learning, 39, pp.103—134.

« CoTraining: A. Blum and T. Mitchell, 1998. “Combining Labeled
and Unlabeled Data with Co-Training,” Proceedings of the 11th
Annual Conference on Computational Learning Theory (COLT-
98).

« S. Dasgupta, et al., “PAC Generalization Bounds for Co-training”,
NIPS 2001

 Model selection: D. Schuurmans and F. Southey, 2002. “Metric-
Based methods for Adaptive Model Selection and
Regularizaiton,” Machine Learning, 48, 51—84.
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