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EM for HMMs
a.k.a. The Baum-Welch 
Algorithm

Recommended reading: 
“An Introduction to HMMs and Bayesian Networks,”
Z. Ghahramani, Int. Journal of Pattern Recognition and AI, 
15(1):9-42, (2001)
Especially Section 4
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Learning HMMs from fully 
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:
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Learning HMMs from fully 
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if O is observed, 
but X is hidden
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Log likelihood for HMMs when X is 
hidden 

Marginal likelihood – O is observed, X is missing
For simplicity of notation, training data consists of only one sequence:

If there were m sequences:
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Computing Log likelihood for 
HMMs when X is hidden

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Computing Log likelihood for HMMs
when X is hidden – variable elimination
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Can compute efficiently with variable elimination:
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EM for HMMs when X is hidden
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

E-step: Use inference (forwards-backwards algorithm)

M-step: Recompute parameters with weighted data
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E-step
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

E-step computes probability of hidden vars x given o

Will correspond to inference
use forward-backward algorithm!
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The M-step
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Maximization step:

Use expected counts instead of counts:
If learning requires Count(x,o)
Use EQ(t+1)[Count(x,o)]
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Decomposition of likelihood 
revisited

Likelihood optimization decomposes:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Starting state probability P(X1)
Using expected counts

P(X1=a) =  θX1=a
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Transition probability P(Xt|Xt-1)
Using expected counts

P(Xt=a|Xt-1=b) =  θXt=a|Xt-1=b
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Observation probability P(Ot|Xt)
Using expected counts

P(Ot=a|Xt=b) =  θOt=a|Xt=b
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E-step revisited 
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

E-step computes probability of hidden vars x
given o
Must compute:

Q(xt=a|o) – marginal probability of each position

Q(xt+1=a,xt=b|o) – joint distribution between pairs 
of positions
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The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Initialization: 
For i = 2 to n

Generate a forwards factor by eliminating Xi-1

Initialization: 
For i = n-1 to 1

Generate a backwards factor by eliminating Xi+1

∀ i, probability is: 
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E-step revisited 
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

E-step computes probability of hidden vars x
given o
Must compute:

Q(xt=a|o) – marginal probability of each position
Just forwards-backwards!

Q(xt+1=a,xt=b|o) – joint distribution between pairs 
of positions

Homework! ☺
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What can you do with EM for HMMs? 1 
– Clustering sequences
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Independent clustering: Sequence clustering:
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What can you do with EM for HMMs? 2 
– Exploiting unlabeled data
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Labeling data is hard work → save (graduate 
student) time by using both labeled and 
unlabeled data

Labeled data:
<X=“brace”,O=           >

Unlabeled data:
<X=?????,O=           >
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Exploiting unlabeled data in 
clustering
A few data points are labeled

<x,o>

Most points are unlabeled
<?,o>

In the E-step of EM:
If i’th point is unlabeled:

compute Q(X|oi) as usual
If i’th point is labeled:

set Q(X=x|oi)=1 and Q(X≠x|oi)=0

M-step as usual
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20 Newsgroups data – advantage 
of adding unlabeled data
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20 Newsgroups data – Effect of 
additional unlabeled data
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Exploiting unlabeled data in HMMs
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

A few data points are labeled
<x,o>

Most points are unlabeled
<?,o>

In the E-step of EM:
If i’th point is unlabeled:

compute Q(X|oi) as usual
If i’th point is labeled:

set Q(X=x|oi)=1 and Q(X≠x|oi)=0
M-step as usual

Speed up by remembering counts for labeled data
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What you need to know

Baum-Welch = EM for HMMs
E-step:

Inference using forwards-backwards
M-step:

Use weighted counts
Exploiting unlabeled data:

Some unlabeled data can help classification
Small change to EM algorithm

In E-step, only use inference for unlabeled data
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Data likelihood for BNs Flu Allergy

Sinus

Headache NoseGiven structure, log likelihood of fully 
observed data:
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Marginal likelihood Flu Allergy

Sinus

Headache NoseWhat if S is hidden?
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Log likelihood for BNs with hidden 
data

Marginal likelihood – O is observed, H is hidden

Flu Allergy

Sinus

Headache Nose
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Flu Allergy

Sinus

Headache Nose

E-step for BNs

E-step computes probability of hidden vars h given o

Corresponds to inference in BN
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Flu Allergy

Sinus

Headache Nose

The M-step for BNs

Maximization step:

Use expected counts instead of counts:
If learning requires Count(h,o)
Use EQ(t+1)[Count(h,o)]
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M-step for each CPT

M-step decomposes per CPT
Standard MLE:

M-step uses expected counts:

Flu Allergy

Sinus

Headache Nose



Computing expected counts
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Flu Allergy

Sinus

Headache Nose

M-step requires expected counts:
For a set of vars A, must compute ExCount(A=a)
Some of A in example j will be observed

denote by AO = aO
(j)

Some of A will be hidden
denote by AH

Use inference (E-step computes expected counts):
ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))
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Data need not be hidden in 
the same way

Flu Allergy

Sinus

Headache Nose

When data is fully observed
A data point is 

When data is partially observed
A data point is 

But unobserved variables can be different for different data points
e.g.,

Same framework, just change definition of expected counts
ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))
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What you need to know

EM for Bayes Nets
E-step: inference computes expected counts

Only need expected counts over Xi and Paxi

M-step: expected counts used to estimate 
parameters
Hidden variables can change per datapoint

Use labeled and unlabeled data → some data 
points are complete, some include hidden 
variables
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