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EM for HMMs
a.k.a. The Baum-Welch 
Algorithm

Recommended reading: 
“An Introduction to HMMs and Bayesian Networks,”
Z. Ghahramani, Int. Journal of Pattern Recognition and AI, 
15(1):9-42, (2001)
Especially Section 4
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Carlos Guestrin
Carnegie Mellon University

April 12th, 2006
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Learning HMMs from fully 
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:
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Learning HMMs from fully 
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if O is observed, 
but X is hidden
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Log likelihood for HMMs when X is 
hidden 

� Marginal likelihood – O is observed, X is missing
� For simplicity of notation, training data consists of only one sequence:

� If there were m sequences:
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Computing Log likelihood for 
HMMs when X is hidden

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Computing Log likelihood for HMMs
when X is hidden – variable elimination
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� Can compute efficiently with variable elimination:
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EM for HMMs when X is hidden
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� E-step: Use inference (forwards-backwards algorithm)

� M-step: Recompute parameters with weighted data
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E-step
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� E-step computes probability of hidden vars x given o

� Will correspond to inference
� use forward-backward algorithm!
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The M-step
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� Maximization step:

� Use expected counts instead of counts:
� If learning requires Count(x,o)
� Use EQ(t+1)[Count(x,o)]
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Decomposition of likelihood 
revisited

� Likelihood optimization decomposes:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Starting state probability P(X1)
� Using expected counts

� P(X1=a) =  θX1=a
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Transition probability P(Xt|Xt-1)
� Using expected counts

� P(Xt=a|Xt-1=b) =  θXt=a|Xt-1=b
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Observation probability P(Ot|Xt)
� Using expected counts

� P(Ot=a|Xt=b) =  θOt=a|Xt=b
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E-step revisited 
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� E-step computes probability of hidden vars x
given o

� Must compute:
�Q(xt=a|o) – marginal probability of each position

�Q(xt+1=a,xt=b|o) – joint distribution between pairs 
of positions
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The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� Initialization: 
� For i = 2 to n

�Generate a forwards factor by eliminating Xi-1

� Initialization: 
� For i = n-1 to 1

�Generate a backwards factor by eliminating Xi+1

� ∀ i, probability is: 
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E-step revisited 
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� E-step computes probability of hidden vars x
given o

� Must compute:
�Q(xt=a|o) – marginal probability of each position

� Just forwards-backwards!
�Q(xt+1=a,xt=b|o) – joint distribution between pairs 

of positions
� Homework! ☺
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What can you do with EM for HMMs? 1 
– Clustering sequences
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Independent clustering: Sequence clustering:
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What can you do with EM for HMMs? 2 
– Exploiting unlabeled data
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� Labeling data is hard work → save (graduate 
student) time by using both labeled and 
unlabeled data
� Labeled data:

� <X=“brace”,O=           >

� Unlabeled data:
� <X=?????,O=           >
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Exploiting unlabeled data in 
clustering

� A few data points are labeled
� <x,o>

� Most points are unlabeled
� <?,o>

� In the E-step of EM:
� If i’th point is unlabeled:

� compute Q(X|oi) as usual
� If i’th point is labeled:

� set Q(X=x|oi)=1 and Q(X≠x|oi)=0

� M-step as usual
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20 Newsgroups data – advantage 
of adding unlabeled data
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20 Newsgroups data – Effect of 
additional unlabeled data
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Exploiting unlabeled data in HMMs
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

� A few data points are labeled
� <x,o>

� Most points are unlabeled
� <?,o>

� In the E-step of EM:
� If i’th point is unlabeled:

� compute Q(X|oi) as usual
� If i’th point is labeled:

� set Q(X=x|oi)=1 and Q(X≠x|oi)=0
� M-step as usual

� Speed up by remembering counts for labeled data
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What you need to know

� Baum-Welch = EM for HMMs
� E-step:

� Inference using forwards-backwards
� M-step:

� Use weighted counts
� Exploiting unlabeled data:

� Some unlabeled data can help classification
� Small change to EM algorithm

� In E-step, only use inference for unlabeled data
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EM for Bayes Nets
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Data likelihood for BNs Flu Allergy

Sinus

Headache Nose� Given structure, log likelihood of fully 
observed data:
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Marginal likelihood Flu Allergy

Sinus

Headache Nose� What if S is hidden?
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Log likelihood for BNs with hidden 
data

� Marginal likelihood – O is observed, H is hidden

Flu Allergy

Sinus

Headache Nose
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Flu Allergy

Sinus

Headache Nose

E-step for BNs

� E-step computes probability of hidden vars h given o

� Corresponds to inference in BN
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Flu Allergy

Sinus

Headache Nose

The M-step for BNs

� Maximization step:

� Use expected counts instead of counts:
� If learning requires Count(h,o)
� Use EQ(t+1)[Count(h,o)]
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M-step for each CPT

� M-step decomposes per CPT
� Standard MLE:

�M-step uses expected counts:

Flu Allergy

Sinus

Headache Nose



Computing expected counts
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Flu Allergy

Sinus

Headache Nose

� M-step requires expected counts:
� For a set of vars A, must compute ExCount(A=a)
� Some of A in example j will be observed

� denote by AO = aO
(j)

� Some of A will be hidden
� denote by AH

� Use inference (E-step computes expected counts):
� ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))
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Data need not be hidden in 
the same way

Flu Allergy

Sinus

Headache Nose

� When data is fully observed
� A data point is 

� When data is partially observed
� A data point is 

� But unobserved variables can be different for different data points
� e.g.,

� Same framework, just change definition of expected counts
� ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))
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What you need to know

� EM for Bayes Nets
� E-step: inference computes expected counts

�Only need expected counts over Xi and Paxi

� M-step: expected counts used to estimate 
parameters

� Hidden variables can change per datapoint

� Use labeled and unlabeled data → some data 
points are complete, some include hidden 
variables
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