Dynamic Bayesian Networks

Beyond 10708

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
December 1 ${ }^{\text {st }}, 2006$

Dynamic Bayesian network (DBN)

- HMM defined by
\square Transition model $\mathrm{P}\left(\mathrm{X}^{(t+1)} \mid \mathrm{X}^{(t)}\right)$
\square Observation model $\mathrm{P}\left(\mathrm{O}^{(t)} \mid \mathrm{X}^{(t)}\right)$
\square Starting state distribution $\underline{\mathrm{P}}^{\left(\mathrm{X}^{(0)}\right)}$

- DBN - Use Bayes net to represent each of these compactly
\square Starting state distribution $\mathrm{P}\left(\mathrm{X}^{(0)}\right)$ is a BN
\square (silly) e.g, performance in grad. school DBN
- Vars: Happiness, Productivity, HiraBlility, Fame
- Observations: PapeR, Schmooze

how many params $\left(2^{4}-1\right) 2^{8}$	
without DBN	$2^{8}-2^{t}$
$\left.\begin{array}{ll}\text { with DBN } \\ P\left(H^{t+1}\left(H^{t}\right)\right. & (2-1) \cdot 2 \\ P\left(p^{t+1} \mid p^{t}, H^{t}\right) & (2-1) \cdot 2^{2} \\ P\left(D^{t+1} \mid p^{t}, Q^{t}, F^{t}\right) & (2-1) \cdot 2^{3} \\ P\left(F^{t+1}\left(F^{t}\right)\right. & (2-1) 2\end{array}\right)$	

"Sparse" DBN and fast inference

"Sparse" DBN and fast inference 2

Structured representation of belief often yields good
"Sparse" DBN $\boldsymbol{\sim} \rightarrow$ Fast inference
Time

BK Algorithm for approximate DBN inference

[Boyen, Koller '98]

- Assumed density filtering:
\square Choose a factored representation \hat{P} for the belief state
\square Every time step, belief not representable with \hat{P}, project into representation

Computing factored belief state in the next time step

 time step- Introduce observations in current

Use J-tree to calibrate time t beliefs
Compute $t+1$ belief, project into approximate belief state
\square marginalize into desired factors
\square corresponds to KL projection
Equivalent to computing marginals over factors directly
\square For each factor in $t+1$ step belief

- Use variable elimination

Error accumulation

- Each time step, projection introduces error
- Will error add up?
\square causing unbounded approximation error as $t \rightarrow \infty$

Contraction in Markov process

BK Theorem
 $\sum_{i=0}^{\infty}\left(1-\frac{-8}{i}=\frac{1}{8}\right.$

- Error does not grow unboundedly!

$$
\begin{aligned}
& \text { Error } \varepsilon \text { is error of approx. one step by } \\
& \delta T \text {. (or assumed density) }
\end{aligned}
$$

- Theorem: If Markov chain contracts at a rate of γ (usually very small), and assumed density projection at each time step has error bounded by ε (usually large) then the expected error at every iteration is bounded by ε / γ.)

Example - BAT network [Forbes et al.]

BK results [Boyen, Koller '98]

Spikes blcause $\begin{aligned} & \text { Sbservitions introded }\end{aligned}$
sume obegervitions introdece
tots of evror (thet gets contracted later)

Thin Junction Tree Filters [Paskin ${ }^{\circ}$ 03]

- BK assumes fixed approximation clusters
- TJTF adapts clusters over time
\square attempt to minimize projection error

Hybrid DBN (many continuous and discrete variables)

- DBN with large number of discrete and continuous variables
- \# of mixture of Gaussian components blows up in one time step!
■ Need many smart tricks...
\square e.g., see Lerner Thesis

Reverse Water Gas Shift System (RWGS) [Lerner et al. '02]

DBN summary

- DBNs
\square factored representation of HMMs/Kalman filters
\square sparse representation does not lead to efficient inference
- Assumed density filtering
$\square \mathrm{BK}$ - factored belief state representation is assumed density
\square Contraction guarantees that error does blow up (but could still be large)
\square Thin junction tree filter adapts assumed density over time
\square Extensions for hybrid DBNs

This semester...

- Bayesian networks, Markov networks, factor graphs, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, IPF, GIS, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, Kalman filter, linearization, switching Kalman filter, assumed density filtering, DBNs, BK, Causality,...

■ Just the beginning... ©

Quick overview of some hot topics...

