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Example: Large induced-width with

small number of parents
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Compact representation 3> Easy inference ®

Finding optimal elimination order

m Theorem: Finding best elimination

order is NP-complete:

Decision problem: Given a graph,
determine if there exists an elimination
order that achieves induced width < K

Interpretation:
Hardness of finding elimination order in

addition to hardness of inference

ctually, can find elimination order in time
exponential in size of largest clique — same

complexity as inference I




Induced graphs and chordal graphs
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m Chordal graph:
Every cycle X; — X, — ... = X, — X, with
k > 3 has a chord

Edge X; — X; for non-consecutive i &
m Theorem:
Every induced graph is chordal

m “Optimal” elimination order easily
obtained for chordal graph

Chordal qraphs and triangulation
[ | [
v&( )= A'B/ cd. Triangulation: turning graph into chordal
/ graph
E/ Z:, é/{,} m Max Cardinality Search:

Simple heuristic

m Initialize unobserved nodes X as
unmarked
m Fork=[X|to1l
mmarked var with most marked

neighbors

<(X) + k

Mark X
m Theorem: Obtains optimal order for

chordal graphs  ———

m Often, not so good in other graphs!




Minimum fill/size/weight heuristics

m  Many more effective heuristics
see reading
Min (weighted) fill heuristic
Often very effective
Initialize unobserved nodes X as
unmarked
For k =1 to [X]
X < unmarked var whose elimination
adds fewest edges
<(X) + k
Mark X
Add fill edges introduced by eliminating X
Weighted version:

~ Considersize of factor rather than number
of edges —

Choosing an elimination order
" JE
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’'t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m |n practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most approximate inference approaches build on ideas
from variable elimination

0.708_ ©Carlos Guiestin 2006 10




Announcements
" JEE

m Recitation on advanced topic:

Carlos on Context-Specific Independence
On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A
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Most likely explanation (MLE)
" S Gy P4
argmax P(z1, )

" Query: agmEx P [

=

P(xz1,...,zn,€)

m Using defn of conditional probs:

argmax P(z1,...,xn | €) = argmax
T1,--0Tm fo 2 I 79 P(e
b

L ) /Qc«w
m Normalization irrelevant:

argmax P(z1,...,zn | €) =largmax\P(xz1,...,zn,€)
T ye--3Tm £ R 7
—
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Max-marginalization
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Example of variable elimination for
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MLE Variable elimination algorithm

U e 18
m Given a BN and a MLE query max,
m Instantiate evidence E=e
m Choose an ordering on variables, e.g., Xy, ..., X,
m Fori=1ton, If Xi¢E
Collect factors f,,....f, that include X;
Generate a new factor by eliminating X; from these factors

k
g = max H f
Variable X; has been eliminated!
Cache 3




MLE Variable elimination algorithm

— Backward pass

m {X;",..., X, } will store maximizing assignment
Yevay§k
. — - . Ca/\’\ﬂ'{' ‘.,Ll ,g/\(/( s§n 5(1'-)(\'_,
mFori=ntod,If X Q:}) fi breany fh) WAA Lo
Take factors f,,....f, used when X; was eliminated 5.ciao., y,

o ——

Instantiate f,,....f,, with {x,.,",..., X}
= Now each f, depends only on X;

Generate maximizing assignment for X;:
k

xf € argmax [] f;

What you need to know about VE
" S

m Variable elimination algorithm

Eliminate a variable:
= Combine factors that include this var into single factor

= Marginalize var from new factor
Cliques in induced graph correspond to factors generated by algorithm

Efficient algorithm (“ggly" exponential in induced-width, not number of

variables)
= If you hear: “Exact inference only efficient in tree graphical models”

= You say: “No!!! Any graph with low induced width”

= And then you say: “And even some with very large induced-width” (special
recitation)

m Elimination order is important!

NP-complete problem
Many good heuristics

m Variable eliminafion for MLE

Only difference between probabilistic inference and MLE is “sum” versus

18
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Cluster graph
= JEE
20 m Cluster graph: For set of factors F
PloLo) .
Undirected graph
Each node i associated with a cluster C
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Cluster graph for VE
- W

— m VE generates cluster tree!

(D) One clique for each factor used/generated
D Jio oL .
Edge i —j, if f; used to generate f;
[- (GI) 13 o~ ” - H H T
G‘:G} 23 Message” from i to j generated when
Cr marginalizing a variable from f;
G%E Taq [69) Tree because factors only used once

m Proposition:
“Message” Si_ fromi to|

A
@@TSL@ Scopel3,] € JSij
63 -
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Running intersection property

"

@ m Running intersection property (RIP)
Cluster tree satisfies RIP if whenever Xe C;

and Xe C; then Xis in every cluster in the”

GIESD (unique) path from C; to C,

m Theorem:

%D Cluster tree generated by VE satisfies RIP
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Constructing a clique tree from VE
" S

m Select elimination order -
< DC—D—DeT

m Connect factors that @[I T
would be generated if GéT{ s
you run VE with order < [

