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Switching Kalman Filter
Dynamic Bayesian Networks

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 27th, 2006

Readings:
K&F: 4.5, 12.2, 12.3, 12.4, 18.1, 18.2, 18.3, 18.4
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What you need to know about 
Kalman Filters 
� Kalman filter

� Probably most used BN
� Assumes Gaussian distributions
� Equivalent to linear system
� Simple matrix operations for computations

� Non-linear Kalman filter
� Usually, observation or motion model not CLG
� Use numerical integration to find Gaussian 

approximation
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What if the person chooses 
different motion models?

� With probability θ, move more or less straight
� With probability 1-θ, do the “moonwalk”
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The moonwalk
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Switching Kalman filter
� At each time step, choose one of k motion models:

� You never know which one!

� p(Xi+1|Xi,Zi+1) 
� CLG indexed by Zi

� p(Xi+1|Xi,Zi+1=j) ~ N(βj
0 + Βj Xi; Σj

Xi+1|Xi)
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Inference in switching KF – one step

� Suppose 
� p(X0) is Gaussian
� Z1 takes one of two values
� p(X1|Xo,Z1) is CLG

� Marginalize X0

� Marginalize Z1

� Obtain mixture of two Gaussians!
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Multi-step inference
� Suppose 

� p(Xi) is a mixture of m Gaussians
� Zi+1 takes one of two values
� p(Xi+1|Xi,Zi+1) is CLG

� Marginalize Xi

� Marginalize Zi

� Obtain mixture of 2m Gaussians!
� Number of Gaussians grows exponentially!!!
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Visualizing growth in number of 
Gaussians
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Computational complexity of 
inference in switching Kalman filters

� Switching Kalman Filter with (only) 2 motion models

� Query:

� Problem is NP-hard!!!   [Lerner & Parr `01]
� Why “!!!”?
� Graphical model is a tree:

� Inference efficient if all are discrete
� Inference efficient if all are Gaussian
� But not with hybrid model (combination of discrete and continuous)
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Bounding number of Gaussians
� P(Xi) has 2m Gaussians, but…
� usually, most are bumps have low probability and overlap:

� Intuitive approximate inference:
� Generate k.m Gaussians
� Approximate with m Gaussians
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Collapsing Gaussians – Single 
Gaussian from a mixture 

� Given mixture P <wi;N(µi,Σi)>
� Obtain approximation Q~N(µ,Σ) as:

� Theorem:
� P and Q have same first and second moments
� KL projection: Q is single Gaussian with 

lowest KL divergence from P
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Collapsing mixture of Gaussians 
into smaller mixture of Gaussians

� Hard problem!
� Akin to clustering problem…

� Several heuristics exist
� c.f., K&F book 
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Operations in non-linear switching 
Kalman filter

� Compute mixture of Gaussians for

� Start with  
� At each time step t:

� For each of the m Gaussians in p(Xi|o1:i):
� Condition on observation (use numerical integration)
� Prediction (Multiply transition model, use numerical integration)

� Obtain k Gaussians
� Roll-up (marginalize previous time step)

� Project k.m Gaussians into m’ Gaussians p(Xi|o1:i+1)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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Announcements

� Lectures the rest of the semester:
� Wed. 11/30, regular class time: Causality (Richard Scheines)
� Last Class: Friday 12/1, regular class time: Finish Dynamic BNs

& Overview of Advanced Topics

� Deadlines & Presentations:
� Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)

� popular vote for best poster
� Project write up: Dec. 8th by 2pm by email 

� 8 pages – limit will be strictly enforced
� Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)

� no late days on final!

16

Assumed density filtering
� Examples of very important assumed density 

filtering:
� Non-linear KF
� Approximate inference in switching KF

� General picture:
� Select an assumed density

� e.g., single Gaussian, mixture of m Gaussians, …
� After conditioning, prediction, or roll-up, 

distribution no-longer representable with 
assumed density
� e.g., non-linear, mixture of k.m Gaussians,…

� Project back into assumed density
� e.g., numerical integration, collapsing,…
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When non-linear KF is not good enough

� Sometimes, distribution in non-linear KF is not approximated well as 
a single Gaussian
� e.g., a banana-like distribution

� Assumed density filtering:
� Solution 1: reparameterize problem and solve as a single Gaussian
� Solution 2: more typically, approximate as a mixture of Gaussians
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Reparameterized KF for SLAT
[Funiak, Guestrin, Paskin, Sukthankar ’05]
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When a single Gaussian ain’t good 
enough

