Switching Kalman Filter Dynamic Bayesian Networks

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
November $27^{\text {th }}, 2006$

What you need to know about Kalman Filters

Kalman filter

\square Probably most used BN
\square Assumes Gaussian distributions
\square Equivalent to linear system
\square Simple matrix operations for computations

- Non-linear Kalman filter
\square Usually, observation or motion model not CLG
\square Use numerical integration to find Gaussian approximation

What if the person chooses different motion models?

- With probability θ, move more or less straight
- With probability $1-\theta$, do the "moonwalk"

The moonwalk

What if the person chooses different motion models?

- With probability θ, move more or less straight
- With probability $1-\theta$, do the "moonwalk"

Switching Kalman filter

- At each time step, choose one of k motion models:
\square You never know which one!
- $\mathrm{p}\left(\mathrm{X}_{\mathrm{i}+1} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}+1}\right)$
\square CLG indexed by Z_{i}
$\square \mathrm{p}\left(\mathrm{X}_{\mathrm{i}+1} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}+1}=\mathrm{j}\right) \sim N\left(\beta_{0}{ }_{0}+\mathrm{Bi}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} ; \mathrm{\Sigma}_{\mathrm{x}+11 \mathrm{x} \mathrm{i}}\right)$
$P\left(x_{i+1} \mid x_{i}=0 ; z_{i+1}=\right.$ go forward $)$

z_{i+1}	F	$M=1$
0.3	0.7	

$111111=$ moon walk \qquad

Inference in switching KF - one step

- Suppose
$\square p\left(X_{0}\right)$ is Gaussian

Z_{1} takes one of two values
$\square \mathrm{p}\left(\mathrm{X}_{1} \mid \mathrm{X}_{0}, Z_{1}\right)$ is CLG
Conditional

 $P\left(X_{1}\right)$
- Marginalize $\mathrm{X}_{0} \quad p\left(x_{1} \mid z_{1}\right)=$ $\int_{x_{0}} p\left(x_{0}\right) \cdot p\left(x_{1} \mid x_{0}, z_{1}\right) d x_{0}$
- f
- Marginalize Z_{1}

$$
\frac{z e}{z\left(x_{1}\right)}=\sum_{z_{1}} p\left(x_{1} \mid z_{1}\right) \cdot p\left(z_{1}\right)=p\left(x_{1}\left|z_{1} ; F\right| \cdot p\left(z_{i} ; F\right)\right.
$$

- Obtain mixture of two Gaussians!

Multi-step inference

- Suppose
$\square \mathrm{p}\left(\mathrm{X}_{\mathrm{i}}\right)$ is a mixture of \underline{m} Gaussian
$\square Z_{i+1}$ takes one of two values

$\square \mathrm{p}\left(\mathrm{X}_{\mathrm{i}+1} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}+1}\right)$ is CLG
- Marginalize $X_{i} \quad P\left(x_{i+1} \mid z_{i+1}\right)$
- Marginalize $\left.z_{i+1} \quad P\left(x_{i+1}\right)=\sum_{z_{i+1}} P\left(z_{i+1}\right) \cdot P\left(x_{i+1}\right) z_{i+1}\right)$
- Obtain mixture of $2 m$ Gaussian!
\square Number of Gaussian grows exponentially!!!

Computational complexity of inference in switching Kalman filters

- Switching Kalman Filter Wixth (only) 2 motion models

- Query:

$P\left(x_{n} \in[a, b]\right)$
- Problem is NP-hard!!! [Lerner \& Parr `01]
\square Why "!!!"?
\square Graphical model is a tree:
- Inference efficient if all are discrete
- Inference efficient if all are Gaussian
- But not with hybrid model (combination of discrete and continuous)

Bounding number of Gaussians

- $P\left(X_{i}\right)$ has 2^{m} Gaussians, but...
- usually, most are bumps have low probability and overlap:

