Readings:

K&F: 4.1, 4.2, 4.3, 4.4, 4.5

Undirected Graphical Models

Graphical Models – 10708 Carlos Guestrin Carnegie Mellon University October 29th, 2008

Normalization for computing probabilities

To compute actual probabilities, must compute normalization constant (also called partition function)

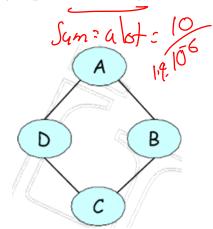
$$P(ABCD) = \frac{1}{2} P_1(AB) P_2(BC) P_3(CD) P_4(DA)$$

 $Z = Z Z Z Z P_1(AB) P_2(BC) P_3(GL) P_4(DA)$

Petertial						
	Assignment				Unnormalized	Normalized
	a^0	b^{0}	c^{0}	d^0	300000	0.04
	a^0	b^0	c^0	d^1	300000	0.04
	a^0	b^0	c^1	d^0	300000	0.04
	a^0	b^{0}	c^1	$d^{1/}$	30	$4.1 \cdot 10^{-6}$
	a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$
	a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
	a^0	b^1	$ c^1 $	d^0	5000000	0.69
	a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$
	a^1	b^{0}	c^0	d^0	100	$1.4 \cdot 10^{-5}$
	a^1	b^{0}	c^0	d^1	1000000	$_{\odot}0.14$
	a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
	a^1	b^{0}	c^1	d^1	100	$1.4 \cdot 10^{-5}$
	a^1	b^1	c^0	d^0	10	$1.4\cdot 10^{-6}$
	a^1	b^1	c^0	d^1	100000	0.014
	a^1	b^1	c^1	d^0	100000	0.014
	a^1	b^1	c^1	d^1	100000	0.014

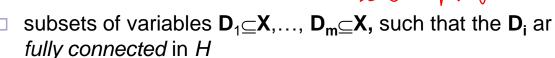
Computing partition function is hard! ! Must sum over

all possible assignments to compute 2 if Markov Network has low tree width



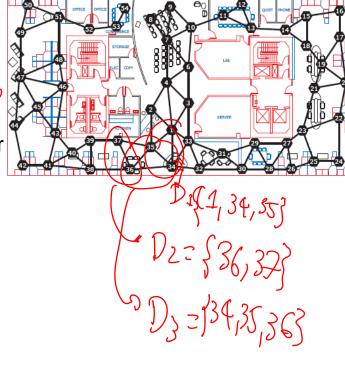
Factorization in Markov networks

- Given an undirected graph *H* over variables **X**={X₁,...,X_n}
- A distribution P factorizes over H if $\cancel{2}$



- \square non-negative potentials (or factors) $\phi_1(\mathbf{D_1}),..., \phi_m(\mathbf{D_m})$
 - also known as clique potentials
- such that

$$P(X) = \frac{1}{2} \prod_{i=1}^{m} \Phi_i(D_i)$$

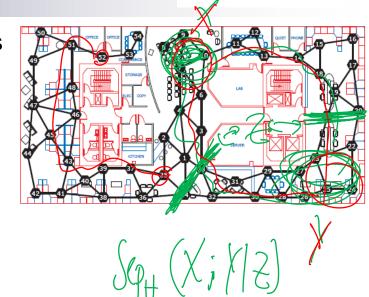


 Also called Markov random field H, or Gibbs distribution over H

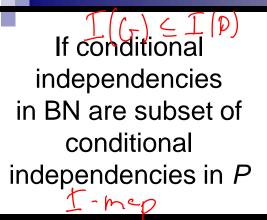
Global Markov assumption in Markov networks

A path $X_1 - ... - X_k$ is **active** when set of variables **Z** are observed if none of $X_i \in \{X_1, ..., X_k\}$ are observed (are part of **Z**)

