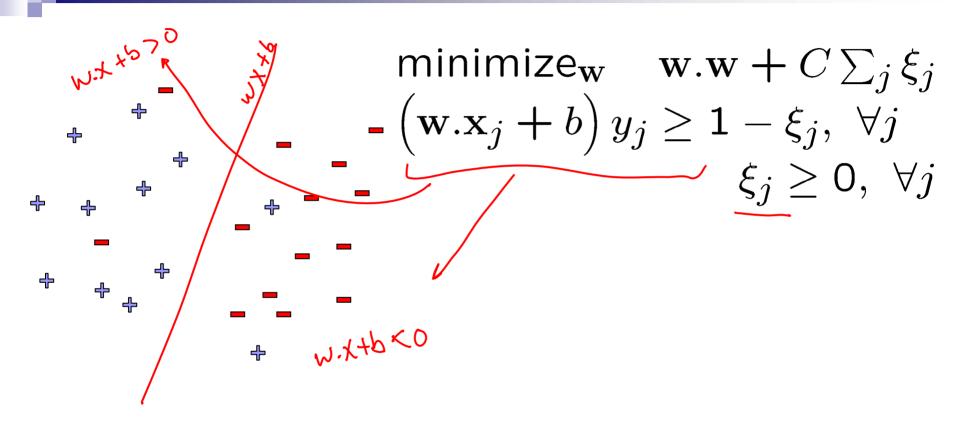
SVMs, Duality and the Kernel Trick

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 21st, 2005

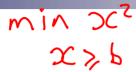
SVMs reminder

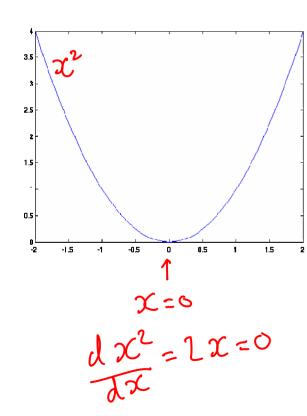


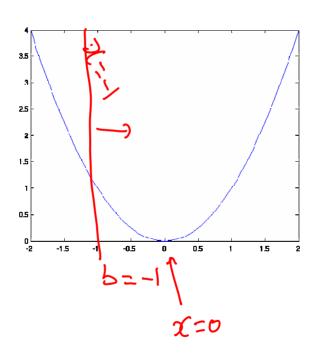
Today's lecture

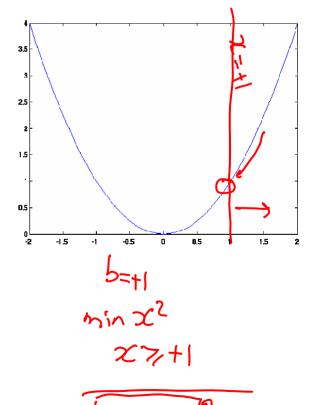
- Learn one of the most interesting and exciting recent advancements in machine learning
 - □ The "kernel trick"
 - □ High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Constrained optimization

