Readings:
K&F: 4.5,12.2,12.3,12.4,18.1, 18.2, 18.3, 18.4

Switching Kalman Filter
Dynamic Bayesian Networks

Graphical Models — 10708
Carlos Guestrin
Carnegie Mellon University

November 27t 2006

What you need to know about
Kalman Filters
"

m Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations

m Non-linear Kalman filter

Usually, observation or motion model not CLG

Use numerical integration to find Gaussian
approximation




What if the person chooses
different motion models?
SR

m With probability 6, move more or less straight
m With probability 1-6, do the “moonwalk”

ZC)
A

The moonwalk
= JEE




What if the person chooses
different motion models?
" S

m With probability 6, move more or less straight
m With probability 1-6, do the “moonwalk”

Switching Kalman filter
" JEE

m At each time step, choose one of k motion models:

You never know which one!
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Inference in switching KF — one step
" I

= Suppose @ Xy 2eop
p(X,) is Gaussian __/L 2o I
Z, takes one of two values @ — —— B\/K
p(X,1X,.Z,) is CLG CorAitpnel
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Multi-step inference
" JEE

m Suppose
p(X;) is a mixture of m Gaussians
Z,,, takes one of two values
p(X..,IX.Z.,,) is CLG

m Marginalize X; ?(X’\H \2‘2+i>
= Marginalize Z, P(x;ﬂ =2 P(giﬂ). J?()(H_[B 2‘;&\\
A

m  Obtain mixture of 2m Gaussians!
Number of Gaussians grows exponentially!!!




Visualizing growth in number of
Gaussians
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Computational complexity of

Inference in switching Kalman filters
" S
m Switching Kalman FiIter@ (only). 2 motion models

B—>—©

= Query: P(Xh € [o\lé,]>

m Problem is NP-hard!!! [Lerner & Parr "01]
Why “111"?
Graphical model is a tree:
= Inference efficient if all are discrete
= Inference efficient if all are Gaussian.
= But not with hybrid model (combination of discrete and continuous)
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Bounding number of Gaussians

m P(X) has_2_m Gaussians, but...
m usually, most are bumps have low probability and overlap:
mAas) e
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e approximate inference:
Generate k.m Gaussians
Approximate with m Gaussians
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Collapsing Gaussians — Single
_ Gaussian from a mixture
S

m  Given mixture P <w;N(u,XZ)>
m  Obtain approximation Q~N(u,X) as:

o= Z wWift
i

r = Z w;E; + Z wi (i — p) (i — )™

m Theorem:
P and Q have same first and second moments
KL projection: Q is single Gaussian with
lowest KL divergence from P
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Collapsing mixture of Gaussians
Into smaller mixture of Gaussians
" S

m Hard problem!
AKin to clustering problem... &

—

m Several heuristics exist 4 R
c.f., K&F book
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Operations in non-lingar switehing /-
Kalman filter E[JS &LS %@ :

= Compute mixture of Gaussians for p(X; | O1:4 = 01:1)
NN N

. An_
= Start with p(Xg)
m At each time step t:
For each of the m Gaussians in p(X;lo,;):
= Condition on observation (use wation)

= Prediction (Multiply transition model, use numerical integration)
Obtain k Gaussians

= Roll-up (marginalize previous time step)
Projec(k.m Gaussians int@saussians p()g|01.i+1)
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Announcements
" JEE

m Lectures the rest of the semester:
Wed. 11/30, regular class time: Causality (Richard Scheines)
Last Class: Friday 12/1, regular class time: Finish Dynamic BNs
& Overview of Advanced Topics
m Deadlines & Presentations:
Project Poster Presentations: Dec. 15t 3-6pm (NSH Atrium)
= popular vote for best poster
Project write up: Dec. 8" by 2pm by email
= 8 pages — limit will be strictly enforced
Final: Out Dec. 1%t, Due Dec. 15" by 2pm (strict deadline)
= no late days on final!
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Assumed density filtering
" JEE

m  Examples of very important assumed density .
filtering: o\v‘/‘ M Non ]]L\de
Non-linear KF /\) l?"’\jw‘— k):\s

Approximate inference in switching KF JL
W AT a e TR ETRE T SRS N

m  General picture:

Select an assumed density
= e.g, single Gaussian, mixture of m Gaussians, ...

After_con_ciltlonlng, prediction, or roll-up, _ / (L ffblkdi
distribution no-longer representable with
assumed density UL

= e.g., non-linear, mixture of k.m Gaussians,... _/\/\"“

Project back into assumed density .
= e.g., numerical integration, collapsing,... M('J "’\f')(\[\»w M Gauzar

_ ]
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When non-linear IS not good enough
* JE
m  Sometimes, distribution in non-linear KF is not approximated well as
a single Gaussian

e.g., a banana-like distribution /”V\_

m  Assumed density filtering:
Solution 1: reparameterize problem and solve as a single Gaussian
Solution 2: more typically, approximate as a mixture of Gaussians
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Reparameterized KF for SLAT
"

[Funiak, Guestrin, Paskin, Sukthankar '05]
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When a single Gaussian ain’'t good

_ enough

m Sometimes, smart
parameterization is not enough
I Distribution has multiple
hypothesis

m Possible solutions

1 Sampling — particle filtering

1 Mixture of Gaussians
O...

m See book for details...
\

[Fox et al.]
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Approximating non-linear KF with
mixture of Gaussians

= Robot example: '

P(X) is a Gaussian, P(X,,) is a banana
Approximate P(X,,,) as a mixture of m Gaussians
[ e.g., using discretization, sampling,...
Problem:
0 P(X,,,) as a mixture of m Gaussians
0 P(X,,,) is m bananas
One solution:
o1 Apply collapsing algorithm to project m bananas in m’ Gaussians

20
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What you need to know
* JJE

m Switching Kalman filter
Hybrid model — discrete and continuous vars.
Represent belief as mixture of Gaussians
Number of mixture components grows exponentially in time
Approximate each time step with fewer components

m Assumed density filtering
Fundamental abstraction of most algorithms for dynamical systems
Assume representation for density
Every time density not representable, project into representation

21

More than just a switching KF

m Switching KF selects among k motion models

m Discrete variable can depend on past
Markov model over hidden varia

T

0—&@}4@
m What if k is really large?