Variables X are separated from Y given Z in graph H, sep_H(X;Y|Z), if there is no active path between any XeX and any YeY given Z



The BN Representation Theorem



Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Independencies are sufficient to obtain BN structure G

If joint probability distribution:

you a BN

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

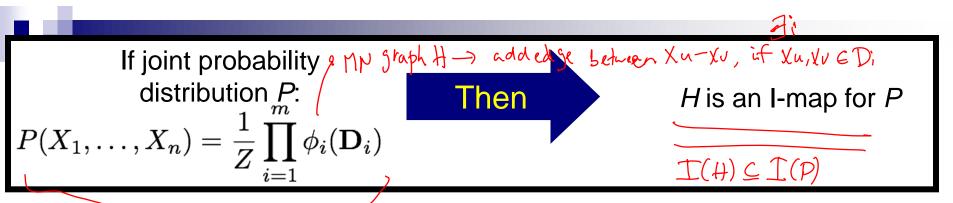
Important because:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathsf{Pa}_{X_i})$

I(G) C J(P)

Read independencies of P from BN structure G

Markov networks representation Theorem 1



 If you can write distribution as a normalized product of factors) Can read independencies from graph

What about the other direction for Markov

networks?

If H is an I-map for P

Then

joint probability distribution P:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

Counter-example: $X_1,...,X_4$ are binary, and only eight assignments

have positive probability:

(0,0,0,0) (1,0,0,0)(1,1,0,0) (1,1,1,0)(0,0,1,1)(0,1,1,1) (1,1,1,1)

For example, $X_1 \perp X_3 | X_2, X_4$: \square E.g., $P(X_1=0|X_2=0, X_4=0)$ $X_2 = 0$ $X_3 = 0$ $X_4 = 0$

But distribution doesn't factorize!!!

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)

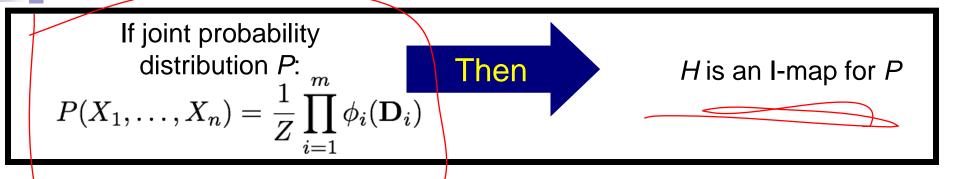
If *H* is an I-map for *P* and *P* is a positive distribution

joint probability distribution P: $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$

■ Positive distribution and independencies Practorizes over graph

$$\forall x P(x) > 0$$

Representation Theorem for Markov Networks



If *H* is an I-map for *P*and

P is a positive distribution

Then

joint probability distribution P:

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

Completeness of separation in Markov networks

- Theorem: Completeness of separation
 - □ For "almost all" distributions that P factorize over Markov network H, we have that I(H) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

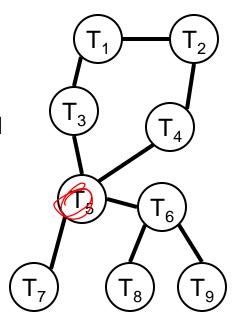
What are the "local" independence assumptions for a Markov network?

- In a BN G:
 - local Markov assumption: variable independent of non-descendants given parents
 - d-separation defines global independence
 - Soundness: For all distributions:
- In a Markov net H:
 - □ Separation defines global independencies
 - □ What are the notions of local independencies?

