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Dynamic Bayesian network (DBN)
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“Sparse” DBN and fast inference




Even after one time step!!
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I What happens when we marginalize out time t?
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“Sparse” DBN and fast inference 2

Structured representation of belief often yields good
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“Sparse” DBN ’\gﬁ Fast inference
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BK Algorithm for approximate DBN inference
[Boyen, Koller '98]
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= Assumed density filtering:

Choose a fzgwt_\desermalw\ for the belief state
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Every time step, belief not representable with P, project into representation
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A simple example of BK: Fully-
Factorized Distribution
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m  Assumed density:
Fully factorized
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Computing Fully-Factorized
Distribution at time t+1
" S

m  Assumed density:
Fully factorized

Assumed Density Computing
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General case for BK: Junction Tree

. Represents Distribution

= Assumed density: /ﬁm Simp &
Fully factorized
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Computing factored belief state in
the next time step
" N

m Introduce observations in current
time step
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Use J-tree to calibrate time t Comput It PG
beliefs 7
m Compute t+1 belief, project into . L ()
approximate belief state o K (P / %)
marginalize into desired factors %{\““‘“{”ﬂ 8T
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Error accumulation

" JEE
m Each time step, projection introduces error
m Will error add up?

causing unbounded appro ir@@tion error as t—oo
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Contraction in Markov process
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m Theorem: If Markov chain contracts at a rate of y (usually very
small), and assumed density projection at each time step has
error bounded by ¢ (usually large) then the expected error at
every iteration is bounded by efy. )




Example — BAT network [rorbes et al]
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slicet slice t+1 evidence

BK reSUItS [Boyen, Koller 98]
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Thin Junction Tree Filters paskin o3
" JEE

m BKassumes fixed oo

approximation clusters i

m TJTF adapts clusters oo

over time i1 it

attempt to minimize ~ ClliIiiITIUITIIIIIIU

projection error F i o Do RE ek B R

Hybrid DBN (many contlnuous and

dlscrete variables)
" N

m DBN with large number of discrete
and continuous variables

m # of mixture of Gaussian components Bl @ G

i i ® -} @
blows up in one time step! & My =) o,

m Need many smart tricks... =@ i By o

e.g., see Lerner Thesis S e G
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Reverse Water Gas Shift System
(RWGS) [Lerner et al. '02]




DBN summary
“ JEE

m DBNs
factored representation of HMMs/Kalman filters
sparse representation does not lead to efficient inference

m Assumed density filtering
BK — factored belief state representation is assumed density
Contraction guarantees that error does blow up (but could still be large)
Thin junction tree filter adapts assumed density over time
Extensions for hybrid DBNs

This semester...
= JEE

m Bayesian networks, Markov networks, factor graphs,
decomposable models, junction trees, parameter learning,
structure learning, semantics, exact inference, variable
elimination, context-specific independence, approximate
inference, sampling, importance sampling, MCMC, Gibbs,
variational inference, loopy belief propagation, generalized
belief propagation, Kikuchi, Bayesian learning, missing
data, EM, Chow-Liu, IPF, GIS, Gaussian and hybrid
models, discrete and continuous variables, temporal and
template models, Kalman filter, linearization, switching
Kalman filter, assumed density filtering, DBNs, BK,
Causality,...

m Just the beginning... ©
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Quick overview of some hot topics...
"
m Conditional Random Fields

m Maximum Margin Markov Networks

m Relational Probabilistic Models

e.g., the parameter sharing model that you learned for
a recommender system in HW1

m Hierarchical Bayesian Models
e.g., Khalid’s presentation on Dirichlet Processes

m Influence Diagrams

21

Generative v. Discriminative
models — Intuition
JE

m Wantto Learn: h: XY ()[)(([/) @/Q? @\
X — features / Yg—zzg{ 5
Y — set of variables €
m Generative classifier,”2.g., Naive Bayes, Markov networks:
Assume some functional form for P(X|Y), P(Y)
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x) PYIX-= it
This is a ‘generative’ modelhw?hjm
= Indirect computation of PLYLX) throughf'Bayes rule
= But, can generate a sample of the data, P(X) = 2, P(y) P(X]y)

m Discriminative classifiers, e.g., Logistic Regression,
Conditional Random Fields: v~ oy 6% lx:}_)
Assume some functional form for P(Y|X) y
Estimate parameters of P(Y|X) directly from training data
This is the ‘discriminative’ model
= Directly learn P(Y|X), can have lower sample complexity

