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Switching Kalman Filter
Dynamic Bayesian Networks

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 27th, 2006

Readings:
K&F: 4.5, 12.2, 12.3, 12.4, 18.1, 18.2, 18.3, 18.4
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What you need to know about 
Kalman Filters 

Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations

Non-linear Kalman filter
Usually, observation or motion model not CLG
Use numerical integration to find Gaussian 
approximation
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What if the person chooses 
different motion models?
With probability θ, move more or less straight
With probability 1-θ, do the “moonwalk”
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The moonwalk
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What if the person chooses 
different motion models?
With probability θ, move more or less straight
With probability 1-θ, do the “moonwalk”
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Switching Kalman filter
At each time step, choose one of k motion models:

You never know which one!

p(Xi+1|Xi,Zi+1) 
CLG indexed by Zi

p(Xi+1|Xi,Zi+1=j) ~ N(βj
0 + Βj Xi; Σj

Xi+1|Xi)



4

7

Inference in switching KF – one step

Suppose 
p(X0) is Gaussian
Z1 takes one of two values
p(X1|Xo,Z1) is CLG

Marginalize X0

Marginalize Z1

Obtain mixture of two Gaussians!
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Multi-step inference
Suppose 

p(Xi) is a mixture of m Gaussians
Zi+1 takes one of two values
p(Xi+1|Xi,Zi+1) is CLG

Marginalize Xi

Marginalize Zi

Obtain mixture of 2m Gaussians!
Number of Gaussians grows exponentially!!!
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Visualizing growth in number of 
Gaussians
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Computational complexity of 
inference in switching Kalman filters
Switching Kalman Filter with (only) 2 motion models

Query:

Problem is NP-hard!!!   [Lerner & Parr `01]
Why “!!!”?
Graphical model is a tree:

Inference efficient if all are discrete
Inference efficient if all are Gaussian
But not with hybrid model (combination of discrete and continuous)
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Bounding number of Gaussians
P(Xi) has 2m Gaussians, but…
usually, most are bumps have low probability and overlap:

Intuitive approximate inference:
Generate k.m Gaussians
Approximate with m Gaussians
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Collapsing Gaussians – Single 
Gaussian from a mixture 
Given mixture P <wi;N(µi,Σi)>
Obtain approximation Q~N(µ,Σ) as:

Theorem:
P and Q have same first and second moments
KL projection: Q is single Gaussian with 
lowest KL divergence from P
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Collapsing mixture of Gaussians 
into smaller mixture of Gaussians
Hard problem!

Akin to clustering problem…

Several heuristics exist
c.f., K&F book 
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Operations in non-linear switching 
Kalman filter

Compute mixture of Gaussians for

Start with  
At each time step t:

For each of the m Gaussians in p(Xi|o1:i):
Condition on observation (use numerical integration)
Prediction (Multiply transition model, use numerical integration)

Obtain k Gaussians
Roll-up (marginalize previous time step)

Project k.m Gaussians into m’ Gaussians p(Xi|o1:i+1)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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Announcements

Lectures the rest of the semester:
Wed. 11/30, regular class time: Causality (Richard Scheines)
Last Class: Friday 12/1, regular class time: Finish Dynamic BNs
& Overview of Advanced Topics

Deadlines & Presentations:
Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)

popular vote for best poster
Project write up: Dec. 8th by 2pm by email 

8 pages – limit will be strictly enforced
Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)

no late days on final!
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Assumed density filtering
Examples of very important assumed density 
filtering:

Non-linear KF
Approximate inference in switching KF

General picture:
Select an assumed density

e.g., single Gaussian, mixture of m Gaussians, …
After conditioning, prediction, or roll-up, 
distribution no-longer representable with 
assumed density

e.g., non-linear, mixture of k.m Gaussians,…
Project back into assumed density

e.g., numerical integration, collapsing,…



9

17

When non-linear KF is not good enough

Sometimes, distribution in non-linear KF is not approximated well as 
a single Gaussian

e.g., a banana-like distribution

Assumed density filtering:
Solution 1: reparameterize problem and solve as a single Gaussian
Solution 2: more typically, approximate as a mixture of Gaussians
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Reparameterized KF for SLAT
[Funiak, Guestrin, Paskin, Sukthankar ’05]
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When a single Gaussian ain’t good 
enough