� Sometimes, smart 
parameterization is not enough
� Distribution has multiple 

hypothesis

� Possible solutions
� Sampling – particle filtering
� Mixture of Gaussians
� …

� See book for details…
[Fox et al.]
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Approximating non-linear KF with 
mixture of Gaussians 

� Robot example: 

� P(Xi) is a Gaussian, P(Xi+1) is a banana
� Approximate P(Xi+1) as a mixture of m Gaussians

� e.g., using discretization, sampling,…
� Problem: 

� P(Xi+1) as a mixture of m Gaussians
� P(Xi+2) is m bananas

� One solution:
� Apply collapsing algorithm to project m bananas in m’ Gaussians
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What you need to know
� Switching Kalman filter

� Hybrid model – discrete and continuous vars.
� Represent belief as mixture of Gaussians
� Number of mixture components grows exponentially in time
� Approximate each time step with fewer components

� Assumed density filtering
� Fundamental abstraction of most algorithms for dynamical systems
� Assume representation for density
� Every time density not representable, project into representation
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More than just a switching KF

� Switching KF selects among k motion models
� Discrete variable can depend on past

� Markov model over hidden variable

� What if k is really large?
� Generalize HMMs to large number of variables
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Dynamic Bayesian network (DBN)

� HMM defined by
� Transition model P(X(t+1)|X(t))
� Observation model P(O(t)|X(t))
� Starting state distribution P(X(0))

� DBN – Use Bayes net to represent each of these compactly
� Starting state distribution P(X(0)) is a BN
� (silly) e.g, performance in grad. school DBN 

� Vars: Happiness, Productivity, HiraBlility, Fame
� Observations: PapeR, Schmooze
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Transition Model:
Two Time-slice Bayes Net (2-TBN)

� Process over vars. X
� 2-TBN: represents transition and observation models P(X(t+1),O(t+1)|X(t))

� X(t) are interface variables (don’t represent distribution over these variables)
� As with BN, exponential reduction in representation complexity
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Unrolled DBN

� Start with P(X(0))
� For each time step, add vars as defined by 2-TBN
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“Sparse” DBN and fast inference

“Sparse” DBN   ⇒ Fast inference/
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Even after one time step!!

What happens when we marginalize out time t?
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“Sparse” DBN and fast inference 2

“Sparse” DBN Fast inference
Almost!

☺

Structured representation of belief often yields good approximate
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BK Algorithm for approximate DBN inference
[Boyen, Koller ’98]

� Assumed density filtering:
� Choose a factored representation P for the belief state
� Every time step, belief not representable with P, project into representation
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A simple example of BK: Fully-
Factorized Distribution

� Assumed density:
� Fully factorized
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Computing Fully-Factorized 
Distribution at time t+1

� Assumed density:
� Fully factorized

Time t t+1
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General case for BK: Junction Tree 
Represents Distribution

� Assumed density:
� Fully factorized
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Computing factored belief state in 
the next time step

� Introduce observations in current 
time step
� Use J-tree to calibrate time t

beliefs
� Compute t+1 belief, project into 

approximate belief state
� marginalize into desired factors
� corresponds to KL projection

� Equivalent to computing 
marginals over factors directly
� For each factor in t+1 step belief

� Use variable elimination
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Error accumulation

� Each time step, projection introduces error
� Will error add up?

� causing unbounded approximation error as t→∞
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Contraction in Markov process 
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BK Theorem

� Error does not grow unboundedly!
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Example – BAT network [Forbes et al.]
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BK results [Boyen, Koller ’98] 
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Thin Junction Tree Filters [Paskin ’03] 

� BK assumes fixed 
approximation clusters

� TJTF adapts clusters 
over time 
� attempt to minimize 

projection error
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Hybrid DBN (many continuous and 
discrete variables)
� DBN with large number of discrete 

and continuous variables
� # of mixture of Gaussian components 

blows up in one time step!
� Need many smart tricks…

� e.g., see Lerner Thesis

Reverse Water Gas Shift System
(RWGS) [Lerner et al. ’02]
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DBN summary
� DBNs

� factored representation of HMMs/Kalman filters
� sparse representation does not lead to efficient inference

� Assumed density filtering
� BK – factored belief state representation is assumed density
� Contraction guarantees that error does blow up (but could still be large)
� Thin junction tree filter adapts assumed density over time
� Extensions for hybrid DBNs