= But cannot obtain a sample of the data, because P(X) is not
available .
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Conditional Random Fields

] |Laffert¥ et al. ’01|

m Define a Markov network usmg a log-linear model for P(Y|X):
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m Features, e.g., for pairwise CRF:
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m Learning: maximize conditional log-likelihood "‘} 22 W Vin Aahon
sum of log-likelihoods you know and love.. (
learning algorithm based on gradient descent, very similar to learning MNs

PRI = Ty PO X =)
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Estimation Classification

maximizew

log Pw (t(x) | x) arg max \Q
f(x.y) P D
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OCR Example
o

= We want:
argmax,, ., W' f(B&z®@,word) = “brace”

Aontt ~rh &)

= Equivalently: .
w' f(mZaE,“brace”) > w' f( 12 ,“aaaaa’)

w' f(mE,“brace”) > w' (B2, “aaaab”) 2 lot!

w' (I, “brace”) > w' f(IX&&,“zzz22") )

25

_ Max Margin Estimation

= Goal: find w such that
wTf(x,t(x)) = wTf(X,y) VxeD Vyzt(X)

WT\[f(X,t(X)) — f(x,y)J >0
~

WTAT,(y) 2YAL(Y)

= Maximize margin y

= Gain over y grows with # of mistakes in y: At (y)
Atm(“craze”) =2 At(“zzzzz”) =5

WA g (“craze”) > 2y WA g (“222227) > 5y26
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M3Ns: Maximum Margin Markov

_ Networks |Taskar et al. '03]

Estimation Classification

maXjwli<1 7

-
f(x,y) w ! Afx(y) > vAtx(y) arg maxy w ' f(x,y)
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Propositional Models and
Generalization
" SN

= Suppose you learn a model for social networks for CMU from

FaceBook data to predict movie preferences: /6
YheliA
(i)~

= How would you apply when new people join CMU?

= Can you apply it to make predictions a some “little technical
college” in Cambridge, Mass?

28
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Generalization requires Relational Models
(e.q., see tutorial by Getoor)
* J
= Bayes nets defined specifically for an instance,
e.g., CMU FaceBook today
= fixed number of people
= fixed relationships between people

= Relational and first-order probabilistic models
= talk about objects and relations between objects
= allow us to represent different (and unknown) numbers

= generalize knowledge learned from one domain to
other, related, but different domains

29

Reasoning about decisions

: K&F Chagters 20 & 21

m So far, graphical models only have random variables

Px)
= What if we could make decisions that influence the probability
of these variables?

= €.g., steering angle for a car, buying stocks, choice of medical treatment

= How do we choose cision?

= the one that maximizes the expected long-term utility
e s e

= How do we coordinate multiple decisions?

30
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i Examele of an Influence Diagram

31

Many, many, many more topics we didn'’t

even touch, e.g.,...
N

Active learning

Non-parametric models
Continuous time models

Learning theory for graphical models
Distributed algorithms for graphical models
Graphical models for reinforcement learning

Applications

32
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What next?
= JEE

= Seminars at CMU:
Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/
Machine Learning Department Seminar: http://calendar.cs.cmu.edu/cald/seminar
Statistics Department seminars: http://www.stat.cmu.edu/seminar

m  Journal:
JMLR - Journal of Machine Learning Research (free, on the web)
JAIR — Journal of Al Research (free, on the web)

m  Conferences:
UAI: Uncertainty in Al
NIPS: Neural Information Processing Systems
Also ICML, AAAI, IJCAI and others

= Some MLD courses:
10-705 Intermediate Statistics (Fall)
10-702 Statistical Foundations of Machine Learning (Spring)

10-801 Advanced Topics in Graphical Models: statistical foundations, approximate inference,
and Bayesian methods (Spring)
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