_GS
a Simplify! AN G 25y
Eliminate factor that is G3L G

subset of neighbor HGTS — C—SI
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Find clique tree from chordal graph
" S

m Triangulate moralized graph
to obtain chordal graph

m Find maximal cliques
NP-complete in general
Easy for chordal graphs
Max-cardinality search

m Maximum spanning tree finds
clique tree satisfying RIP!!!
Generate weighted graph over
cliques
Edge weights (i,j) is separator
size — |CNCj|

13



Clique tree & Independencies
“ JEE
m Clique tree (or Junction tree)
A cluster tree that satisfies the RIP

CD

9

m Theorem:
D':GD Given some BN with structure G and factors F
For a clique tree T for F consider C; — C; with
GD separator S

= X —any set of vars in C, side of the tree
m Y —any set of vars in C, side of the tree

s >——s. ) Then, (X LY ['S;) in BN

Furthermore, I(T) C I(G)

(o)

HGJ

Variable elimination in a clique tree 1

ZI

<
CO D
COENCD _
S m Clique tree for a BN
Each CPT assigned to a clique
GO— Initial potential ©,(C,) is product of CPTs

14



Variable elimination in a clique tree 2
" S

m VE in clique tree to compute P(X))
Pick a root (any node containing X;)
Send messages recursively from leaves to root

= Multiply incoming messages with initial potential
= Marginalize vars that are not in separator

Clique ready if received messages from all neighbors

29

Belief from message
" JEE

1: 2: | | 3:
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m Theorem: When clique C, is ready
Received messages from all neighbors
Belief ni(Ci) is product of initial factor with messages:

30
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m Message does not

Choice of root depend on root!!!
“ JEE

Root: node 5

3 (G { 85.5(G,5) } 8, (G

B0 | |
Zc’:ﬂ(cb @ﬁn(cz)x‘i& éZ}E&{CS)Xélaﬂ ZHKG(CJ);

Root: node 3
o 3 T
) =] 16,8 HGJ
| |
BiealDk: | [ BautCh 5.465: [ B
ZCZO(CI) @ﬁo(cz)xﬁ»i Z;_L”n(cj)x&ji ngu(cl)

“Cache” computation: Obtain belief for all roots in linear time!!

Shafer-Shenoy Algorithm

_ ‘a.k.a. VE in clique tree for all roots)

m Clique C, ready to transmit to
neighbor C; if received messages
from all neighbors but j

Leaves are always ready to transmit

m While 3 C, ready to transmit to C,

Send message 3, , ;
m Complexity: Linear in # cliques

One message sent each direction in
each edge

m Corollary: At convergence
Every clique has correct belief

32
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Calibrated Clique tree

P(D]| C) !’ EG 11.D)

P( C)

)
L"(JJL.J
m |nitially, neighboring nodes don’t agree on

“distribution” over separators

m Calibrated clique tree:
At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

33

Answering queries with cligue trees
" S
m Query within clique

m Incremental updates — Observing evidence Z=z
Multiply some clique by indicator 1(Z=z)

m Query outside clique
Use variable elimination!

34
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Message passing with division
* JJE

m Computing messages by multiplication:

m Computing messages by division:

Lauritzen-Spiegelhalter Algorithm

. Jaka belief propagation) cec reacing fo detais

m Initialize all separator potentials to 1 <
w1 CcD
m All messages ready to transmit T
m While 35, ,; ready to transmit @Q
My <D
I py" # K>
mo

i—j
B T X G
<

=V neighbors k of j, k=1, §;_,,

m Complexity: Linear in # cliques
for the “right” schedule over edges (leaves to root, then root to leaves)

m Corollary: At convergence, every clique has correct belief

ready to transmit

36
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VE versus BP in clique trees
“ JEE
m VE messages (the one that multiplies)

m BP messages (the one that divides)

Clique tree invariant
" JEE
m Clique tree potential:
Product of clique potentials divided by separators potentials

m Clique tree invariant:
P(X) = n7(X)

19



Belief propagation and clique tree
Invariant

m Theorem: Invariant is maintained by BP algorithm!

m BP reparameterizes clique potentials and
separator potentials

At convergence, potentials and messages are marginal
distributions

Subtree correctness

* J
m Informed message from i to j, if all messages into i
(other than from j) are informed
Recursive definition (leaves always send informed
messages)
m Informed subtree:
All incoming messages informed

m Theorem:
Potential of connected informed subtree T’ is marginal over
scope[T’]
m Corollary:
At convergence, clique tree is calibrated
» 7; = P(scope[rn])
= ;= P(scope[u])

40




Clique trees versus VE
“ JEE
m Clique tree advantages

Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

m Clique tree disadvantages

Space requirements — no factors are “deleted”
Slower for single query

Local structure in factors may be lost when they are
multiplied together into initial clique potential

Clique tree summary
" JE

Solve marginal queries for all variables in only twice the
cost of query for one variable
Cliques correspond to maximal cliques in induced graph
Two message passing approaches
VE (the one that multiplies messages)
BP (the one that divides by old message)
Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials
Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph
Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of
variables, and cliques with tens of nodes (or less)
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