\square Generate K.m Gaussians
\square Approximate with m Gaussians

Collapsing Gaussians - Single Gaussian from a mixture

- Given mixture $P<\mathrm{w}_{\mathrm{i}} ; N\left(\mu_{\mathrm{i}}, \Sigma_{\mathrm{i}}\right)>$
- Obtain approximation $Q \sim N(\mu, \Sigma)$ as:
$\mu=\sum_{i} w_{i} \mu_{i}$
$\Sigma=\sum_{i} w_{i} \Sigma_{i}+\sum_{i} w_{i}\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{T}$

- Theorem:
$\square P$ and Q have same first and second moments
$\square K L$ projection: Q is single Gaussian with lowest KL divergence from P

Collapsing mixture of Gaussians into smaller mixture of Gaussians

- Hard problem!

Akin to clustering problem...

Several heuristics exist
c.f., K\&F book

- EM
- Groody.
-....

- Compute mixture of Gaussians for $p\left(X_{t} \mid O_{1: t}=o_{1: t}\right)$
- Start with $\underset{p\left(X_{0}\right)}{\sim}$
- At each time step t :
\square For each of the m Gaussians in $p\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{o}_{1: 1}\right)$:
- Condition on observation (use numerical integration)
- Prediction (Multiply transition model, use numerical integration) Obtain k Gaussians
- Roll-up (marginalize previous time step)
 $m^{\prime} \leq \mathrm{Km}$

Announcements

- Lectures the rest of the semester:
\square Wed. 11/30, regular class time: Causality (Richard Scheines)
\square Last Class: Friday 12/1, regular class time: Finish Dynamic BNs \& Overview of Advanced Topics
- Deadlines \& Presentations:
\square Project Poster Presentations: Dec. 1 ${ }^{\text {st }} 3$-6pm (NSH Atrium)
- popular vote for best poster
\square Project write up: Dec. $8^{\text {th }}$ by $2 p m$ by email
- 8 pages - limit will be strictly enforced
\square Final: Out Dec. $1^{\text {st }}$, Due Dec. $15^{\text {th }}$ by 2 pm (strict deadline)
- no late days on final!

Assumed density filtering

- Examples of very important assumed density filtering:
\square Non-linear KF
\square Approximate inference in switching KF
- General picture:

When non-linear KE is not good enough

- Sometimes, distribution in non-linear KF is not approximated well as a single Gaussian
\square e.g., a banana-like distribution

- Assumed density filtering:
\square Solution 1: reparameterize problem and solve as a single Gaussian
\square Solution 2: more typically, approximate as a mixture of Gaussians

Reparameterized KF for SLAT

[Funiak, Guestrin, Paskin, Sukthankar '05]

(a) true posterior
(b) Gaussian in absolute (c) Gaussian in relative parameters

When a single Gaussian ain't good enough

- Sometimes, smart parameterization is not enough
\square Distribution has multiple hypothesis
- Possible solutions
\square Sampling - particle filtering
\square Mixture of Gaussians
- See book for details...
[Fox et al.]

Approximating non-linear KF with mixture of Gaussians

- Robot example:

- $P\left(X_{i}\right)$ is a Gaussian, $P\left(X_{i+1}\right)$ is a banana
- Approximate $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}+1}\right)$ as a mixture of m Gaussians
\square e.g., using discretization, sampling,...
- Problem:
$\square \mathrm{P}\left(\mathrm{X}_{\mathrm{i}+1}\right)$ as a mixture of m Gaussians
$\square \mathrm{P}\left(\mathrm{X}_{\mathrm{i}+2}\right)$ is m bananas
- One solution:
\square Apply collapsing algorithm to project m bananas in m ' Gaussians

What you need to know

- Switching Kalman filter
\square Hybrid model - discrete and continuous vars.
\square Represent belief as mixture of Gaussians
\square Number of mixture components grows exponentially in time
\square Approximate each time step with fewer components
- Assumed density filtering
\square Fundamental abstraction of most algorithms for dynamical systems
\square Assume representation for density
\square Every time density not representable, project into representation

More than just a switching KF

- Switching KF selects among k motion models
- Discrete variable can depend on pastMarkov model over hidden variable

