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SVMs reminder
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Today'’s lecture
" J
m Learn one of the most interesting and exciting
recent advancements in machine learning

The “kernel trick”
High dimensional feature spaces at no extra cost!

m But first, a detour
Constrained optimization!



Constrained optimization
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Lagrange multipliers — Dual variables
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Dual SVM derivation (1) —

. ghelinearly separable case
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Dual SVM derivation (2) —

. Jhe linearly separable case - Jees
/ Come Tram

»

L(w 'Od\;lVV."V—v'&'[{‘VX°—I-Z)\’“‘—1-|
\W, &) > 2.5 %5 1\ i T Y)Y
Oéi>0, Vj

o bont -
whan okz=o, 1 dont Care 2 — P
oo ! v= Yo

T&\Jz. N cons‘lm?h't_:)(or c\‘{\rc\;,{,,:j mn\])&s
WL\QVL 04.\? O '::D ?OV\"'S \55 C[OS{J’O

K N (3?}!] ?lc\nt .

Mminimizew %W.W

(w.xj + b) yi > 1, Vj

(W X5 _{‘{9335 = | . noﬁu.‘/-;& b= Y — W.XL
‘3 2/{(3/- - W MY Y _(3{_[ _\_% for any k where oy > 0
.S 5~ l

Awr& K' L ovlL v QH
0 th "VL\Q.‘"C L) o




Dual SVM Interpretation
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Dual SVM formulation —

the Iinearl¥ separable case
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Dual SVM derivation —
. Lhenon.separable case
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Dual SVM formulation - . / _
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Why did we learn about the dual
SVM?

m There are some quadratic programming
algorithms that can solve the dual faster than the
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O B’Lfmore importantly, the “kernel trick™!!
Another little detour...




Reminder from last time: What if the
data Is not linearly separable?

Use features of features
of features of features..
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Feature space can get really large really quickly!



. Higher order polx\m m}ggj;m
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/ A=$ — input features

A d — degree of polynomial
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number of input dimensions d=6,m=100
about 1.6 billion terms

number of monomial terms




Dual formulation only depends on

] dot-groducts, not on w!
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Dot-product of polynomials

" J
d(u) - P(v) = polynomials of degree d
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Finally: the “kernel trick™ v
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m Never represent features explicitly
Compute dot products in closed form

m Constant-time high-dimensional dot-

b=y — W.P(x)

products for many classes of features for any k where €' > aj > 0

m Very interesting theory — Reproducing
Kernel Hilbert Spaces

Not covered in detail in 10701/15781,
more in 10702



Polynomial kernels
" A
m All monomials of degree d in O(d) operations:

d(u)-P(v) = (u-v)? = polynomials of degree d

m How about all monomials of degree up to d?
Solution 0: (L) - () § ()

Better solution:  (LA-y41 )" = (V) A VeVt
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Common kernels
"
m Polynomials of degree d

K(u,v) = (u-v)“
o it 73
m Polynomials of degree up té)/d

K, v)=(u-v+ 1)°

K(u,v) = exp

m Gaussian kernels la— v

m Sigmoid



Overfitting?
"
m Huge feature space with kernels, what about
overfitting???
Maximizing margin leads to sparse set of support

vectors

Some interesting theory says that SVMs search for
simple hypothesis with large margin

Often robust to overfitting
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What about at classification time
" A

m For a new input X, iIf we need to represent ®(x),
we are in trouble!

m Recall classifier: sign(w.®(x)+b)
m Using kernels we are cool!
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SVMs with kernels
" A
m Choose a set of features and kernel function

m Solve dual problem to obtain support vectors a;
m At classification time, compute:

w-P(x) =) oy K(x,x;)
;

b=y — > oy K (xp,%;) sign (W - ®(x) + b)
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What's the difference between

SVMs and Logistic Regression?
" B

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! M

features with
kernels

bzs \




Kernels in logistic regression
" J
1
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m Define weights in terms of support vectors:
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What's the difference between SVMs

i and Logistic Regression? (Revisited)

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
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High dimensional Yes! Yes!
features with

kernels

Solution sparse Often yes! Almost always no!

MAND 0(320 oll O(S ==X0,




What you need to know
" A
m Dual SVM formulation
How it's derived
m The kernel trick
m Derive polynomial kernel
m Common kernels
m Kernelized logistic regression
m Differences between SVMs and logistic regression
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m SVM applet:
1 http://www.site.uottawa.ca/~gcaron/applets.htm
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