Sometimes, smart 
parameterization is not enough

Distribution has multiple 
hypothesis

Possible solutions
Sampling – particle filtering
Mixture of Gaussians
…

See book for details…
[Fox et al.]
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Approximating non-linear KF with 
mixture of Gaussians 
Robot example: 

P(Xi) is a Gaussian, P(Xi+1) is a banana
Approximate P(Xi+1) as a mixture of m Gaussians

e.g., using discretization, sampling,…
Problem: 

P(Xi+1) as a mixture of m Gaussians
P(Xi+2) is m bananas

One solution:
Apply collapsing algorithm to project m bananas in m’ Gaussians
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What you need to know
Switching Kalman filter

Hybrid model – discrete and continuous vars.
Represent belief as mixture of Gaussians
Number of mixture components grows exponentially in time
Approximate each time step with fewer components

Assumed density filtering
Fundamental abstraction of most algorithms for dynamical systems
Assume representation for density
Every time density not representable, project into representation
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More than just a switching KF

Switching KF selects among k motion models
Discrete variable can depend on past

Markov model over hidden variable

What if k is really large?
Generalize HMMs to large number of variables
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Dynamic Bayesian network (DBN)

HMM defined by
Transition model P(X(t+1)|X(t))
Observation model P(O(t)|X(t))
Starting state distribution P(X(0))

DBN – Use Bayes net to represent each of these compactly
Starting state distribution P(X(0)) is a BN
(silly) e.g, performance in grad. school DBN 

Vars: Happiness, Productivity, HiraBlility, Fame
Observations: PapeR, Schmooze
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Transition Model:
Two Time-slice Bayes Net (2-TBN)

Process over vars. X
2-TBN: represents transition and observation models P(X(t+1),O(t+1)|X(t))

X(t) are interface variables (don’t represent distribution over these variables)
As with BN, exponential reduction in representation complexity
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Unrolled DBN

Start with P(X(0))
For each time step, add vars as defined by 2-TBN
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“Sparse” DBN and fast inference

“Sparse” DBN   ⇒ Fast inference
Time t
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Even after one time step!!

What happens when we marginalize out time t?

Time t t+1

C’

A’

C

B

A

B’

F’

D’

F

E

D

E’
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“Sparse” DBN and fast inference 2

“Sparse” DBN Fast inference
Almost!

☺

Structured representation of belief often yields good approximate
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BK Algorithm for approximate DBN inference
[Boyen, Koller ’98]

Assumed density filtering:
Choose a factored representation P for the belief state
Every time step, belief not representable with P, project into representation

^
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A simple example of BK: Fully-
Factorized Distribution
Assumed density:

Fully factorized

Time t t+1
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for P(X(t+1)):^
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Computing Fully-Factorized 
Distribution at time t+1
Assumed density:

Fully factorized

Time t t+1
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General case for BK: Junction Tree 
Represents Distribution
Assumed density:

Fully factorized

Time t t+1
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for P(X(t+1)):^
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Computing factored belief state in 
the next time step

Introduce observations in current 
time step

Use J-tree to calibrate time t
beliefs

Compute t+1 belief, project into 
approximate belief state

marginalize into desired factors
corresponds to KL projection

Equivalent to computing 
marginals over factors directly

For each factor in t+1 step belief
Use variable elimination
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Error accumulation

Each time step, projection introduces error
Will error add up?

causing unbounded approximation error as t→∞
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Contraction in Markov process 
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BK Theorem

Error does not grow unboundedly!
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Example – BAT network [Forbes et al.]
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BK results [Boyen, Koller ’98] 
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Thin Junction Tree Filters [Paskin ’03] 

BK assumes fixed 
approximation clusters
TJTF adapts clusters 
over time 

attempt to minimize 
projection error
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Hybrid DBN (many continuous and 
discrete variables)

DBN with large number of discrete 
and continuous variables
# of mixture of Gaussian components 
blows up in one time step!
Need many smart tricks…

e.g., see Lerner Thesis

Reverse Water Gas Shift System
(RWGS) [Lerner et al. ’02]
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DBN summary
DBNs

factored representation of HMMs/Kalman filters
sparse representation does not lead to efficient inference

Assumed density filtering
BK – factored belief state representation is assumed density
Contraction guarantees that error does blow up (but could still be large)
Thin junction tree filter adapts assumed density over time
Extensions for hybrid DBNs


