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Dynamic Bayesian Networks

Beyond 10708

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

December 1st, 2006

Readings:
K&F: 18.1, 18.2, 18.3, 18.4
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Dynamic Bayesian network (DBN)

� HMM defined by
� Transition model P(X(t+1)|X(t))
� Observation model P(O(t)|X(t))
� Starting state distribution P(X(0))

� DBN – Use Bayes net to represent each of these compactly
� Starting state distribution P(X(0)) is a BN
� (silly) e.g, performance in grad. school DBN 

� Vars: Happiness, Productivity, HiraBlility, Fame
� Observations: PapeR, Schmooze
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Unrolled DBN

� Start with P(X(0))
� For each time step, add vars as defined by 2-TBN

4

“Sparse” DBN and fast inference

“Sparse” DBN   � Fast inference/
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Even after one time step!!

What happens when we marginalize out time t?
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“Sparse” DBN and fast inference 2

“Sparse” DBN Fast inference
Almost!

☺

Structured representation of belief often yields good 
approximate

?
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BK Algorithm for approximate DBN inference
[Boyen, Koller ’98]

� Assumed density filtering:
� Choose a factored representation P for the belief state
� Every time step, belief not representable with P, project into representation

^
^

B’’

A’’

B’’’

C’’’

A’’’
Time t t+1

C’

A’
t+2 t+3 

C

B

A

B’

C’’

E’’

D’’

E’’’

F’’’

D’’’

F’

D’

F

E

D

E’

F’’

8

A simple example of BK: Fully-
Factorized Distribution

� Assumed density:
� Fully factorized

Time t t+1
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Computing Fully-Factorized 
Distribution at time t+1

� Assumed density:
� Fully factorized
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General case for BK: Junction Tree 
Represents Distribution

� Assumed density:
� Fully factorized
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Computing factored belief state in 
the next time step

� Introduce observations in current 
time step
� Use J-tree to calibrate time t

beliefs
� Compute t+1 belief, project into 

approximate belief state
� marginalize into desired factors
� corresponds to KL projection

� Equivalent to computing 
marginals over factors directly
� For each factor in t+1 step belief

� Use variable elimination
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Error accumulation

� Each time step, projection introduces error
� Will error add up?

� causing unbounded approximation error as t→∞
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Contraction in Markov process 
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BK Theorem
� Error does not grow unboundedly!

� Theorem: If Markov chain contracts at a rate of γ (usually very 
small), and assumed density projection at each time step has 
error bounded by ε (usually large) then the expected error at 
every iteration is bounded by ε/γ.
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Example – BAT network [Forbes et al.]
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BK results [Boyen, Koller ’98] 
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Thin Junction Tree Filters [Paskin ’03] 

� BK assumes fixed 
approximation clusters

� TJTF adapts clusters 
over time 
� attempt to minimize 

projection error

18

Hybrid DBN (many continuous and 
discrete variables)
� DBN with large number of discrete 

and continuous variables
� # of mixture of Gaussian components 

blows up in one time step!
� Need many smart tricks…

� e.g., see Lerner Thesis

Reverse Water Gas Shift System
(RWGS) [Lerner et al. ’02]
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DBN summary
� DBNs

� factored representation of HMMs/Kalman filters
� sparse representation does not lead to efficient inference

� Assumed density filtering
� BK – factored belief state representation is assumed density
� Contraction guarantees that error does blow up (but could still be large)
� Thin junction tree filter adapts assumed density over time
� Extensions for hybrid DBNs
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This semester…
� Bayesian networks, Markov networks, factor graphs, 

decomposable models, junction trees, parameter learning, 
structure learning, semantics, exact inference, variable 
elimination, context-specific independence, approximate 
inference, sampling, importance sampling, MCMC, Gibbs, 
variational inference, loopy belief propagation, generalized 
belief propagation, Kikuchi, Bayesian learning, missing 
data, EM, Chow-Liu, IPF, GIS, Gaussian and hybrid 
models, discrete and continuous variables, temporal and 
template models, Kalman filter, linearization, switching 
Kalman filter, assumed density filtering, DBNs, BK, 
Causality,…

� Just the beginning… ☺
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Quick overview of some hot topics...

