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Learning HMMs from fully
observable data Iis easy
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Learning HMMs from fully
observable data Iis easy
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What if O Is observed,
but X is hidden
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Log likelihood for HMMs when X is

hidden
" A
m Marginal likelihood — O is observed, X is missing
For simplicity of notation, training data consists of only one sequence:
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Computing Log likelihood for

HMMs when X iIs hidden
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Computing Log likelihood for HMMs
when X Is hidden — varlable elimination

m Can compute efficiently WlthWn
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EM for HMMs when X is hidden
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m E-step: Use inference (forwards-backwards algorithm)
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m M-step: Recompute parameters with weighted data
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m E-step computes probability of hidden vars x given o

QUTD(x|0) = P(x|o,00)
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m Will correspond to inference
use forward-backward algorithm!
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The M-step frhin, POt it Orieigzs
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m Maximization step:
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m Use expected counts instead of counts:
If learning requires Count(x,0)
Use Eqq.py[Count(x,0)]



Dec:omposmon of likellhood P(X1)-ex
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m Likelihood optimization decomposes:
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Starting state probability P(X,) ™
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Transition probability P(X|X;,)
" J log T =57
m Using expected counts 6 25
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Observation probability P(O,|X,)

" A
m Using expected counts
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E'Step rEVISIted Q(t—l—l)(x | 0) = P(x | O,Q(t))

m E-step computes probabillity of hidden vars x
given o
m Must compute: D (y,=al0)
l' Q(xt:a|o)')— marginal probability of each position
- o P Wta=at ezt 9)

’@xm:a,xt:bm — joint distribution between pairs
of position
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s The forwards-backwards algorithm
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E'Step rEVISIted Q(t—l—l)(x | 0) = P(x | O,Q(t))

m E-step computes probabillity of hidden vars X
given o
m Must compute:
Q(x,=alo) — marginal probability of each position
m Just forwards-backwards! P(%fg: o ) 0-on)
Q(x..;=a,x;=blo) — joint distribution between pairs
of positions POta=s =5 ]0;-- on)

s Homework! ©
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What can you do with EM for HMMs? 1

Sequence clustering:




What can you do with EM for HMMs? 2

m Labeling data Is hard work — save (graduate
e

bymoth labeled and
inlabeled data

Labeled data:
= <X="brace”,0= HMaeg

Unlabeled data
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Exploiting unlabeled data In

] Clustering

m A few data points are labeled 5 =R
<X,0> P‘:(%:\, Or{0-5,0-§§>
] 0 o’l
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m Most points are unlabeled
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m In the E-step of EM:
If I'th point Is U@@ﬁd@(\(:s\m\ ol

= compute Q(X|0) as usual point gerste| | + i el + +
"y . : . "Dlﬁ C(»Ut‘\'”_\ 0 0,2 0,4 0.6 0.8 1

If I'th point is labeled: | ou
m set Q(X=x|o;)=1 and Q(X#x|0;)=0

m M-step as usual
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Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

J Iteration 0

[teration 1 Iteration 2
intelligence DD D
DD D ke S DD
artificial USIﬂg one lecture . l‘-*( lecture
understanding 'Gbeled cc ’ ) L(‘) ce
DDw D* DD:DD
dist examp'e per DD:DD A SS OCJ‘\‘("”( due
identical handout W(‘l'l'\ D*
rus due homework
arrange problem C(&SS ~ Cows( assignment
games set handout
dartmouth tay set,
natural DDam P(woy-l \ K 00%$(> hw
cognitive yurttas 2% h exam
logic homework ( S ‘é\) problem
proving kfoury D Dam
prolog sec postscript
knowledge postscript splution
human exam @
representation solution chapter
field assaf ascii
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20 Newsgroups data — advantage

_ Of adding unlabeled data
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20 Newsgroups data — Effect of
additional unlabeled data
RN
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Exploiting unlabeled data in HMMs

m A few data points are labeled
/X :qéra\czd/(}: @@@@@>

m Most points are unlabeled

<?,0> CA=N7T y o;@@@ (=)

m In the E-step of EM:
If i'th point is unlabeled:
m compute Qim) as usual
If I'th point is labeled: _ -
o se?Q(l:x|oi):1 and Q(X#x|o,)=0 & 0<"’ A | @1@@@@7 - /{
m M-step as usual A Q (Kaa ) =6
Speed up by remembering counts for labeled data  (pseudy -<v-nh )24




What you need to know
"
m Baum-Welch = EM for HMMs
m E-step:
Inference using forwards-backwards
m M-step:
Tse weighted counts

m Exploiting umageled data:

Some unlabeled data can help classification

Small change to EM algorithm
m In E-step, only use inference for unlabeled data
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Data likelihood for BNs
CD o
" JE
m Given structure, log likelihood of fully
observed data:

log P(D | 0g,G)
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Marginal likelihood
" A
m What if S is hidden?

log P(D | 0g,G)
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Log likelihood for BNs with hidden

data

"
m Marginal likelihood — O is observed, H is hidden
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E-step for BNs =,
" G

m E-step computes probability of hidden vars h given o

RUTV(x]0) = P(x|0,61)
m Corresponds to inference in BN
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<>
The M-step for BNs /.

" J

m Maximization step:

p(t+1)  arg mExZQ(Hl)(h | 0)log P(h,o0 | 0)

m Use expected counts instead of counts:
If learning requires Count(h,0)
Use Eqq.py[Count(h,0)]
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M-step for each CPT
" A
m M-step decomposes per CPT

Standard MLE:

Count(X; = x;,Pay =z
P(XZ=£CZ|P21XZ=Z)= ( ¢ ¢ XZ )

Count(Pay, = z)

M-step uses expected counts:
ExCount(XZ- = x;, PaXZ. = Z)

P(X;=ua; | Pay, =2) =
(Xi =i | Pay;, = 2) ExCount(Pay, = z)
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<>
Computing expected counts%.\/’

._ eeeeeeee

ExCount(X; = x;,Pay. =z
P(X; = z; | Pay, = 2) = ( T 29X, )
¢ ExCount(Pay, = z)

m M-step requires expected counts:
For a set of vars A, must compute ExCount(A=a)

Some of A in example | will be observed
= denote by A, = a0
Some of A will be hidden
= denote by A,
Use inference (E-step computes expected counts):

ExCount®*D(Ag = a0, Ay =a,) « P(A,=a, | Ag = ay0,60)
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Data need not be hidden in Q

m When data is fully observed
A data point is

m When data is partially observed
A data point is

m But unobserved variables can be different for different data points
e.g.,

m  Same framework, just change definition of expected counts
ExCountt*D(Ay =ay0), A, =a,) < P(Ay=a, | Ag=ay0,eM)
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What you need to know
" A
m EM for Bayes Nets

m E-step: inference computes expected counts
Only need expected counts over X; and Pa,;

m M-step: expected counts used to estimate
parameters

m Hidden variables can change per datapoint

m Use labeled and unlabeled data — some data

points are complete, some include hidden
variables
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