
10708 Graphical Models: Homework 4
Due November 15th, beginning of class

October 27, 2006

Instructions: There are six questions on this assignment. Each question has the name of
one of the TAs beside it, to whom you should direct any inquiries regarding the question.
The last problem involves coding. Do not attach your code to the writeup. Instead, copy
your implementation to

/afs/andrew.cmu.edu/course/10/708/your_andrew_id/HW4

Refer to the web page for policies regarding collaboration, due dates, and extensions.

Note: Please put your name and Andrew ID on the first page of your writeup.

1 Markov Network Representations [5 pts] [Khalid]

Figure 1 is a Markov Random Field where the potentials are defined on all cliques of three
variables.
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Figure 1: A chordal (triangulated) Markov network

(a) Convert the triangle graph on (A,B,C) with potential Ψ(A,B,C) into a pairwise
Markov Random Field by introducing a new variable X. Show the graph, as well as
the node and edge potentials in table form (i.e., compute the values of the potentials
in the pairwise MRF)
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(b) Convert the graph on (A,B,C,D) with potentials Ψ(A,B,C) and Ψ(B,C,D) into a
pairwise Markov Random Field. Is the graph chordal ? (Note: You do not have to
compute the pairwise MRF potentials in your solution).

2 Hammersley-Clifford [10 pts] [Ajit]

Complete the analysis of Example 5.4.3 (Koller & Friedman, pg 199), showing that the
distribution P defined in the example does not factorize over H. (Hint: Use a proof by
contradiction).

3 Importance Sampling [20 pts] [Khalid]

To do this question you need to read (Koller & Friedman, 10.2.2). The likelihood weighting
of an importance sampler is defined as w(x) = P (x)/Q(x) where P is the distribution we
want to sample from and Q is a proposal distribution.

(a) Why is computing the probability of a complete instantiation of the variables in a
Markov Random Field computationally intractable ? Your answer should be brief.

(b) Given a chordal graph, describe how to compute the likelihood weighting for an impor-
tance sampler. (Hint: What is the relationship between chordal graphs and junction
trees ?)

(c) Given a non-chordal graph, describe how to compute the likelihood weighting for an
importance sampler.

(d) Why is it not useful to do use importance sampling for approximate inference on
Markov Random Fields ? Your answer should be brief.

4 Generalized Belief Propagation [20 pts] [Khalid]

In Generalized Belief Propagation (GBP) we pass messages between clusters of nodes, rather
than individual nodes, which can lead to better approximations. For this question, refer
to Understanding Belief Propagation and its Generalizations (Yedidia et. al.) on the web
page.

(a) Draw the region graph for the undirected model in Figure 2, assuming overlapping
clusters of four nodes.

(b) Assume that this pairwise Markov Random Field has node potentials φa for all a ∈
{A,B, . . . , L}, and edge potentials ψab for all (a, b) ∈ E, the edge set of the model.
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Figure 2: Markov Network for Generalized Belief Propagation Question

Write down the belief equations for bG, bCG, bBCFG. These equations should be in terms
of node potentials, edge potentials, and messages from regions to their subregions –
e.g., if region [BF] is a subregion of [ABEF], we write the message from [ABEF] to
[BF] as mAE→BF (xB, xF ).

(c) Using your answers to part (b), as well as the marginalization condition for beliefs,
write the message update rule for mC→G(xG).

(d) If you add an edge in the region graph from region [ABEF] to region [F], do the GBP
fixed points change ? If you add an edge in the region graph from region [ABEF] to
region [G], do the GBP fixed points change ? Explain briefly.

5 Variational Inference [20 pts] [Khalid]

In this problem, you will investigate mean field approximate inference algorithms (Koller
& Friedman 11.5). Consider the Markov network in Figure 3(a). Define edge potentials
φij(xi, xj) for all edges (xi, xj) in the graph. We can write

P (x1, . . . , x12) =
1

Z

∏
(i,j)∈E

φij(xi, xj)

(a) Assume a fully factored mean field approximation Q (Figure 3(b)), parameterized by
node potentials Qi.

(i) Write down the update formula for Q1(x1).

(ii) Write down the update formula for Q6(x6).