� Conditional Random Fields

� Maximum Margin Markov Networks

� Relational Probabilistic Models
� e.g., the parameter sharing model that you learned for 

a recommender system in HW1

� Hierarchical Bayesian Models
� e.g., Khalid’s presentation on Dirichlet Processes

� Influence Diagrams
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Generative v. Discriminative 
models – Intuition 

� Want to Learn: h:X a Y
� X – features
� Y – set of variables

� Generative classifier, e.g., Naïve Bayes, Markov networks:
� Assume some functional form for P(X|Y), P(Y)
� Estimate parameters of P(X|Y), P(Y) directly from training data
� Use Bayes rule to calculate P(Y|X= x)
� This is a ‘generative’ model

� Indirect computation of P(Y|X) through Bayes rule
� But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

� Discriminative classifiers, e.g., Logistic Regression, 
Conditional Random Fields:
� Assume some functional form for P(Y|X)
� Estimate parameters of P(Y|X) directly from training data
� This is the ‘discriminative’ model

� Directly learn P(Y|X), can have lower sample complexity
� But cannot obtain a sample of the data, because P(X) is not 

available
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Conditional Random Fields 
[Lafferty et al. ’01] 

� Define a Markov network using a log-linear model for P(Y|X):

� Features, e.g., for pairwise CRF:

� Learning: maximize conditional log-likelihood
� sum of log-likelihoods you know and love…
� learning algorithm based on gradient descent, very similar to learning MNs

24

Max (Conditional) Likelihood

x1,t(x1)
…

xm,t(xm)

D

f(x,y)

Estimation Classification

Don’t need to learn entire distribution!
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OCR Example
� We want:

argmaxword wT f( ,word) = “brace”

� Equivalently:
wT f( ,“brace”) > wT f(       ,“aaaaa”)
wT f( ,“brace”) > wT f(       ,“aaaab”)
…
wT f( ,“brace”) > wT f(       ,“zzzzz”)

a lot!
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� Goal:  find w such that
wTf(x,t(x)) > wTf(x,y)         x∈D y≠t(x)
wT[f(x,t(x)) – f(x,y)] > 0

� Maximize margin γ
� Gain over y grows with # of mistakes in y: ∆tx(y)

∆t        (“craze”) = 2              ∆t        (“zzzzz”) = 5

w>∆fx(y) > 0

Max Margin Estimation

w>∆fx(y) ≥ γ

A  A

w>∆f (“craze”) ≥ 2γ w>∆f (“zzzzz”) ≥ 5γ

∆tx(y)
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M3Ns: Maximum Margin Markov 
Networks [Taskar et al. ’03] 

x1,t(x1)
…

xm,t(xm)

D

f(x,y)

ClassificationEstimation
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Propositional Models and 
Generalization

� Suppose you learn a model for social networks for CMU from 
FaceBook data to predict movie preferences:

� How would you apply when new people join CMU?

� Can you apply it to make predictions a some “little technical 
college” in Cambridge, Mass?
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Generalization requires Relational Models 
(e.g., see tutorial by Getoor)

� Bayes nets defined specifically for an instance, 
e.g., CMU FaceBook today
� fixed number of people
� fixed relationships between people
� …

� Relational and first-order probabilistic models
� talk about objects and relations between objects
� allow us to represent different (and unknown) numbers
� generalize knowledge learned from one domain to 

other, related, but different domains
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Reasoning about decisions
K&F Chapters 20 & 21

� So far, graphical models only have random variables

� What if we could make decisions that influence the probability 
of these variables?
� e.g., steering angle for a car, buying stocks, choice of medical treatment

� How do we choose the best decision?
� the one that maximizes the expected long-term utility

� How do we coordinate multiple decisions?
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Example of an Influence Diagram
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Many, many, many more topics we didn’t 
even touch, e.g.,...

� Active learning

� Non-parametric models

� Continuous time models

� Learning theory for graphical models

� Distributed algorithms for graphical models

� Graphical models for reinforcement learning

� Applications

� …
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What next?
� Seminars at CMU:

� Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
� Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/
� Machine Learning Department Seminar: http://calendar.cs.cmu.edu/cald/seminar
� Statistics Department seminars: http://www.stat.cmu.edu/seminar
� …

� Journal:
� JMLR – Journal of Machine Learning Research (free, on the web)
� JAIR – Journal of AI Research (free, on the web)
� …

� Conferences:
� UAI: Uncertainty in AI
� NIPS: Neural Information Processing Systems
� Also ICML, AAAI, IJCAI and others

� Some MLD courses:
� 10-705 Intermediate Statistics (Fall)
� 10-702 Statistical Foundations of Machine Learning (Spring)
� 10-801 Advanced Topics in Graphical Models: statistical foundations, approximate inference, 

and Bayesian methods (Spring)
� …