Local independence assumptions for a Markov network

- Separation defines global independencies
- Pairwise Markov Independence:

 - Markov Blanket: MB(A) = reighbor of Ain H
 - Variable A independent of rest given its neighbors



Equivalence of independencies in Markov networks

- **Soundness Theorem**: For all positive distributions *P*, the following three statements are equivalent:
 - □ P entails the global Markov assumptions

□ P entails the pairwise Markov assumptions

□ P entails the local Mărkov assumptions (Markov blanket)

$$A \perp \chi - MB(A) \mid MB(A)$$

may be dependent given X - SA,BS for almost all distributions $7A + B \times SA,BS$

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal I-maps?
 - A "simplest" I-map Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map
- Theorem: For positive distributions & Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, e.g.,

 - If P doesn't entail it, add edge:

Take pairwise Markov assumption: A not connected to B = DIf P doesn't entail it, add edge: A + B = DPH ALBIX-GA,B), add edge A-5

How about a perfect map?

- Remember perfect maps?
 - □ independencies in the graph are exactly the same as those in *P*
- For BNs, doesn't always exist
 - □ counter example: Swinging Couples

How about for Markov networks?

minimal I-mcg MN

A - B nota

P-mag

Unifying properties of BNs and MNs

BNs:

- give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
- but: require acyclicity, and thus no perfect map for swinging couples

MNs:

- give you: cycles, and perfect maps for swinging couples
- but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function

Remember PDAGS???

- ☐ skeleton + immoralities
- □ provides a (somewhat) unified representation
- see book for details

What you need to know so far about Markov networks

- Markov network representation:
 - undirected graph
 - potentials over cliques (or sub-cliques)
 - normalize to obtain probabilities
 - need partition function
- Representation Theorem for Markov networks
 - ☐ if P factorizes, then it's an I-map
 - □ if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
 - active paths and separation
 - pairwise Markov and Markov blanket assumptions
 - equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

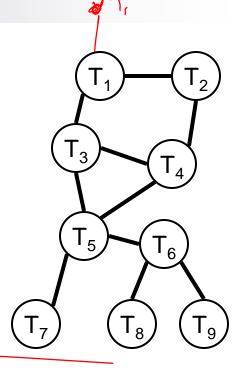
Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
 - \square Node potentials ψ_i (χ_i)

Edge potentials

Factorization:

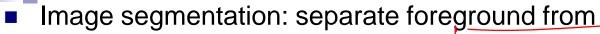
$$P(X) = \prod_{i \in \mathcal{A}} P(X_i) \prod_{i$$



graph, but only consider pairwise potentials more graphy

φi, (χ:, χ), ~ , ,)

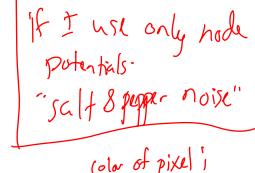
A very simple vision application



background

Graph structure:

- pairwise Markov net
- grid with one node per pixel



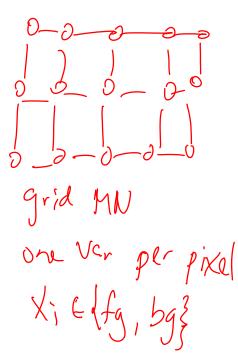
Node potential:

□ "background color" v. "foreground color" $\frac{d}{dt}$ fg = avg fg color $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$

My = avg Sq Color Edge potential:

neighbors like to be of the same class

"attractive potential" =)
$$\phi_i(x_i, x_j) = \frac{1}{59} \frac{1}{59} \frac{1}{10}$$



Logarithmic representation

Standard model:
$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

Log representation of potential (assuming positive potential):

also called the energy function

$$p(x) = \frac{1}{2} \prod_{i=1}^{n} (D_i) = \frac{1}{2} \prod_{i=1}^{n} e^{\log \varphi_i(D_i)} = \frac{2\log \varphi_i(D_i)}{2} physics$$

Log representation of Markov net:

$$\frac{\psi_{i}(D_{i}) = -\log \phi_{i}(D_{i})}{P(\chi) = \frac{1}{2} Q^{-1} \psi_{i}(D_{i})}$$

states with high energy have low probability

Log-linear Markov network (most common representation)

