Recommended reading:

"An Introduction to HMMs and Bayesian Networks,"

Z. Ghahramani, *Int. Journal of Pattern Recognition and AI*,

15(1):9-42, (2001) Especially Section 4

EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

April 12th, 2006

Learning HMMs from fully
\n**observable data is easy**

\nLearn 3 distributions:

\n
$$
P(X_1^{\frac{2}{3}}) \geq \frac{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}{2}
$$
\nLearn 3 distributions:

\n
$$
P(Y_1^{\frac{2}{3}}) = \frac{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}{2}
$$
\n
$$
P(O_i^{\frac{2}{3} \times \frac{2}{3} \times 2}) = \frac{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}
$$
\n
$$
P(X_i^{\frac{2}{3}} | X_i)^{\alpha} = \frac{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}
$$
\n
$$
P(X_i^{\frac{2}{3}} | X_i - 1) = \frac{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)}{C_{0 \text{ with}} \left(\frac{2}{3} - 4\right)} \left(\frac{2}{3} - 4\right)}
$$

Log likelihood for HMMs when **X** is hidden

■ Marginal likelihood – O is observed, X is missing

 \mathbb{R}^2

 \Box For simplicity of notation, training data consists of only one sequence:

$$
\ell(\theta : \mathcal{D}) = \log P(o | \theta) \leftarrow \text{height} \text{ field} \text{ field}
$$
\n
$$
= \log \sum_{\mathbf{x}} P(\mathbf{x}, o | \theta)
$$

If there were m sequences:
\n
$$
\ell(\theta : \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{x} P(x, o^{(j)} | \theta)
$$

Computing Log likelihood for
\nHMMs when X is hidden

\n
$$
\begin{array}{rcl}\n\hline\n\text{F.M.Ms when X is hidden} \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (a_1, a_3) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (a_1, a_3) \\
\hline\n\text{F.t. } (a_1, a_2) > \sqrt{x} = (a_1, a_2) \\
\hline\n\text{F.t. } (a_2, a_3) > \sqrt{x} = (
$$

Computing Log likelihood for HMMs when **X** is hidden – variable elimination $X_1 = \{a,...z\}$ $\longrightarrow X_2 = \{a,...z\}$ $\longrightarrow X_3 = \{a,...z\}$ $\longrightarrow X_4 = \{a,...z\}$ $\longrightarrow X_5 = \{a,...z\}$ O_1 $O_2 =$ $O_3 =$ $O_4 =$ $O_5 =$ ₁ = Can compute efficiently with variable elimination: \mathbb{R}^2 = $\log P(\mathbf{o} | \theta)$
= $\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} | \theta) = \log \sum_{\mathbf{x}_1, \dots, \mathbf{x}_n} P(\mathbf{x}_1) \cdot P(\mathbf{\emptyset}, |\mathbf{x}_1) \prod_{i=1}^n P(\mathbf{x}_i | \mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) \cdot P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1}) P(\mathbf{x}_{i-1})$ $\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} | \theta)$ = $log \sum_{x} \rho(x_1) \rho(0_1|x_1) \prod_{t=2}^{n-1} \rho(x_t | x_{t-1}) \rho(0_t | x_t) \sum_{x_0} \rho(x_0 | x_{t-1}) \rho(0_1 | x_{t-1}) \prod_{x_0} \rho(x_0 | x_{t-1})$ $\int (x_{n-1})$ $e^{i m i h e f g}$ X_{n-1}
 X_{n-2} 6

EM for HMMs when **X** is hidden

 E-step: Use inference (forwards-backwards algorithm) \mathbb{R}^2 $P(X_{3}=C|O:Brack)$

■ M-step: Recompute parameters with weighted data \mathbb{R}^2 fearn weighted data!!

E-step computes probability of hidden vars **^x** given **^o**

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{0}) = P(\mathbf{x} \mid \mathbf{0}, \theta^{(t)})
$$

■ Will correspond to inference □ use forward-backward algorithm!