- What if k is really large?
\square Generalize HMMs to large number of variables

Dynamic Bayesian network (DBN)

- HMM defined by
\square Transition model $\mathrm{P}\left(\mathrm{X}^{(t+1)} \mid \mathrm{X}^{(t)}\right)$
\square Observation model $\mathrm{P}\left(\mathrm{O}^{(\mathrm{t})} \mid \mathrm{X}^{(t)}\right)$
\square Starting state distribution $\mathrm{P}^{\left(\mathrm{X}^{(0)}\right)}$

- DBN - Use Bayes net to represent each of these compactly
\square Starting state distribution $P\left(X^{(0)}\right)$ is a $B N$
\square (silly) e.g, performance in grad. school DBN
- Vars: Happiness, Productivity, HiraBlility, Fame
- Observations: PapeR, Schmooze

$P\left(x^{(t+1)} \mid x^{(t)}\right)$ how many pamms $\left(2^{4}-1\right) 24$ without DBE $2^{8}-2^{+}$
$\begin{array}{ll}\text { with D8N } \\ P\left(H^{+111}\left(1 H^{t}\right)\right. & (2-1) .2\end{array}$
$P\left(p^{t+1} \mid p^{t}, \mu^{t}\right) \quad(2-1) \cdot 2^{2}$ $P\left(z^{t+1} \mid p^{\phi}, \sigma^{t}, F^{t}\right)(2-1) \cdot 2^{3}$
$P(F^{t+1}\left(F^{t}\right)(2-1) 2 \underbrace{}_{23}$

Transition Model: Two Time-slice Bayes Net (2-TBN)

- Process over vars. $\mathbf{X} \quad\left\{X_{1}^{(+)} \ldots, X_{n}^{(+)}\right\}_{t}$
- 2-TBN: represents transition and observation models $\mathrm{P}\left(\mathbf{X}^{(t+1)}, \mathbf{O}^{(t+1)} \mathbf{X}^{(t)}\right)$
$\square \mathbf{X}^{(t)}$ are interface variables (don't represent distribution over these variables)
\square As with BN, exponential reduction in representation complexity

"Sparse" DBN and fast inference

"Sparse" DBN and fast inference 2

Structured representation of belief often yields good approximate Almost!
"Sparse" DBN $2 \rightarrow$ Fast inference

BK Algorithm for approximate DBN inference

[Boyen, Koller '98]

- Assumed density filtering:
\square Choose a factored representation \hat{P} for the belief state
\square Every time step, belief not representable with \hat{P}, project into representation

Computing factored belief state in the next time step

Introduce observations in current time step
\square Use J-tree to calibrate time t beliefs
Compute $t+1$ belief, project into approximate belief state
\square marginalize into desired factors
\square corresponds to KL projection
Equivalent to computing
marginals over factors directly

\square For each factor in $t+1$ step belief

- Use variable elimination

Error accumulation

- Each time step, projection introduces error
- Will error add up?
causing unbounded approximation error as $t \rightarrow \infty$

Contraction in Markov process

BK Theorem

Error does not grow unboundedly!

Example - BAT network [Forbes et al.]

BK results [Boyen, Koller '98]

Thin Junction Tree Filters [Paskin ${ }^{\circ}$ 03]

- BK assumes fixed approximation clusters
- TJTF adapts clusters over time
\square attempt to minimize projection error

Hybrid DBN (many continuous and discrete variables)

- DBN with large number of discrete and continuous variables
- \# of mixture of Gaussian components blows up in one time step!
■ Need many smart tricks...
\square e.g., see Lerner Thesis

Reverse Water Gas Shift System (RWGS) [Lerner et al. '02]

DBN summary

- DBNs
\square factored representation of HMMs/Kalman filters
\square sparse representation does not lead to efficient inference
- Assumed density filtering
$\square \mathrm{BK}$ - factored belief state representation is assumed density
\square Contraction guarantees that error does blow up (but could still be large)
\square Thin junction tree filter adapts assumed density over time
\square Extensions for hybrid DBNs

