Learning P-maps

 Param. Learning

 Param. Learning}

Graphical Models - 10708
Carlos Guestrin
Carnegie Mellon University
September 24 ${ }^{\text {th }}, 2008$

Perfect maps (P-maps)

- I-maps are not unique and often not simple enough

■ Define "simplest" G that is I-map for P
$\square \mathrm{ABN}$ structure G is a perfect map for a distribution P if $I(P)=I(G)$

- Our goal:
\square Find a perfect map!
\square Must address equivalent BNs

Inexistence of P-maps 1

- XOR (this is a hint for the homework)
$A=B X O R C$
$A \perp B|7 A \perp B| C$
$B \perp C$
$C \perp A>B \perp C \mid A$

P-map?
extra credit

Obtaining a P-map

- Given the independence assertions that are true for P
- Assume that there exists a perfect map G^{*}
\square Want to find G*

- Many structures may encode same independencies as G^{*}, when are we done?

Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_{1} and G_{2} are I-equivalent if $\mathrm{I}\left(G_{1}\right)=\mathrm{I}\left(G_{2}\right)$
- Equivalence class of BN structures

Mutually-exclusive and exhaustive partition of graphs

- How do we characterize these equivalence classes?

Skeleton of a BN

Skeleton of a BN structure G is an undirected graph over the same variables that has an edge $X-Y$ for every $X \rightarrow Y$ or $Y \rightarrow X$ in G

- (Little) Lemma: Two I -equivalent BN structures must have the same skeleton

What about V-structures?
 - V-structures are key property of BN structure

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are I-equivalent

Same V-structures not necessary

- Theorem: If G_{1} and G_{2} have the same skeleton and V-structures, then G_{1} and G_{2} are I-equivalent
- Though sufficient, same V-structures not necessary

Immoralities \& I-Equivalence

- Key concept not V-structures, but "immoralities" (unmarried parents $)$) $X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
\square Important pattern: X and Y independent given their parents, but not given Z
\square (If edge exists between X and Y , we have covered the V-structure)
- Theorem: G_{1} and G_{2} have the same skeleton and immoralities if and only if G_{1} and G_{2} are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P
\square Obtain skeleton
\square Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

When is there an edge between X and Y ?

- When is there no edge between X and Y ?

Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_{i} and X_{j}
$\square \mathrm{E}_{\mathrm{ij}} \leftarrow$ true
\square For each $\mathbf{U} \subseteq \mathbf{X}-\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\},|\mathbf{U}| \leq \mathrm{d}$
- Is $\left(X_{i} \perp X_{j} \mid \mathrm{U}\right)$?
$\square \mathrm{E}_{\mathrm{ij}} \leftarrow$ false
\square If E_{ij} is true
- Add edge X - Y to skeleton

Identifying immoralities

- Consider $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ in skeleton, when should it be an immorality?

■ Must be $X \rightarrow Z \leftarrow Y$ (immorality):
\square When X and Y are never independent given \mathbf{U}, if $Z \in \mathbf{U}$

- Must not be $X \rightarrow Z \leftarrow Y$ (not immorality):
\square When there exists \mathbf{U} with $\mathrm{Z} \in \mathbf{U}$, such that X and Y are independent given \mathbf{U}

From immoralities and skeleton to BN structures

- Representing BN equivalence class as a partially-directed acyclic graph (PDAG)
- Immoralities force direction on some other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

Minimal I-map
\square every P has one, but usually many

- Perfect map
\square better choice for BN structure
not every P has one
can find one (if it exists) by considering l-equivalence
\square Two structures are l-equivalent if they have same skeleton and immoralities

Announcements

- Recitation tomorrow
\square Don't miss it!
- No class on Monday © $^{\circ}$

Review

- Bayesian Networks

Compact representation for probability distributions
\square Exponential reduction in number of parametersExploits independencies

- Next - Learn BNs
parameters
\square structure

Thumbtack - Binomial Distribution

- $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

Flips are i.i.d.:
\square Independent events
\square Identically distributed according to Binomial distribution

- Sequence D of α_{H} Heads and α_{T} Tails

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
\square What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Your first learning algorithm

$\begin{aligned} \hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\ & =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\end{aligned}$

- Set derivative to zero: $\quad \frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0$

Maximum likelihood estimation (MLE) of BN parameters - example

- Given structure, log likelihood of data:
$\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)$

Maximum likelihood estimation (MLE) of BN parameters - General case

- Data: $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}$
- Restriction: $\mathbf{x}^{(\mathrm{i})}\left[\mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right] \rightarrow$ assignment to $\mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}$ in $\mathbf{x}^{(\mathrm{j})}$
- Given structure, log likelihood of data:
$\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)$

Taking derivatives of MLE of BN
parameters - General case
$\log P\left(\mathcal{D} \mid \theta_{G}, \mathcal{G}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i}=x_{i}^{(j)} \mid \mathbf{P a}_{X_{i}}=\mathbf{x}^{(j)}\left[{ }^{\left[\mathrm{Pa} x_{i}\right]}\right)\right.$

General MLE for a CPT

- Take a CPT: P(X|U)

■ Log likelihood term for this CPT

- Parameter $\theta_{X=x \mid \mathbf{U}=\mathrm{u}}$:

MLE: $\quad P(X=x \mid \mathbf{U}=\mathbf{u})=\theta_{X=x \mid \mathbf{U}=\mathbf{u}}=\frac{\operatorname{Count}(X=x, \mathbf{U}=\mathbf{u})}{\operatorname{Count}(\mathbf{U}=\mathbf{u})}$

Can we really trust MLE?