In both cases, please expand out any expectations in the formulas (your answer should
be in terms of Qi and φij).

(b) Now we consider a structured mean field approximation Q (Figure 3(c)), parameterized
by edge potentials ψij(xi, xj) for each edge (xi, xj) in Figure 3(c).
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(c) Structured Mean Field

Figure 3: A pariwise Markov Random Field and the structure of two mean field approxima-
tions

(i) Write down the update formula for ψ12(x1, x2) up to a proportionality constant.
This time, you can write it in terms of expected values, but do not include un-
necessary terms.

(ii) Write out the formula for EQ[lnφ23(X2, X3)|x1, x2]. Make sure to show how you
would calculate the distribution that this expectation is over.

(iii) Write out the formula for EQ[lnφ15(X1, X5)|x1, x2], Again, show how you would
evaluate distribution Q.

(c) For an n×n grid with k-ary variables, what is the computational complexity of a single
message update in the fully factored model ? What is the computational complexity
of a single message update in the structured mean field model in figure 3(c) ? (Note:
Do not include the cost of computing the normalization constant in your answer).

6 Image Segmentation [25 pts] [Ajit]

Given an image of l × w pixels a K-ary segmentation is a clustering that assigns each pixel
to one of K-classes, typically under the assumption that neighbouring pixels are more likely
to belong to the same class.
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The most common graphical model approach for image segmentation represents the image
as a pairwise Markov random field (Figure 4) where each node corresponds to a pixel. Note
that the value of a node is the cluster it belongs to.

Formally, the observed image is denoted Y = {Yi} and X = {Xi}, Xi ∈ {1 . . . K} is the
segmentation. The Markov random field has distribution

P (X, Y ) =
1

Z

∏
i

Φ(xi, yi)
∏

(i,j)∈E

Ψ(xi, xj)

where Φ is the node potential1, the effect that pixel yi has on the label of xi; Ψ is the edge
potential2, how the label of xi is influenced by the labels of its neighbours. Let

Φ(xi, yi) = exp

{
−(yi − µxi

)2

2σ2
xi

}
Ψ(xi, xj) = exp

{
−β (xi − xj)

2}
6.1 Segmentation [20 pts]

Consider the image in Figure 5. We want to produce a binary segmentation (K = 2). You
are given the following parameters: β = 20, µ1 = 147, σ2

1 = 1/2, µ2 = 150, σ2
2 = 1/2 – i.e.,

pixels from segment 1 are normally distributed with mean µ1 and variance σ2
1; pixels from

segment 2 are normally distributed with mean µ2 and variance σ2
2. The image is located in

img.mat (MATLAB format).

1. Produce a binary segmentation using loopy belief propagation.

2. Produce a binary segmentation using Gibbs sampling.

Produce plots of your segmentations, which must be included in your writeup. For loopy
belief propagation initialize mij(xi) = 1 for all i 6= j. Stop running loopy belief propagation
once the maximum absolute difference between an old message and a new message is less
than 10−5. For Gibbs sampling, just flip a fair coin to select the initial value of each xi.

Notes:

• You’re free to implement this question in any programming language you like. As
always, you must submit your code to the AFS directory.

• Don’t use the min-cut formation of binary MAP because (a) we want you to implement
loopy belief propagation; (b) it’s harder to implement than loopy belief propagation;
(c) unless you’re clever with data structures, min-cut will be a lot slower than loopy
belief propagation on this problem.

1Also called the observation model or likelihood.
2Also called the Ising prior.
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Figure 4: An example of a Markov Random Field for image segmentation
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Figure 5: Image for segmentation question
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• Remember to compute the messages in log-space, for numerical stability.

• You do not need to dampen messages to ensure convergence on this image.

• In Gibbs sampling, the transition corresponds to changing the value of one Xi, which
for K = 2 involves sampling a binomial.

• In Gibbs sampling, pick a few nodes which are far apart in the graph, and check
that each marginal converges. You do not need to implement any automated test for
convergence of the Markov chain.

6.2 Potentials [5 pts]

Using loopy belief propagation, produce segmentations with β = 2.0 and β = 5.0. Include
plots of the segmentation in your writeup. Briefly describe the effect that β has on the
segmentation.
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