Generalize HMMs to large number of variables
-

22
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Dynamic Bayesian network (DBN)

* JE ;
. A

= HMM defined by X
J

Transition model P(X&D|X(®)

Observation model P(O®[X®) )
Starting state distribution P(X(®) 0
-

= DBN - Use Bayes net to represent each of these compactly b
i S
Starting state distribution P(X(©) is a BN EH‘) @
(silly) e.g, performance in grad. school DBN P(X | X )
= Vars: Happiness, Productivity, HiraBlility, Fame how mersy pamms (Z‘F,.I)Zf

N Ob%ervations: PapeR, Egr’\mooze

withod Ppo 28~ ot

H(f)__\@ H () o

pl s PR ) (21)2 1

’b(*\ >§%9 B@*l) - \\/Q*_‘) P(?W\VE,H&) (2_() .22

=@ g»rl\/? 5 \7(77“'\7(’(?)613) (2~) 2

l" — F \/\/—{M £ LF&\\F*\ (Z-\\L
e ) T v

23

Transition Model:
Two Time-slice Bayes Net (2-TBN)
S

= Process over vars. X {5( l“_‘__ / )(:&

m 2-TBN: represents transition and observation models P(X®*1,0t+1|X 1)
X are interface variables (don’t represent distribution over these variables)
As with BN, exponential reduction in representation complexity

24
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X Q
M ~HrN—

Unrolled DBN o Bf RS
* J
H—=B

m Start with P(X(©) p_of
m For each time step, add vars as defined by 2-TBN
. 2 3
Lime O '

" JE
“Sparse— D grence
Time - ¢ 1+l f‘+f :5 A“,._L Em I
B LE" nel
N
A‘”“/LEI" r\ol l
A
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Even after one time step!!
*

I What happens when we marginalize out time t?

Time - # 1+
(L (W
O (&)
® ()
® @
(2 (&)
(L (£
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“Sparse” DBN and fast inference 2

4 Structured representation of belief often yields good approximate

Almost!
“Sparse” DBN ~&» Fast inference
3

Time - ¢ 1 © 142 T+
> P

28
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BK Algorithm for approximate DBN inference
[Boyen, Koller '98]

=

m  Assumed density filtering:

Choose a factored representation P for the belief state
N
Every time step, belief not representable with P, project into representation

Time - 7 t+l 12 1+3
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A simple example of BK: Fully-
Factorized Distribution
SR

[ |
m  Assumed density:
Fully factorized

1N Assumed Densit
True PXD): for P(X+D): g

30
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Computing Fully-Factorized
Distribution at time t+1
" BN

m  Assumed density:
Fully factorized
Assumed Density Computing

for IS(X(“l)): for P(Xt*D):
Time - ¢ 1+l
(W (W
(&) (&)
@ (O
() @
@ (&)
@ @

-
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General case for BK: Junction Tree

. Represents Distribution

m  Assumed density:
Fully factorized

Assumed Density

True PXh): for II:\’(X(M))-

32
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Computing factored belief state in
the next time step
"

m Introduce observations in current
time step

Use J-tree to calibrate time t
beliefs

m Compute t+1 belief, project into

approximate belief state
marginalize into desired factors
corresponds to KL projection

m Equivalent to computing

marginals over factors directly

For each factor in t+1 step belief
= Use variable elimination

33

Error accumulation
" A
m Each time step, projection introduces error

m Will error add up?
causing unbounded approximation error as t—oo

34
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Contraction in Markov process
* JEE

35

BK Theorem
" JEE
m Error does not grow unboundedly!

36
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Example — BAT network [rorbes et al]
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B K resu ItS [Boyen, Koller 98]
"
Typical evolution of error Comparing partitions
38
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Thin Junction Tree Filters paskin o3
" J

m BK assumes fixed = 0 ...l

approximation clusters SRR RS

m TJTF adapts clusters oo

over time i1 it

attempt to minimize ~ ClliiIiITIUITIIIIIIUN

projection error F i o Do RE ek B R
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Hybrid DBN (many contlnuous and
discrete variables)
" eSS

m DBN with large number of discrete
and continuous variables

m # of mixture of Gaussian components Bl @ G

i i ©® uh -} o
blows up in one time step! . )

m Need many smart tricks... 2 © i By o

e.g., see Lerner Thesis S e G
® FRRECE A Y —

oo s
Ty

Reverse Water Gas Shift System
(RWGS) [Lerner et al. '02]

40
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DBN summary
“ JEE

m DBNs
factored representation of HMMs/Kalman filters
sparse representation does not lead to efficient inference

m Assumed density filtering
BK — factored belief state representation is assumed density
Contraction guarantees that error does blow up (but could still be large)
Thin junction tree filter adapts assumed density over time
Extensions for hybrid DBNs

41
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