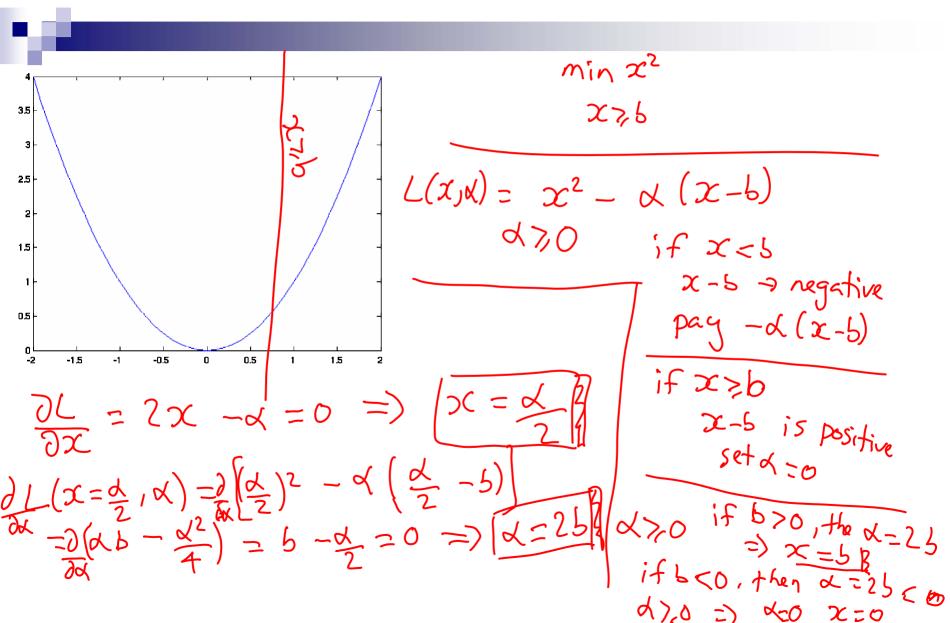








Lagrange multipliers – Dual variables



Dual SVM derivation (1) – the linearly separable case

minimizew
$$\frac{1}{2}w.w$$
 of data points $(w.x_j + b) y_j \ge 1$, $\forall j$
 $L(w, x_j + b) y_j \ge 1$, $\forall j$
 $L(w, x_j + b) y_j \ge 1$, $\forall j$ weights $\forall j$ data point $\forall j$ $\forall j$

Dual SVM derivation (2) – the linearly separable case

where does b

$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{i} \geq 0, \ \forall j$$
when $d_{j} = 0$, I don't care about the constraint!

Take a constraint j(or a training example) where $d_{j} \geq 0$ point j is close to hyperplane.

$$(\mathbf{w}.\mathbf{x}_{j} + b).\mathbf{y}_{j} = 1$$

$$b = \mathbf{y}_{k} - \mathbf{w}_{j}$$
for any k where $\mathbf{y}_{j} = 1$

$$\mathbf{y}_{j} = 1$$

$$\mathbf{y}_{j} = 1$$

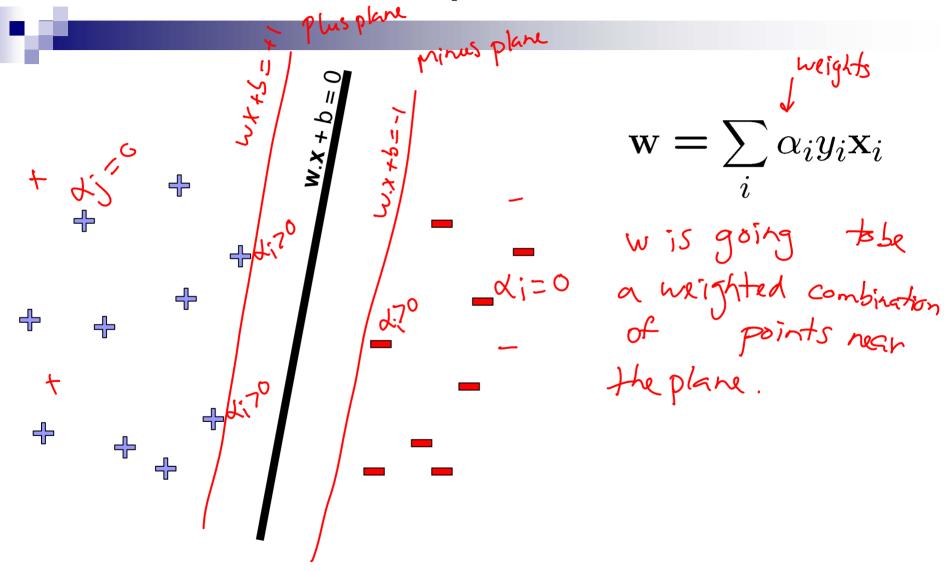
$$\mathbf{y}_{j} = 1$$

$$\mathbf{y}_{j} = 1$$
Average 5 over

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

minimize_w $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j$ $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $\alpha_k>0$ Average 5 over all points where Kk) o

Dual SVM interpretation



Dual SVM formulation – the linearly separable case

$$\begin{aligned} & \text{minimize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ & \quad \sum_{i} \alpha_{i} y_{i} = 0 \quad \sum_{i=1}^{N} \sum_{j=1}^{N} \\ & \quad \alpha_{i} \geq 0 \end{aligned} \quad \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ & \quad \text{if } \int \text{Solve this Dual problem} \quad \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ & \quad \int \text{Solve this Dual problem} \quad \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ & \quad \int \text{Solve this Dual problem} \quad \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ & \quad \int \text{Solve this Dual problem} \quad \mathbf{w} = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k} \\ & \quad \int \text{Solve this Dual problem} \quad \mathbf{w} = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k} \end{aligned}$$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

