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Variable Elimination 2

Clique Trees

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

October 13th, 2006

Readings:
K&F: 8.1, 8.2, 8.3, 8.7.1
K&F: 9.1, 9.2, 9.3, 9.4
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Complexity of variable elimination –
Graphs with loops

Connect nodes that appear together in an initial factor

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Moralize graph:
Connect parents 
into a clique and 
remove edge directions
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Induced graph

Elimination order:
{C,D,S,I,L,H,J,G}

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

The induced graph IF≺ for elimination order ≺
has an edge Xi – Xj if Xi and Xj appear together
in a factor generated by VE for elimination order ≺
on factors F 
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Induced graph and complexity of VE

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Structure of induced graph 
encodes complexity of VE!!!
Theorem:

Every factor generated by VE 
subset of a maximal clique in IF≺
For every maximal clique in IF≺
corresponds to a factor 
generated by VE 

Induced width (or treewidth)
Size of largest clique in IF≺
minus 1
Minimal induced width –
induced width of best order ≺

Read complexity from cliques in induced graph

Elimination order:
{C,D,I,S,L,H,J,G}
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Example: Large induced-width with 
small number of parents

Compact representation ⇒ Easy inference 
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Finding optimal elimination order

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Theorem: Finding best elimination 
order is NP-complete:

Decision problem: Given a graph, 
determine if there exists an elimination 
order that achieves induced width · K

Interpretation:
Hardness of finding elimination order in 
addition to hardness of inference
Actually, can find elimination order in time 
exponential in size of largest clique – same 
complexity as inference

Elimination order:
{C,D,I,S,L,H,J,G}
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Induced graphs and chordal graphs

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Chordal graph:
Every cycle X1 – X2 – … – Xk – X1 with 
k ≥ 3 has a chord
Edge Xi – Xj for non-consecutive i & j

Theorem:
Every induced graph is chordal

“Optimal” elimination order easily 
obtained for chordal graph
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Chordal graphs and triangulation
Triangulation: turning graph into chordal
graph
Max Cardinality Search:

Simple heuristic
Initialize unobserved nodes X as 
unmarked
For k = |X| to 1

X ← unmarked var with most marked
neighbors
≺(X) ← k
Mark X

Theorem: Obtains optimal order for 
chordal graphs
Often, not so good in other graphs!

B

ED

H
G

A

F

C
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Minimum fill/size/weight heuristics
Many more effective heuristics

see reading
Min (weighted) fill heuristic

Often very effective
Initialize unobserved nodes X as 
unmarked
For k = 1 to |X|

X ← unmarked var whose elimination 
adds fewest edges
≺(X) ← k
Mark X
Add fill edges introduced by eliminating X

Weighted version:
Consider size of factor rather than number 
of edges

B

ED

H
G

A

F

C
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Choosing an elimination order

Choosing best order is NP-complete
Reduction from MAX-Clique

Many good heuristics (some with guarantees)
Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable 
elimination computation

In practice
Variable elimination often very effective
Many (many many) approximate inference approaches 
available when variable elimination too expensive
Most approximate inference approaches build on ideas 
from variable elimination
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Announcements

Recitation on advanced topic:
Carlos on Context-Specific Independence 
On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A 
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Most likely explanation (MLE)

Query:

Using defn of conditional probs:

Normalization irrelevant:

Flu Allergy

Sinus

Headache Nose
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Max-marginalization

Flu Sinus Nose=t
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Example of variable elimination for 
MLE – Forward pass

Flu Allergy

Sinus

Headache Nose=t
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Example of variable elimination for 
MLE – Backward pass

Flu Allergy

Sinus

Headache Nose=t
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MLE Variable elimination algorithm 
– Forward pass

Given a BN and a MLE query maxx1,…,xn
P(x1,…,xn,e)

Instantiate evidence E=e
Choose an ordering on variables, e.g., X1, …, Xn

For i = 1 to n, If Xi∉E
Collect factors f1,…,fk that include Xi

Generate a new factor by eliminating Xi from these factors

Variable Xi has been eliminated!
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MLE Variable elimination algorithm 
– Backward pass

{x1
*,…, xn

*} will store maximizing assignment
For i = n to 1, If Xi ∉ E

Take factors f1,…,fk used when Xi was eliminated
Instantiate f1,…,fk, with {xi+1

*,…, xn
*}

Now each fj depends only on Xi

Generate maximizing assignment for Xi:
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What you need to know about VE

Variable elimination algorithm
Eliminate a variable:

Combine factors that include this var into single factor
Marginalize var from new factor

Cliques in induced graph correspond to factors generated by algorithm 
Efficient algorithm (“only” exponential in induced-width, not number of 
variables)

If you hear: “Exact inference only efficient in tree graphical models”
You say: “No!!! Any graph with low induced width”
And then you say: “And even some with very large induced-width” (special 
recitation)

Elimination order is important!
NP-complete problem
Many good heuristics

Variable elimination for MLE
Only difference between probabilistic inference and MLE is “sum” versus 
“max”
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What if I want to compute 
P(Xi|x0,xn+1) for each i?

Variable elimination for each i?

Compute:

Variable elimination for every i, what’s the complexity?