- □ e.g., indicator function

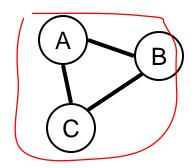
 Log-linear model over a Markov network H: itis or for Di = Di
 - \square a set of features $f_1[\mathbf{D}_1], \dots, f_k[\mathbf{D}_k]$
 - two f's can be over the same variables | ld., primise (og-linear mode)
 - \square a set of weights $w_1, ..., w_k$
 - usually learned from data

 w_1, \dots, w_k usually learned from data

 v_1, \dots, v_k v_1, \dots, v_k v_2, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_2, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_2, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_1, \dots, v_k v_2, \dots, v_k v_1, \dots, v_k •

Structure in cliques

Possible potentials for this graph:



(an't look

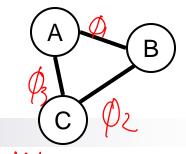
at graph 8

A phirwise -) P(AB), P(B,C)

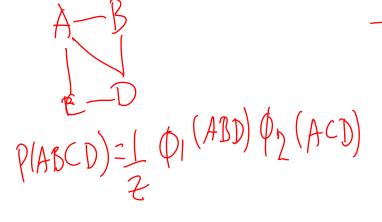
tell the difference

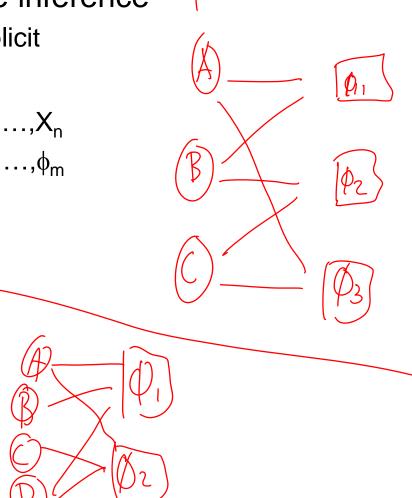
$$\phi(AC)$$

Factor graphs



- Very useful for approximate inference
 - Make factor dependency explicit
- Bipartite graph:
 - \square variable nodes (ovals) for $X_1, ..., X_n$
 - \square factor nodes (squares) for ϕ_1, \ldots, ϕ_m
 - \square edge $X_i \phi_i$ if $X_i \not\in Scope[\phi_i]$





Exact inference in MNs and Factor Graphs

- Variable elimination algorithm presented in terms of factors exactly the same VE algorithm can be applied to MNs & Factor Graphs
- Junction tree algorithms also applied directly here:
 - □ triangulate MN graph as we did with moralized graph
 - □ each factor belongs to a clique
 - □ same message passing algorithms

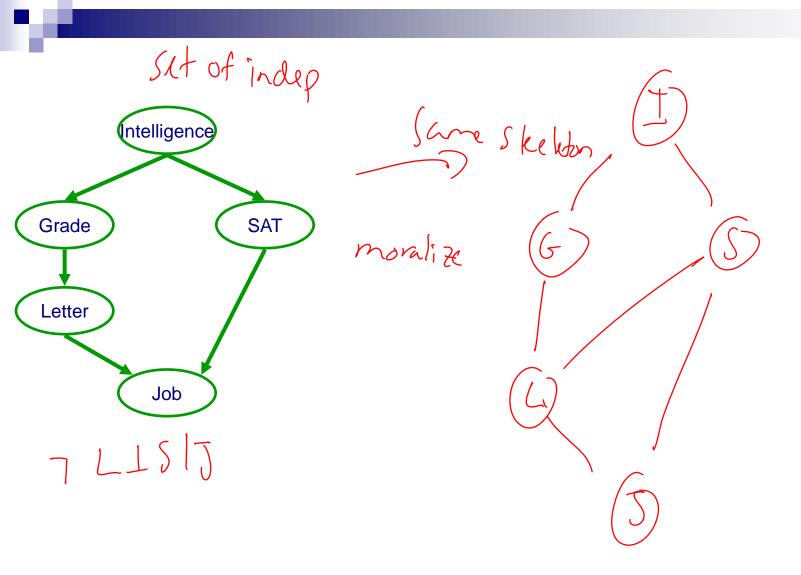
Summary of types of Markov nets

- Pairwise Markov networks
 - □ very common
 - potentials over nodes and edges
- Log-linear models
 - □ log representation of potentials
 - □ linear coefficients learned from data
 - ☐ most common for learning MNs
- Factor graphs
 - □ explicit representation of factors
 - you know exactly what factors you have
 - □ very useful for approximate inference