 Use expected counts instead of counts: If learning requires Count(**^x**,**^o**) Use EQ(t+1)[Count(**^x**,**^o**)]

Decomposition of likelihood $P(X_1) \in \mathcal{O}_{X_1}$
revisited $P(O_i | X_i) \in \mathcal{O}_{O(x)}$ revisited $X_1 = \{a,...z\}$ $\longrightarrow X_2 = \{a,...z\}$ $\longrightarrow X_3 = \{a,...z\}$ $\longrightarrow X_4 = \{a,...z\}$ $\longrightarrow X_5 = \{a,...z\}$ $log a. b = log a + log 3$ O_1 $O_2 =$ $O_3 =$ $O_4 =$ $O_5 =$ ₁ = **E** Likelihood optimization decomposes: $\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} | \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} | \theta) =$ $\max_{\theta} \sum_{i} Q(x | o) \log P(x_1 | \theta_{X_1}) P(o_1 | x_1, \theta_{O|X}) \prod_{i} P(x_i | x_{t-1}, \theta_{X_i | X_{t-1}}) P(o_i | x_i, \theta_{O|X})$ $\frac{1}{2} \frac{1}{2} \frac{$ $=\int_{\theta}$ \int_{θ} $\left[\frac{1}{\theta} \frac{1}{x} \frac{$ 10

Starting state probability $P(X_1)$ Chain rak Q E prob. Uist. V ■ Using expected counts $\Box P(X_1=a) = \Theta_{X1=a}$ $\max_{\theta_{X_1}} \sum_{x} Q(x | o) \log P(x_1 | \theta_{X_1}) = \max_{\theta_{X_1}} \sum_{x_1, ..., x_n} Q(x_i - x_n | o) \log P(x_i | o_{x_1})$ = $max_{\theta x_1} \sum_{x_1...x_n} Q(x_1|\theta)$. $\Omega(x_2-x_1)x_1$, θ $log_{10} \rho(x_1|\theta_1) =$ $\frac{6x_1}{2} \frac{\bar{x}_1 \cdot x_2}{x_1}$
= max $\sum_{\alpha} Q(x_1|0) \log P(x_1|\theta_{x_1}) \cdot \sum_{\substack{k_2 = k_1 \\ k_2 = k_1}} Q(x_2 - x_1)^{x_1}$ $= \frac{1}{\theta x_1} \sum_{x_1} Q(x, 10) \log P(x_1 | \theta x_1)$

 $\theta_{X_1=a} = \frac{\sum_{j=1}^{m} Q(X_1 = a \mid \mathbf{o}^{(j)})}{m}$

11

$$
P(\mathbf{x}_1: x_1 | \partial x_1) = \partial x_1: x_1
$$

$$
\frac{\partial}{\partial x_{i}}\sum_{\substack{i=1 \ i \in I}}^{+\infty} Q(x_{i} \mid o^{(i)}) \log P(x_{i} \mid \hat{q}) = o \begin{bmatrix} P(x_{i}: \hat{q} \mid \hat{q}_{x_{i}}) \\ \frac{\partial}{\partial x_{i}} \cdot \hat{q}_{x_{i}} \
$$

Transition probability $P(X_t|X_{t-1})$ $log \pi = \sum \alpha$ ■ Using expected counts

$$
\Box P(X_t=a|X_{t-1}=b) = \theta_{X_t=a|X_{t-1}=b} \qquad \sum_{\substack{\lambda \vdash a \\ \lambda \vdash x_{t-1} \geq x \\ \lambda \vdash x_{t-1} \geq x}} \bigcap_{\substack{\lambda \vdash a \\ \lambda \vdash x_{t-1} \geq x \\ \lambda \vdash x_{t-1} \geq x}} \bigcap_{\substack{\lambda \vdash a \\ \lambda \vdash x_{t-1} \geq x \\ \lambda \vdash x_{t-1}}} \bigcap_{\substack{\lambda \vdash a \\ \lambda \vdash x_{t-1}}} \bigcap_{\lambda \vdash a \\ \lambda \vdash x_{t-1}}} \bigcap_{\lambda \vdash a} \bigcap_{\lambda \vdash a} \bigcup_{\lambda \vdash a} \bigcap_{\lambda \vdash a
$$