X0 X5X3 X4X2X1
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Reusing computation

Compute:
X0 X5X3 X4X2X1
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Cluster graph

Cluster graph: For set of factors F
Undirected graph
Each node i associated with a cluster Ci

Family preserving: for each factor fj ∈ F,   
∃ node i such that scope[fi]⊆ Ci

Each edge i – j is associated with a 
separator Sij = Ci ∩ Cj

DIG

JSLGJSL

HGJ

CD

GSI

D

SG

H
J

C

L

I
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Factors generated by VE

Elimination order:
{C,D,I,S,L,H,J,G}

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence
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Cluster graph for VE

VE generates cluster tree!
One clique for each factor used/generated
Edge i – j, if fi used to generate fj
“Message” from i  to j generated when 
marginalizing a variable from fi
Tree because factors only used once

Proposition:
“Message” δ

ij
from i  to j

Scope[δ
ij
] ⊆ Sij

DIG

JSLGJSL

HGJ

CD

GSI
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Running intersection property

Running intersection property (RIP)
Cluster tree satisfies RIP if whenever X∈ Ci
and X∈ Cj then X is in every cluster in the 
(unique) path from Ci to Cj

Theorem:
Cluster tree generated by VE satisfies RIP

DIG

JSLGJSL

HGJ

CD

GSI
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Constructing a clique tree from VE

Select elimination order 
≺

Connect factors that 
would be generated if 
you run VE with order ≺

Simplify!
Eliminate factor that is 
subset of neighbor
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Find clique tree from chordal graph

Triangulate moralized graph 
to obtain chordal graph
Find maximal cliques

NP-complete in general
Easy for chordal graphs 
Max-cardinality search 

Maximum spanning tree finds 
clique tree satisfying RIP!!!

Generate weighted graph over 
cliques
Edge weights (i,j) is separator 
size – |Ci∩Cj|

Difficulty

Grade

Happy
Job

Coherence

Letter

Intelligence

SAT
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Clique tree & Independencies

Clique tree (or Junction tree)
A cluster tree that satisfies the RIP

Theorem:
Given some BN with structure G and factors F
For a clique tree T for F consider Ci – Cj with 
separator Sij:

X – any set of vars in Ci side of the tree
Y – any set of vars in Ci side of the tree

Then, (X ⊥ Y | Sij) in BN
Furthermore, I(T) ⊆ I(G)

DIG

JSLGJSL

HGJ

CD

GSI
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Variable elimination in a clique tree 1

Clique tree for a BN
Each CPT assigned to a clique
Initial potential π0(Ci) is product of CPTs

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI

D

SG

H
J

C

L

I
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Variable elimination in a clique tree 2

VE in clique tree to compute P(Xi)
Pick a root (any node containing Xi)
Send messages recursively from leaves to root

Multiply incoming messages with initial potential
Marginalize vars that are not in separator

Clique ready if received messages from all neighbors

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Belief from message

Theorem: When clique Ci is ready
Received messages from all neighbors
Belief π

i
(Ci) is product of initial factor with messages:
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Choice of root

Root: node 5

Root: node 3

Message does not 
depend on root!!!

“Cache” computation: Obtain belief for all roots in linear time!!
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Shafer-Shenoy Algorithm 
(a.k.a. VE in clique tree for all roots)

Clique Ci ready to transmit to 
neighbor Cj if received messages 
from all neighbors but j

Leaves are always ready to transmit
While ∃ Ci ready to transmit to Cj

Send message δi→ j

Complexity: Linear in # cliques
One message sent each direction in 
each edge

Corollary: At convergence
Every clique has correct belief

C2

C4

C5

C1

C3

C7

C6
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Calibrated Clique tree

Initially, neighboring nodes don’t agree on 
“distribution” over separators
Calibrated clique tree:

At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

10-708 – ©Carlos Guestrin 2006 34

Answering queries with clique trees

Query within clique

Incremental updates – Observing evidence Z=z
Multiply some clique by indicator 1(Z=z)

Query outside clique
Use variable elimination!
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Message passing with division

Computing messages by multiplication:

Computing messages by division:

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Lauritzen-Spiegelhalter Algorithm 
(a.k.a. belief propagation)

Initialize all separator potentials to 1
µij ← 1

All messages ready to transmit
While ∃ δi→ j ready to transmit

µij’ ←
If µij’ ≠ µij

δi→j←

πj ← πj × δi→j

µij ← µij’
∀ neighbors k of j, k≠ i, δj→k ready to transmit

Complexity: Linear in # cliques
for the “right” schedule over edges (leaves to root, then root to leaves)

Corollary: At convergence, every clique has correct belief

C2

C4
C5

C1

C3

C7

C6

Simplified description
see reading for details
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VE versus BP in clique trees

VE messages (the one that multiplies)

BP messages (the one that divides)
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Clique tree invariant

Clique tree potential:
Product of clique potentials divided by separators potentials

Clique tree invariant:
P(X) = πΤ (X)
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Belief propagation and clique tree 
invariant

Theorem: Invariant is maintained by BP algorithm!

BP reparameterizes clique potentials and 
separator potentials

At convergence, potentials and messages are marginal 
distributions
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Subtree correctness

Informed message from i to j, if all messages into i 
(other than from j) are informed

Recursive definition (leaves always send informed 
messages)

Informed subtree:
All incoming messages informed

Theorem:
Potential of connected informed subtree T’ is marginal over 
scope[T’]

Corollary:
At convergence, clique tree is calibrated

πi = P(scope[πi])
µij = P(scope[µij])
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Clique trees versus VE

Clique tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

Clique tree disadvantages
Space requirements – no factors are “deleted”
Slower for single query
Local structure in factors may be lost when they are 
multiplied together into initial clique potential
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Clique tree summary
Solve marginal queries for all variables in only twice the 
cost of query for one variable
Cliques correspond to maximal cliques in induced graph
Two message passing approaches

VE (the one that multiplies messages)
BP (the one that divides by old message)

Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials

Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph

Running time (only) exponential in size of largest clique
Solve exactly problems with thousands (or millions, or more) of 
variables, and cliques with tens of nodes (or less) 