What you learned about so far

- Bayes nets
- Junction trees
- (General) Markov networks
- Pairwise Markov networks
 - Factor graphs
 - How do we transform between them?
 - More formally:
 - I give you an graph in one representation, find an I-map in the other

From Bayes nets to Markov nets



BNs MNs: Moralization

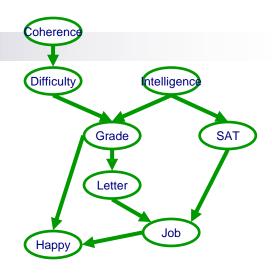
■ **Theorem**: Given a BN G the Markov net H formed by moralizing G is the minimal I-map for I(G)

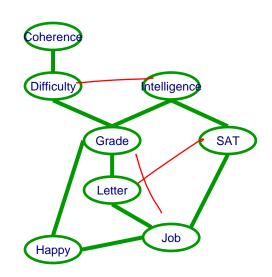
Intuition:

- in a Markov net, each factor must correspond to a subset of a clique
- the factors in BNs are the CPTs
- CPTs are factors over a node and its parents
- □ thus node and its parents must form a clique

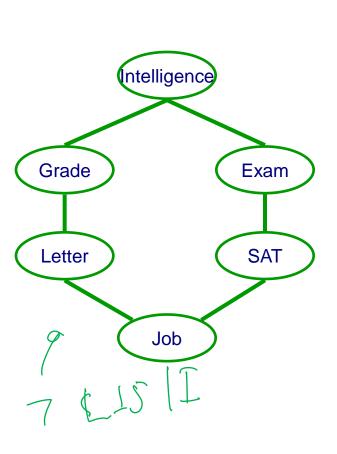
Effect:

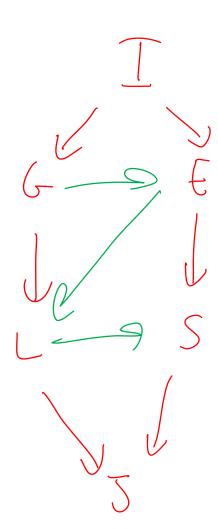
some independencies that could be read from the BN graph become hidden





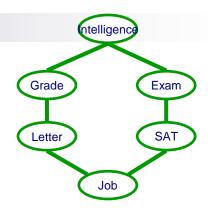
From Markov nets to Bayes nets





MNs! BNs: Triangulation

■ **Theorem**: Given a MN *H*, let *G* be the Bayes net that is a *minimal I-map* for I(*H*) then *G* must be **chordal**

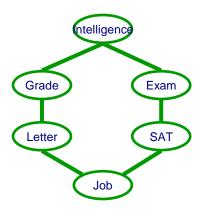


Intuition:

- v-structures in BN introduce immoralities
- these immoralities were not present in a Markov net
- □ the triangulation eliminates immoralities

Effect:

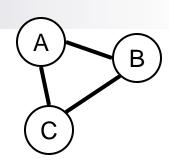
 many independencies that could be read from the MN graph become hidden



Markov nets v. Pairwise MNs

- Every Markov network can be transformed into a Pairwise Markov net
 - introduce extra "variable" for each factor over three or more variables
 - domain size of extra variable is exponential in number of vars in factor

- any local structure in factor is lost
- □ a chordal MN doesn't look chordal anymore



Overview of types of graphical models and transformations between them