Dual SVM derivation – the non-separable case

minimizew
$$\sum_{i} \mathbf{w} \cdot \mathbf{w} + C \sum_{j} \xi_{j}$$

 $(\mathbf{w} \cdot \mathbf{x}_{j} + b) y_{j} \geq \underbrace{1 - \xi_{j}}_{\xi_{j}}, \forall j$
 $\xi_{j} \geq 0, \forall j$
 $L(\mathbf{w}_{i}, \mathbf{b}_{i}, \mathbf{b}_{i}, \mathbf{c}_{j}) = \underbrace{1 - \mathbf{w}_{i} \cdot \mathbf{w}_{i} + C \sum_{j} \xi_{j}}_{\xi_{j}} + \underbrace{1 - \xi_{j}}_{\xi_{j}})$
 $+ \sum_{j} \mu_{j} \cdot (\xi_{j} - 0)$

Dual SVM formulation – the non-separable case

minimize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \geq \alpha_{i} \geq 0$$
this is the only difference with the non-separable case

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $C > lpha_k > 0$

Average for numerical stability

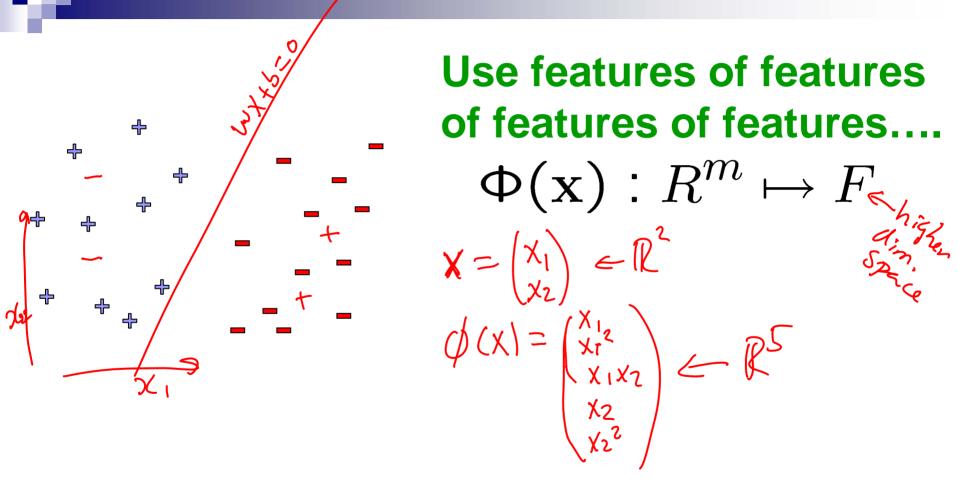
Why did we learn about the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal

 Nersion with w.5

 But, more importantly, the "kernel trick"!!! version with &
- - □ Another little detour...

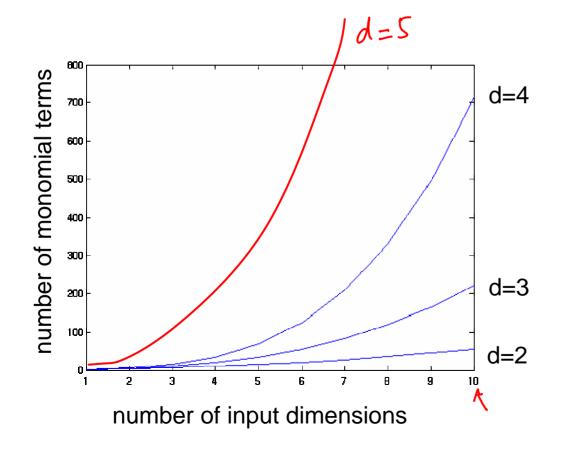
Reminder from last time: What if the data is not linearly separable?



Feature space can get really large really quickly!

Higher order polynomials

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$



m – input featuresd – degree of polynomial

if you give me x and I have to write down $\Phi(x)$, vector is too big

> grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} & \underset{\text{minimize}_{\alpha}}{\min} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{i} \mathbf{x}_{i} \mathbf{x}_{j}} & \underset{\text{hare}}{\inf} & \underset{\text{hare}}{\sum_{i} \alpha_{i} y_{i}} = 0 \\ & C \geq \alpha_{i} \geq 0 & \underset{\text{of -product}}{\text{of } \int} & \underset{\text{use}}{\sup} & \varphi\left(\mathbf{X}\right) & \underset{\text{as my input}}{\sup} \\ & \underset{\text{only care about}}{\inf} & \varphi\left(\mathbf{X}_{j}\right) \cdot \varphi\left(\mathbf{X}_{j}\right) = k\left(\mathbf{X}_{i,j} \mathbf{X}_{j}\right) \end{aligned}$$

$$& \underset{\text{minimize}_{\alpha}}{\min} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\ & K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \varphi\left(\mathbf{x}_{i}\right) \cdot \varphi\left(\mathbf{x}_{j}\right) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C > \alpha_{i} > 0 \end{aligned}$$