$$
\theta_{X_t=a|X_{t-1}=b} = \frac{\sum_{j=1}^m \sum_{t=2}^n Q(X_t = a, X_{t-1} = b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=2}^n \sum_{i=1}^k Q(X_t = i, X_{t-1} = b \mid \mathbf{o}^{(j)})}
$$

Observation probability $P(O_t|X_t)$

Using expected counts
\n
$$
\Box P(O_t=a|X_t=b) = \theta_{0t=a|Xt=b}
$$
\n
$$
\max \sum_{t=1} Q(x \mid o) \log \prod_{t=1}^{n} P(o_t | x_t, \theta_{O|X}) = \max \left\{ \sum_{i=1}^{n} \sum_{t=1}^{n} Q(x_t | o) \log \left| \frac{Q(x_t | o_t)}{Q(s_t)} \right| \right\}
$$
\n
$$
\frac{\partial (O^{(i)}_t \in \mathbb{A})}{\partial (o_t^i \in \mathbb{A})} \left\{ \int_{\substack{X \in \mathbb{A}^k \text{ that is } Q(X_t = b \mid o_t)}{X(t + b) \text{ that is } Q(X_t = b \mid o_t)}} \right\}
$$
\n
$$
\theta_{O_t=a|X_t=b} = \frac{\sum_{j=1}^{m} \sum_{t=1}^{n} \delta(o_t^{(j)} = a) Q(X_t = b \mid o_j)}{\sum_{j=1}^{m} \sum_{t=1}^{n} Q(X_t = b \mid o_j)} \right\}^{14}
$$

E-step revisited
\n
$$
Q^{(t+1)}(x \mid o) = P(x \mid o, \theta^{(t)})
$$

\n $Q^{(t+1)}(x \mid o) = P(x \mid o, \theta^{(t)})$

 $O_5 =$

■ E-step computes probability of hidden vars **x** given **o**

 $O_4 =$

 O_1 ₁ = $O_2 =$

 $O_3 =$

Must compute: □Q(x_t=a|o)|– marginal probability of each position Q(xt+ ¹=a,x ^t=b| **^o**) – joint distribution between pairs positions

E-step revisited
$$
Q^{(t+1)}(x \mid o) = P(x \mid o, \theta^{(t)})
$$

$$
R_{t} = \{a, \ldots z\} \rightarrow R_{s} = \{a, \ldots z\} \rightarrow R_{s} = \{a, \ldots z\}
$$

 $O_5 =$

■ E-step computes probability of hidden vars **x** given **o**

Must compute:

 $O_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} O_3 = 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} O_4 = 0 \\ 0 & 1 \end{bmatrix}$

 O_1 ₁ =

- □Q(x_t=a|**o**) marginal probability of each position ■ Just forwards-backwards!
- \square Q(x_{t+1}=a,x_t=b|**o**) joint distribution between pairs $D(X_{t+1}Z_{t}, X_{t}Z_{t})|_{U_{1}}...U_{n}$ of positions
	- Homework! ©

What can you do with EM for HMMs? 2 Exploiting unlabeled data X_1 $_{1}$ = {a,...z} $X_2 = \{a, ... z\}$ $\longrightarrow X_3 = \{a, ... z\}$ $\longrightarrow X_4 = \{a, ... z\}$ $\longrightarrow X_5 = \{a, ... z\}$

 $O_5 =$

• Labeling data is hard work \rightarrow save (graduate student) time by using both labeled and unlabeled data

 $O_4 =$

Labeled data:

 $O_2 =$

 O_1 ₁ =

 \blacksquare <X="brace",O= \blacksquare "r)@e

 $O_3 =$

- Unlabeled data:
	- $= <\!\!X = ? ? ? ? , O = I$

Exploiting unlabeled data in **clustering**

■ A few data points are labeled \Box < X, 0 >

- Most points are unlabeled \square <?,0>
- In the E-step of EM:
	- □ If i'th point is unlabeled:
		- **E** compute Q(X|o_i) as usual by Clinton
	- \square If i'th point is labeled:
		- set Q(X=x|o_i)=1 and Q(X≠x|o_i)=0
- M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

20 Newsgroups data – advantage of adding unlabeled data

20 Newsgroups data – Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

What you need to know

- \blacksquare Baum-Welch = EM for HMMs
- E-step:
	- □ Inference using forwards-backwards
- M-step:
	- □ Use weighted counts
- Exploiting unlabeled data:
	- \Box Some unlabeled data can help classification
	- □ Small change to EM algorithm
		- **n** In E-step, only use inference for unlabeled data

Acknowledgements

■ Experiments combining labeled and unlabeled data provided by Tom Mitchell

EM for Bayes Nets

Machine Learning – 10701/15781 Carlos GuestrinCarnegie Mellon University

April 12th, 2006

Data likelihood for BNs

Given structure, log likelihood of fully $\sum_{\tiny \text{Meadache}}$ observed data:

 $\log P(D | \theta_G, G)$

Marginal likelihood and Allergy

\blacksquare What if S is hidden?

$log P(D | \theta_G, G)$

Log likelihood for BNs with hidden data Flu

■ Marginal likelihood – O is observed, **H** is hidden

$$
\ell(\theta : \mathcal{D}) = \sum_{j=1}^{m} \log P(o^{(j)} | \theta)
$$

$$
= \sum_{j=1}^{m} \log \sum_{\mathbf{h}} P(\mathbf{h}, o^{(j)} | \theta)
$$

 \mathbb{R}^2

Allergy

Sinus

e de la provincia de la provincia
En 1980, en 1980,

Headache

■ Corresponds to inference in BN

$$
\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) \log P(\mathbf{h}, \mathbf{o} \mid \theta)
$$

Use expected counts instead of counts: □ If learning requires Count(h,o) Use EQ(t+1)[Count(**h**,**^o**)]

M-step for each CPT

■ M-step decomposes per CPT □ Standard MLE: $P(X_i = x_i | \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\text{Count}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\text{Count}(\mathbf{Pa}_{X_i} = \mathbf{z})}$

□ M-step uses expected counts:

$$
P(X_i = x_i | \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\text{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\text{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}
$$

- M-step requires expected counts:
	- □ For a set of vars A, must compute ExCount(A=a)
	- □ Some of **A** in example *j* will be observed
		- \blacksquare denote by $\mathbf{A}_{\mathbf{O}} = \mathbf{a}_{\mathbf{O}}^{(j)}$
	- □ Some of **A** will be hidden
		- \blacksquare denote by $\boldsymbol{\mathsf{A}}_\textsf{H}$

■ Use inference (E-step computes expected counts): \Box ExCount^(t+1)(A_O = a_O^(j), A_H = a_H) ← P(A_H = a_H | A_O = a_O^(j), θ ^(t))

Data need not be hidden in the same way

Flu Allergy SinusHeadachee Nose

- T. When data is fully observed
	- \Box A data point is
- L. When data is partially observed \Box A data point is
- F. But unobserved variables can be different for different data points e.g.,

F. Same framework, just change definition of expected counts \Box \Box ExCount^(t+1)(**A**_O = a_O^(j), **A**_H = a_H) ← P(**A**_H = a_H | **A**_O = a_O^(j), θ ^(t))

What you need to know

- EM for Bayes Nets
- E-step: inference computes expected counts □ Only need expected counts over X_i and Pa_{xi}
- M-step: expected counts used to estimate parameters
- **Hidden variables can change per datapoint**
- **Use labeled and unlabeled data** \rightarrow some data points are complete, some include hidden variables