- What is better?
$\square 3$ heads, 2 tails
$\square 30$ heads, 20 tails
$\square 3 \times 10^{23}$ heads, 2×10^{23} tails

- Many possible answers, we need distributions over possible parameters

Bayesian Learning

- Use Bayes rule:
$P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}$
- Or equivalently:
$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Bayesian Learning for Thumbtack

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

- Likelihood function is simply Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}}
$$

- What about prior?
\square Represent expert knowledge
\square Simple posterior form
- Conjugate priors:
\square Closed-form representation of posterior (more details soon)
\square For Binomial, conjugate prior is Beta distribution

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}-1}}{B\left(\alpha_{H}, \alpha_{T}\right)} \sim \operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)
$$

- Likelihood function: $P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Posterior distribution

- Prior: $\operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)$
- Data: m_{H} heads and m_{T} tails
- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

Conjugate prior

- Prior: $\operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)$
- Data: m_{H} heads and m_{T} tails (binomial likelihood)
- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

- Given likelihood function $P(D \mid \theta)$
- (Parametric) prior of the form $\mathrm{P}(\theta \mid \alpha)$ is conjugate to likelihood function if posterior is of the same parametric family, and can be written as:
$\square \mathrm{P}\left(\theta \mid \alpha^{\prime}\right)$, for some new set of parameters α^{\prime}

Using Bayesian posterior

- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

- Bayesian inference:
\square No longer single parameter:

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

\square Integral is often hard to compute

Bayesian prediction of a new coin flip

- Prior:

- Observed m_{H} heads, m_{T} tails, what is probability of $m+1$ flip is heads?

Asymptotic behavior and equivalent

 sample size- Beta prior equivalent to extra thumbtack flips:
$E[\theta]=\frac{m_{H}+\alpha_{H}}{m_{H}+\alpha_{H}+m_{T}+\alpha_{T}}$
- As $m \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!
- Equivalent sample size:
\square Prior parameterized by α_{H}, α_{T}, or
$\square \mathrm{m}^{\prime}$ (equivalent sample size) and α
$E[\theta]=\frac{m_{H}+\alpha m^{\prime}}{m_{H}+m_{T}+m^{\prime}}$

Bayesian learning corresponds to

 smoothing$E[\theta]=\frac{m_{H}+\alpha m^{\prime}}{m_{H}+m_{T}+m^{\prime}}$

- $\mathrm{m}=0 \Rightarrow$ prior parameter
- $\mathrm{m} \rightarrow \infty \Rightarrow \mathrm{MLE}$

Bayesian learning for multinomial

- What if you have a k sided coin???
- Likelihood function if multinomial:
\square
- Conjugate prior for multinomial is Dirichlet:
$\square \theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \sim \prod_{i} \theta_{i}^{\alpha_{i}-1}$
- Observe m data points, m_{i} from assignment i , posterior:
- Prediction:

Bayesian learning for two-node BN

- Parameters $\theta_{\mathrm{X}}, \theta_{\mathrm{Y} \mid \mathrm{X}}$
- Priors:
$\square \mathrm{P}\left(\theta_{\mathrm{x}}\right)$:
$\square \mathrm{P}\left(\theta_{Y \mid X}\right):$

Global parameter independence, d-separation and local prediction

- Independencies in meta BN:

Proposition: For fully observable data D, if prior satisfies global parameter independence, then
$P(\theta \mid \mathcal{D})=\prod_{i} P\left(\theta_{X_{i} \mid \mathrm{Pa}_{X_{i}}}\right.$
D)

Within a CPT

- Meta BN including CPT parameters:
- Are $\theta_{\mathrm{Y} \mid \mathrm{X}=\mathrm{t}}$ and $\theta_{\mathrm{Y} \mid \mathrm{X}=\mathrm{f}}$ d-separated given D ?
- Are $\theta_{Y \mid X=t}$ and $\theta_{Y \mid X=f}$ independent given D ?
\square Context-specific independence!!!
- Posterior decomposes:

Priors for BN CPTs

(more when we talk about structure learning)

- Consider each CPT: $\mathrm{P}(\mathrm{X} \mid \mathrm{U}=\mathbf{u})$
- Conjugate prior:
$\square \operatorname{Dirichlet}\left(\alpha_{X=1 \mid U=u}, \ldots, \alpha_{X=k \mid U=u}\right)$
- More intuitive:
"prior data set" D ' with m ' equivalent sample size
"prior counts":
\square prediction:

What you need to know about parameter learning

- MLE:
score decomposes according to CPTs
\square optimize each CPT separately
■ Bayesian parameter learning:
motivation for Bayesian approach
\square Bayesian prediction
\square conjugate priors, equivalent sample size
\square Bayesian learning \Rightarrow smoothing
- Bayesian learning for BN parameters
\square Global parameter independence
\square Decomposition of prediction according to CPTs
\square Decomposition within a CPT