Dot-product of polynomials

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree d}$$

$$\text{degree} = 1 \quad u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \quad u_1 \cdot v_2 + u_2 \cdot v_2$$

$$\text{degree} = 2 \quad \phi(\mathbf{v}) = \begin{pmatrix} u_1^2 \\ u_1 \cdot u_2 \\ u_2 \cdot u_1 \\ u_2^2 \end{pmatrix} \quad \phi(\mathbf{v}) = \begin{pmatrix} v_1^2 \\ v_1 \cdot v_2 \\ v_2 \cdot v_1 \\ v_2^2 \end{pmatrix} \quad \text{12 multiplies}$$

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = u_1^2 \cdot v_1^2 + u_1 \cdot u_2 \cdot v_1 \cdot v_1 + u_2 \cdot u_1 \cdot v_2 \cdot v_1 + u_2^2 \cdot v_2^2$$

$$(\mathbf{u} \cdot \mathbf{v})^2 = (u_1 \cdot v_1 + u_2 \cdot v_2)^2 = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$\text{Simultiplies}$$

$$\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (u_1 \cdot v_1 + u_2 \cdot v_2)^2$$

$$\text{Degree d polynomials} \quad \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = (u_1 \cdot v_1)^2$$

Finally: the "kernel trick"!

for each Xi, Xj

Compute K(Xi, Xj)

minimize_{\alpha}
$$\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \widetilde{K}(\mathbf{x}_i, \mathbf{x}_j)$$

 $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

for any k where $C > \alpha_k > 0$

Polynomial kernels

- All monomials of degree d in O(d) operations:
- $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$ polynomials of degree d
- How about all monomials of degree up to d?
 - □ Solution 0: $\phi(u) \cdot \phi(v) = \sum_{i=0}^{\infty} (u \cdot v)^i$
 - Better solution: $(u \cdot v_{+1})^2 = (u \cdot v)^2 + u \cdot v_{+1} \cdot v_{+1}$ $\phi(u) \cdot \phi(v) = (u \cdot v_{+1})^4$

Common kernels

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

■ Polynomials of degree up to d

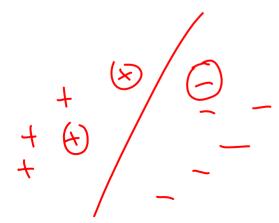
$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$$

Gaussian kernels
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$$

Sigmoid $K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - □ Some interesting theory says that SVMs search for simple hypothesis with large margin
 - □ Often robust to overfitting



What about at classification time

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign(w.Ф(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

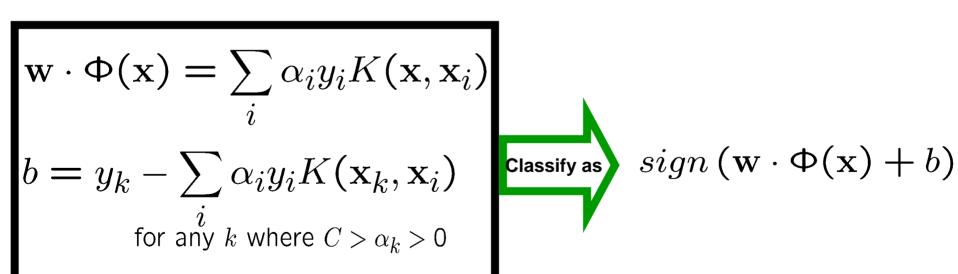
$$w \cdot \phi(\mathbf{x}) + b \qquad b = y_k - \mathbf{v}$$

$$b = y_k - \mathbf{v}$$
for any k when k with old data

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

SVMs with kernels

- Choose a set of features and kernel function
- lacksquare Solve dual problem to obtain support vectors $lpha_{
 m i}$
- At classification time, compute:



What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	gest

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

lacksquare Derive simple gradient descent rule on $lpha_{
m i}$

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss doesn't can about	Log-loss cares about all example
High dimensional features with kernels	Correct examples Yes!	Yes!
Solution sparse	Often yes!	Almost always no!

What you need to know

- Dual SVM formulation
 - ☐ How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

Acknowledgment

- SVM applet:
 - □ http://www.site.uottawa.ca/~gcaron/applets.htm