Readings:

K\&F: 8.1, 8.2, 8.3, 8.7.1
K\&F: 9.1, 9.2, 9.3, 9.4

Variable Elimination 2

Clique Trees

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
October $13^{\text {th }}, 2006$

Example: Large induced-width with small number of parents

Compact representation \nRightarrow Easy inference :

Finding optimal elimination order

- Theorem: Finding best elimination order is NP-complete:
\square Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width $\leq \mathrm{K}$
nterpretation:
\square Hardness of finding elimination order in addition to hardness of inference
Actually, can find elimination order in time exponential in size of largest clique - same complexity as inference

Elimination order:
\{C,D,I,S,L,H,J,G\}

Induced graphs and chordal graphs

Chordal graphs and triangulation

$\alpha()=A, B, C, D, \quad$ Triangulation: turning graph into chordal graph
$E, E, G, H-$ Max Cardinality Search:
\square Simple heuristic

- Initialize unobserved nodes \mathbf{X} as unmarked
- For $\mathrm{k}=|\mathrm{X}|$ to 1
$\underline{X} \leftarrow$ unmarked var with most marked neighbors
$\checkmark(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
- Theorem: Obtains optimal order for chordal graphs
- Often, not so good in other graphs!

Minimum fill/size/weight heuristics

- Many more effective heuristics \square see reading
- Min (weighted) fill heuristic
\square Often very effective
- Initialize unobserved nodes \mathbf{X} as unmarked
- For $\mathrm{k}=1$ to $|\mathrm{X}|$
$\square \mathrm{X} \leftarrow$ unmarked var whose elimination adds fewest edges
$\checkmark \prec(\mathrm{X}) \leftarrow \mathrm{k}$
\square Mark X
\square Add fill edges introduced by eliminating X
- Weighted version:
\square Consider size of factor rather than number of edges

Choosing an elimination order

- Choosing best order is NP-complete
\square Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice

Variable elimination often very effective
Many (many many) approximate inference approaches available when variable elimination too expensive
Most approximate inference approaches build on ideas from variable elimination

Announcements

- Recitation on advanced topic:

Carlos on Context-Specific Independence
\square On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A
o HW3 sut later today
\qquad

Most likely explanation (MLE)

- Query: $\quad \operatorname{argmax} P\left(x_{1}, \ldots, x_{n} \mid e\right)$
x_{1}, \ldots, x_{n}

- Using defn of conditional probs:

Normalization irrelevant:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underbrace{\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}}} P\left(x_{1}, \ldots, x_{n}, e\right)
$$

Max-marginalization

$\max [P \mid f=t), P(s=t \mid F=t) P(N=t \mid S=t)$;
$P(F=f) \cdot P(s=t \cdots$,
$P(F=t) \quad P(s=f \ldots$
$P(F=f) \quad P(s=f) \ldots]$

MLE Variable elimination algorithm - Forward pass

- Given a BN and a MLE query $\max _{x_{1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n}, \mathbf{e}\right)$
- Instantiate evidence $\mathbf{E}=\mathbf{e}$
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin \mathbf{E}$

Collect factors $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$ that include X_{i}
Generate a new factor by eliminating X_{i} from these factors

$$
g=\max _{\underline{x_{i}}} \prod_{j=1}^{k} f_{j}
$$

Variable X_{i} has been eliminated! cache g

MLE Variable elimination algorithm Backward pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{n}{ }^{*}\right\}$ will store maximizing assignment
- For $\mathrm{i}=\underline{\mathrm{n} \text { to }} 1$, If $X_{i} \notin \mathbf{E} \longrightarrow f_{j}$ cannot depend on $X_{1}-x_{i-1}$ Take factors f_{1}, \ldots, f_{k} used when X_{i} was eliminated before $x_{\text {; }}$ Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}, \ldots, \overline{\mathrm{x}}_{\mathrm{n}}{ }^{*}\right\}$
- Now each f_{j} depends only on x_{i}

Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

What you need to know about VE

- Variable elimination algorithm

Eliminate a variable:

- Combine factors that include this var into single factor
- Marginalize var from new factor
\square Cliques in induced graph correspond to factors generated by algorithm
\square Efficient algorithm ("only" exponential in induced-width, not number of variables)
- If you hear: "Exact inference only efficient in tree graphical models"
- You say: "No!!! Any graph with low induced width"
- And then you say: "And even some with very large induced-width" (special recitation)
- Elimination order is important!
\square NP-complete problem
\square Many good heuristics
- Variable eliminatión for MLE
\square Only difference between probabilistic inference and MLE is "sum" versus "max"

Reusing computation
 $g_{3}\left(x_{4}\right)=\sum_{x_{3}} P\left(x_{4} \mid x_{8}\right) \cdot g_{1}\left(x_{3}\right)$

$g_{2}\left(x_{3}^{\prime}\right)=\sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \cdot g_{1}\left(x_{2}\right)$

$P\left(x_{3} \mid x_{0}, x_{5}\right)$ - $g_{1}\left(x_{2}\right), g_{2}\left(x_{3}\right), \substack{\text { dosing t } \\ g_{3}\left(x_{4}\right)}$
$P\left(x_{4} \mid x_{0}, x_{5}\right)$ - compute $g_{1}\left(x_{2}\right), g_{2}\left(x_{3}\right), g_{3}\left(x_{4}\right)$

$$
\begin{aligned}
& \text { need to } \\
& \text { elimanacte } x_{4} \text { : done! } \\
& g_{4}\left(x_{3}\right)=\sum_{x_{4}} P\left(x_{5}=e \mid x_{4}\right) \cdot P\left(x_{4} \mid x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { compute each massage } \\
& \text { once!!, so two } \\
& \text { passes (O'(n)) gives } \\
& \text { you all prob. }
\end{aligned}
$$

