
10708 Graphical Models: Homework 1
Due October 1st, beginning of class

September 29, 2008

Instructions: There are five questions on this assignment. The last question involves
coding, which should be done in MATLAB. Do not attach your code to the writeup. Instead,
copy your implementation to

/afs/andrew.cmu.edu/course/10/708/Submit/your_andrew_id/HW1

Refer to the web page for policies regarding collaboration, due dates, and extensions.

1 Conditional Probability [23] [Dhruv]

1.1 [4 pts]

Let X ,Y ,Z be three disjoint sets of variables such that S = X ∪ Y ∪ Z. Prove that
P |= (X ⊥ Y|Z) if and only if we can write P in the form: P (S) = f(X ,Z)g(Y ,Z)

1.2 [5 pt]

Is it possible for both f and g above to be probability distributions over their respective
sets of variables? Formally, is it possible for every distribution P over (X ∪ Y ∪ Z) with
the independency above, to be expressed as a product of a distribution over (X ∪ Z) and a
distribution over (Y ∪ Z)? Justify your answer.
(Hint: look at the marginal probability of Z; you may assume that the variables are binary
if you wish.)
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1.3 [3 pts]

Prove or disprove (by providing a counter-example) each of the following properties of inde-
pendence:

1. (X ⊥ Y,W |Z) implies (X ⊥ Y |Z).

2. (X ⊥ Y |Z) and (X, Y ⊥ W |Z) imply (X ⊥ W |Z).

3. (X ⊥ Y,W |Z) and (Y ⊥ W |Z) imply (X, W ⊥ Y |Z).

1.4 [3 pts]

Provide an example of a distribution P (X1, X2, X3) where for each i 6= j, we have that
(Xi ⊥ Xj) ∈ I(P ), but we also have that (X1, X2 ⊥ X3) /∈ I(P ).

1.5 [8 pts]

Figure 1: Graphical Model for Prob. 1.5

Let X, Y, Z be binary random variables with joint distribution given by the graphical model
shown above (v-structure). We define the following shorthands:

a , P (X = t); b , P (X = t | Z = t); c , P (X = t, | Z = t, Y = t)

1. For all the following cases, provide examples of conditional probability tables (CPTs)
(and compute the quantities, a, b, c), which make the statements true:

(a) a > c

(b) a < c < b

(c) b < a < c

2. Think of X, Y as causes and Z as a common effect, and for all the above cases sum-
marize (in a sentence or two) why the statements are true for your examples.

(Hint: Think about positive and negative correlations along edges)
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2 Graph Independencies [12 pts] [Dhruv]

2.1 [4 pts]
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Figure 2: Graphical Model for Prob. 2

Let X = {X1, . . . , Xn} be a random vector with distribution given by the graphical model in
Figure 2. Consider variable X1. What is the minimal subset of the variables, A ⊆ X −{X1},
such that X1 is independent of the rest of the variables, X −A ∪ {X1}, given A? Justify
your answer.

2.2 [8 pts]

Now, let the distribution of X be given by some graphical model instance B = (G, P ).
Consider variable Xi. What is the minimal subset of the variables, A ⊆ X − {Xi}, such
that Xi is independent of the rest of the variables, X −A∪ {Xi}, given A? Prove that this
subset is necessary and sufficient.

(Hint: Think about the variables that Xi cannot possibly be conditionally independent of,
and then think some more)

2.3 Extra Credit [8 pts]

Show how you could efficiently compute the distribution over a variable Xi given some as-
signment to all the other variables in the network: P (Xi|x1, . . . , xi−1, xi+1, . . . , xn).
Your procedure should not require the construction of the entire joint distribution P (X1, . . . , Xn).
Specify the computational complexity of your procedure.
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3 Factorization [15 pts] [Dhruv]

Let G be a bayesian network graph over a set of random variables X and let P be a joint
distribution over the same space. Show that if P factorizes according to G, then G is an
I−map for P .
(Hint: See example in Section 3.2.3.3 of Koller and Friedman)

4 Marginalization [15 pts] [Amr]
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Figure 3: Burglar Alarm Network

1. Consider the Burglar Alarm network shown in Figure 3. Construct a Bayesian network
over all of the nodes except for Alarm, which is a minimal I−map for the marginal
distribution over those variables defined by the above network. Be sure to get all
dependencies that remain from the original network.

(Hint : Consider all active trails ,〈X1 ® X2 · · · ® Xn〉,that go through Alarm , make
sure that there still an active trail under the same conditions —i.e. observed variables
— between X1 and Xn in the marginalized network.)

2. Generalize the procedure you used to solve the above into a node-elimination algorithm.
That is, define an algorithm that transforms the structure of G into G ′ such that one
of the nodes Xι of G is not in G ′ and G ′ is an I−map of the marginal distribution over
the remaining variables as defined by G.