Conditional Random Fields
Maximum Margin Markov Networks

- Relational Probabilistic Models
\square e.g., the parameter sharing model that you learned for a recommender system in HW1
- Hierarchical Bayesian Models
e.g., Khalid's presentation on Dirichlet Processes

Influence Diagrams

Generative v. Discriminative models - Intuition

- Want to Learn: h:X $\mapsto \underline{Y}$
$\square \mathbf{X}$ - features
\mathbf{Y} - set of variables

- Generative classifier, e.g., Naïve Bayes, Markov networks:

Assume some functional form for $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}), \mathrm{P}(\mathrm{Y})$
\square Estimate parameters of $\mathbf{P}(\mathrm{X} \mid \mathrm{Y}), \mathbf{P}(\mathrm{Y})$ directly from training data
\square Use Bayes rule to calculate $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x}) \quad \mathrm{P}(Y \mid X=$ foxt $)$
This is a 'generative' model wespage

- Indirect computation of $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ through' Bayes rule
- But, can generate a sample of the data, $P(X)=\Sigma_{y} P(y) P(X \mid y)$
- Discriminative classifiers, e.g., Logistic Regression,

Conditional Random Fields:
Assume some functional form for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
Y^{t} - argmax $P(Y \mid X=x)$
\square Estimate parameters of $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ directly from training data
\square This is the 'discriminative' model

- Directly learn $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$, can have lower sample complexity
- But cannot obtain a sample of the data, because $P(X)$ is not available

Conditional Random Fields

[Lafferty et al. '01]

- Define a Markov network using a log-linear model for $P(Y \mid X)$:

- Features, e.g., for pairwise CRF:

$$
f_{17}\left(y, y_{3}, x\right)
$$

- Learning: maximize conditional log-likelihood $\begin{gathered}\hat{w}=\operatorname{argzarr}_{w} \log P_{w}(Y \mid X) \\ \tau_{\text {in }} \text { data }\end{gathered}$
\square sum of log-likelihoods you know and love...
\square learning algorithm based on gradient descent, very similar to learning MNs
$\log P_{\omega}\left(Y_{D} \mid X_{D}\right)=\sum_{j} \log P\left(Y^{(j)} \mid X=X^{(j)}\right)$

Max (Conditional) Likelihood

OCR Example

- We want:

- Equivalently:
 $\mathbf{w}^{\top} \mathbf{f}$ (घrocece, "brace") > $\mathbf{w}^{\top} \mathbf{f}$ (घrocece, "aaaab")
$\mathbf{w}^{\top} \mathbf{f}\left(\right.$ (rrace, "'brace") $>\mathbf{w}^{\top} \mathbf{f}($ घrace,$\left." z z z z z ") ~\right)$

Max Margin Estimation

- Goal: find w such that

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{t}(\mathbf{x}))>\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) \quad \\
\mathbf{w}^{\top}[\underbrace{}_{\mathbf{w}^{\top} \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \geq \gamma^{\prime}(\mathbf{x}, \mathbf{t}(\mathbf{x}))-\mathbf{f}(\mathbf{x}(\mathbf{y})} \quad \forall \mathbf{x}, \mathbf{y})]
\end{array} 0
\end{aligned} \quad \forall \mathbf{y} \neq \mathbf{t}(\mathbf{x})
$$

- Maximize margin γ
- Gain over \mathbf{y} grows with \# of mistakes in $\mathbf{y}: \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y})$

Propositional Models and Generalization

- Suppose you learn a model for social networks for CMU from FaceBook data to predict movie preferences:

- How would you apply when new people join CMU?
- Can you apply it to make predictions a some "little technical college" in Cambridge, Mass?

Generalization requires Relational Models

 (e.g., see tutorial by Getoor)- Bayes nets defined specifically for an instance, e.g., CMU FaceBook today
- fixed number of people
- fixed relationships between people
- ...
- Relational and first-order probabilistic models
- talk about objects and relations between objects
- allow us to represent different (and unknown) numbers
- generalize knowledge learned from one domain to other, related, but different domains

Reasoning about decisions K\&F Chapters 20 \& 21

So far, graphical models only have random variables

$$
P(x)
$$

What if we could make decisions that influence the probability of these variables?

- e.g., steering angle for a car, buying stocks, choice of medical treatment

How do we choose the best decision?

- the one that maximizes the expected long-term utility

How do we coordinate multiple decisions?

Example of an Influence Diagram

Many, many, many more topics we didn't even touch, e.g.,...

- Active learning
- Non-parametric models
- Continuous time models
- Learning theory for graphical models
- Distributed algorithms for graphical models
- Graphical models for reinforcement learning
- Applications
- ...

What next?

- Seminars at CMU:
\square Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
\square Intelligence Seminar: http://www.cs.cmu.edu/~iseminar/
\square Machine Learning Department Seminar: http://calendar.cs.cmu.edu/cald/seminar
\square Statistics Department seminars: http://www.stat.cmu.edu/seminar
- Journal:
\square JMLR - Journal of Machine Learning Research (free, on the web)
\square JAIR - Journal of AI Research (free, on the web)
\square...
- Conferences:
\square UAI: Uncertainty in AI
\square NIPS: Neural Information Processing Systems
\square Also ICML, AAAI, IJCAI and others
- Some MLD courses:
\square 10-705 Intermediate Statistics (Fall)
\square 10-702 Statistical Foundations of Machine Learning (Spring)
\square 10-801 Advanced Topics in Graphical Models: statistical foundations, approximate inference, and Bayesian methods (Spring)
\square...