Running intersection property

- Running intersection property (RIP)

Cluster tree satisfies RIP if whenever $\underline{X} \in \mathbf{C}_{i}$ and $\underline{X} \in \mathbf{C}_{j}$ then \underline{X} is in every cluster in the (unique) path from C_{i} to C_{j}

- Theorem:

Cluster tree generated by VE satisfies RIP

Constructing a clique tree from VE

- Select elimination order
\prec
- Connect factors that would be generated if you run VE with order \prec

Simplify!
Eliminate factor that is subset of neighbor

Find clique tree from chordal graph

- Triangulate moralized graph to obtain chordal graph
- Find maximal cliques
\square NP-complete in general
\square Easy for chordal graphs
\square Max-cardinality search
- Maximum spanning tree finds clique tree satisfying RIP!!!
\square Generate weighted graph over cliques
Edge weights (i, j) is separator size - $\left|\mathbf{C}_{\mathrm{i}} \cap \mathbf{C}_{\mathrm{j}}\right|$

Clique tree \& Independencies

- Clique tree (or Junction tree)
\square A cluster tree that satisfies the RIP
- Theorem:

Given some BN with structure G and factors F
For a clique tree T for F consider $\mathbf{C}_{i}-\mathbf{C}_{j}$ with separator \mathbf{S}_{ij} :

- \mathbf{X} - any set of vars in \mathbf{C}_{i} side of the tree
- \mathbf{Y} - any set of vars in \mathbf{C}_{i} side of the tree

Then, $\left(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{S}_{\mathrm{ij}}\right)$ in BN
Furthermore, $I(T) \subseteq I(G)$
Futhermore $(T) \subset I(G)$

- Clique tree for a BN

Each CPT assigned to a clique
\square Initial potential $\pi_{0}\left(\mathbf{C}_{\mathrm{i}}\right)$ is product of CPTs

Variable elimination in a clique tree 2

VE in clique tree to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$

Pick a root (any node containing X_{i})
Send messages recursively from leaves to root

- Multiply incoming messages with initial potential
- Marginalize vars that are not in separator
\square Clique ready if received messages from all neighbors

Belief from message

- Theorem: When clique C_{i} is ready

Received messages from all neighborsBelief $\pi_{i}\left(\mathbf{C}_{i}\right)$ is product of initial factor with messages:

Calibrated Clique tree

- Initially, neighboring nodes don't agree on "distribution" over separators
- Calibrated clique tree:

At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

Answering queries with clique trees

- Query within clique
- Incremental updates - Observing evidence Z=z

Multiply some clique by indicator 1(Z=z)

- Query outside clique
\square Use variable elimination!

Message passing with division

Computing messages by multiplication:

- Computing messages by division:

Lauritzen-Spiegelhalter Algorithm (a.k.a. belief propagation)

- Initialize all separator potentials to 1
$\square \mu_{\mathrm{ij}} \leftarrow 1$
- All messages ready to transmit
- While $\exists \delta_{i \rightarrow \mathrm{j}}$ ready to transmit
$\mu_{\mathrm{ij}}{ }^{\prime} \leftarrow$
If $\mu_{\mathrm{ij}}{ }^{\prime} \neq \mu_{\mathrm{ij}}$

- $\delta_{i \rightarrow j} \leftarrow$
- $\pi_{\mathrm{j}} \leftarrow \pi_{\mathrm{j}} \times \delta_{\mathrm{i} \rightarrow \mathrm{j}}$
- $\mu_{\mathrm{ij}} \leftarrow \mu_{\mathrm{ij}}{ }^{\prime}$
- \forall neighbors k of $\mathrm{j}, \mathrm{k} \neq \mathrm{i}, \delta_{\mathrm{j} \rightarrow \mathrm{k}}$ ready to transmit
- Complexity: Linear in \# cliques
for the "right" schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief

VE versus $B P$ in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

Clique tree invariant

Clique tree potential:
Product of clique potentials divided by separators potentials

- Clique tree invariant:
$\square \mathrm{P}(\mathbf{X})=\pi_{T}(\mathbf{X})$

Belief propagation and clique tree invariant

- Theorem: Invariant is maintained by BP algorithm!
- BP reparameterizes clique potentials and separator potentials

At convergence, potentials and messages are marginal distributions

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
\square Recursive definition (leaves always send informed messages)
- Informed subtree:
\square All incoming messages informed
- Theorem:

Potential of connected informed subtree T^{\prime} is marginal over scope[T']

Corollary:

At convergence, clique tree is calibrated

- $\pi_{\mathrm{i}}=\mathrm{P}\left(\right.$ scope $\left.\left[\pi_{\mathrm{i}}\right]\right)$
- $\mu_{\mathrm{ij}}=\mathrm{P}\left(\mathrm{scope}\left[\mu_{\mathrm{ij}}\right]\right)$

Clique trees versus VE

Clique tree advantages
Multi-query settings
Incremental updates
\square Pre-computation makes complexity explicit

- Clique tree disadvantages
\square Space requirements - no factors are "deleted"
\square Slower for single queryLocal structure in factors may be lost when they are multiplied together into initial clique potential

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
\square VE (the one that multiplies messages)
\square BP (the one that divides by old message)
- Clique tree invariant
\square Clique tree potential is always the same
\square We are only reparameterizing clique potentials
- Constructing clique tree for a BN
\square from elimination order
\square from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
\square Solve exactly problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