(Hint:: Consider the relationship between the variables you added edges to in part 1
and the node being marginalized. Now, can you devise a set of generic rules over these
affected variables? It would be helpful to think about different local configurations
around Xι)
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5 [35 pts] Learning PDAGs [Amr]

Given samples from a probability distribution P , we would like to learn a graph G which is a
P-map for P . A PDAG is a compact way of representing all P-maps for a given distribution.
In this question, you will implement an algorithm for learning a PDAG from samples from
P and examine its behavior in details.

Note: You are not allowed to use any code that is not given to you in the homework or that
is not part of a standard Matlab distribution.

Figure 4: Network 1

5.1 [2 points]

Consider the network shown in Figure 4. Draw its skeleton and PDAG. How many different
graphs are encoded in this PDAG?

5.2 Implementation

Implement the PDAG learning algorithm discussed in class and in Figure 3.21 in Koller and
Friedman . You need to implement the following steps:
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• Build-Skeleton: An algorithm that constructs an undirected graph S that contains an
edge X − Y if X and Y are adjacent in G.

• Mark-Immoralities : An algorithm that detects immoralities and directs their edges
appropriately in S. Note: when examining a potential immorality of the form X −
Y − Z with no edge between X − Z, DO consider all possible sets U , of bounded size
up to 2 ∗ d, that contain Y . X −Y −Z is an immorality if ¬∃U, y ∈ U,X ⊥ Z|U . This
is in contrast to the implementation in Koller and Friedman in which only the witness
separator between X and Z is examined — we will come to this point later.

• Orient-Edges : An algorithm that applies the rules in Figure 3.20 to propagate the
constraints imposed by the discovered immoralities and direct some edges in S to avoid
adding cycles and/or additional immoralities. Note: you ONLY need to implement
rules 1 and 2.

• Testing for (conditional) independence: Since we only have access to the original dis-
tribution through its samples, we need to empirically answer independence queries like
X ⊥ Y |Z. We will use Mutual Information (MI) defined as follows:

Î(X; Y |Z) =
∑
x,y,z

p̂(x, y, z)log
p̂(x, y|z)

p̂(x|z)p̂(y|z)

where p̂ is the empirical probability. In addition, we define a threshold t, and we
declare that X ⊥ Y |Z if Î(X; Y |Z) ≤ t.

Submit your implementation to your AFS code directory. Answer the following questions in
your writeup

1. [10 points] Use the function genSamples net1.m to generate 1000 samples from this
network. Apply your learning algorithm on these samples using t = .02 , t = .06
and t = .07, and draw the resulting skeleton and PDAG in each case. What do you
observe?

2. [5 points] The value of the threshold t is important in recovering the correct structure.
To understand this point further, compute the following empirical mutual information
values:

• I(A; C|{D, E}) and I(B; C|{D, E})
• I(D; C|{A,B}) and I(E; C|{A, B})
• I(A; B|{C})

Can you now explain the behavior you observed by varying t in part 2?

3. [8 points] The number of samples used to estimate the empirical probabilities can
introduce another source of error when answering independence queries, and thus affect
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the final learnt PDAG. fix t = .02 and vary the number of samples along the range
[10, 50, 100, 300]. Draw the resulting skeletons and PDAGs in each case.

4. [10 points] Consider the network in Figure 5, where α determines the strength of
dependencies in the network. The higher the value of α, the more dependent the
variables, and the easier it is to identify the correct structure. Using the function
genSample net2(α,N), fix N = 5000, t = .007 and vary α in the range [.4, .7, .9]. For
each setting of α apply your code and draw the resulting skeleton and PDAG. what
do you observe and what can you conclude?

Figure 5: Network 2
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5.3 [Extra Credit]: Efficient Implementation and Robustness

1. [5 points] Modify your implementation of Mark-Immoralities to follow the reading in
Figure 3.18 in Koller and Friedman. In other words, only examine the separator that
was recorded as a witness for the removal of the edge between X and Z. Now using
network 1 draw N = 1000 samples and fix the threshold at t = .02, then apply your
PDAG learning algorithm and draw the resulting skeleton and PDAG. What do you
observe? NOTE: results here depends on the way you traverse the subsets U in build-
skeleton— we are assuming that you visit them in increasing size and stop iterating
once a witness is found, if you followed another scheme, please clearly indicate it in
your witting.

2. [2 points] Using the setting in 5.3.1, vary t until you recover the correct PDAG and
record t.

3. The extra step in part 5.3.1 indeed results in a more efficient computation and is sound
if independence queries are answered directly from P rather than being estimated from
the data:

• [2 points] Prove that claim. hint: you may make use of the result of Lemma 3.4.8
in Koller and Friedman.

• [6 points] Can you explain the behavior you observed in part 5.3.1? hint : examine
the recorded witness separator that caused the wrong behavior and its associated
induced mutual information. What happened when you lowered t in part 5.3.2?
Why your implementation in part 5.2 does not suffer from this problem?
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