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Normalization for computing

grobabilities
oft

Assignment Unnormalized | Normalized

To compute actual probabilities, must compute 7 300000 001
. . .y . a [0 0| dt 300000 0.04
normalization constant (also called partition function) a0 |60 et | a0 300000 0.04
a’ | % et | dt 30 4.1-106

- a’ | bt || d° 500 6.9-107°

?CA FbCHD} ’"__L (pl (4 B) @L(BC CCD) ( a’ [ bt || dt 500 6.9-10—°
P R t DA a bt et | d 500000013 (0.6

a | bt |t | a 500 6.9 T~

at [0 0| d° 100 1.4.107°

Z_ i S ""” a' | B9 | d 1000000 0.14
L0 et | d 100 1.4.107°

?Z qs\ (L(IL') C&2(é CC> ?3 (Cfo @4/(/% %i iﬁf E:) Eﬁﬁl’ 1_(1)8 iiigif

a' | bt 60 dt 100000 . 0.014

al | bt |t | d 100000 0.014

at | bt et | dt 100000 0.014

Computing pWard' I Must sum over

all possible assignments —
Con w L \/b (& CMP(AJFC ’2\

\ ov Ndﬁwovk AN
\/S; ﬁa o Jr,/ut\«/éu')f)
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m  Given an undirected graph H over variables
X={X{,.., X} T ,
— 0. ol
m Adistribution P factorizes over H if 8 o V,\MWW ¥ R P=p
subsets of variables D,cX,..., D,cX, such that the D, ar| \ . N\

fully connected in H

ngrw&t_ixe pot'ecntials (or factors) ¢,(D,),..., (D)

m also known as clique potentials
I —
such that

L) :/‘%7 . O

m Also called Markov random field H, or Gibbs
distribution over H
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Global Markov assumption in
Markov networks
S

m  Apath X; —... = X, IS active when set of variables
Zare observed if none of X; £{X;,...,. X} are
observed (are part of Z)

m Variables X are separated from Y given Z in
graph H, sep,(X;Y|Z), if there is no active path
between any XX and any YZY given Z

T%"Wﬂ% BRLYR

\
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The BN Representation Theorem

L) S LIP
It conditional Joint probability

distribution:

Independencies

In BN are subset of

conditional n
independencies in P P(X1,..., Xn) = _HIP (Xi| Pay,)
1 - P~ep =

—

Important because:
Independencies are sufficient to obtain BN structure G

Then conditional

If joint probability independencies
distribution:

conditional
independencies in P

Important because: TG L4
Read independencies of P from BN structure G

10-708 — [ ICarlos Guestrin 2006-2008



Markov networks representation Theorem 1

If joint probablllt NN 9faph = wdd B Lot Xumsv, W v €D
d|Str|but|0n P H |S an |- map for P
P(X4,...

T(H) ¢ TP

m |f you can write distribution as a normalized product of
factors ) Can read independencies from graph
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What about the other direction for Markov
networks ? ')

joint probability
distribution P:

inaryv, and on

m Counter-example: X,,...,X, )
' (1,0,0,0) (1,1,0,0)

have positive probability:

(1,1,1,0) N Zlo\t/€

L,?\/g (0,0,1,1) (0,1,1,1) (1,1,1,1) P”Oé-¢
Ve de W ks s
m For example, XlLX3|X2,X4:L’ ALY all ¢ ey
E.g., P(X,=0|X,=0, X,=0) — : /7(\\ _ z
e
o
2 Yg Amep PP

m But distribution doesn’t factorize!l!
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Markov networks representation Theorem 2
Hammersley-Clifford Theorem)
Z If His an I-map for P joint probability

and distribution P:
P is a positive distribution

m Positive distribution and independenciesé)’ factorizes
over graph

e P 20



Representation Theorem for
Markov Networks

If joint probability

distribution P: His an I-map for P
1

Z -

——

If H is an I-map for P —v joint probability
and distribution P:

1




Completeness of separation in
Markov networks
"

m Theorem: Completeness of separation

For “almost all” distributions that P factorize over Markov
network H, we have that

“almost all” distributions: eptfora set of measure zero of
parameterizations of the Potentials (assuming no finite set of
parameterizations has positive measure)

m Analogous to BNs
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What are the “local” independence
] assumgtions for a Markov network?

m InaBNG
local Markov assumption: variable independent of
non-descendants given parents
d-separation defines global independence
Soundness: For all distributions:

m In a Markov net H:
Separation defines global independencies
What are the notions of local independencies?
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Local iIndependence assumptions
for a Markov network
" B

m Separation defines global independencies

m Pairwise Markov Independence:
Pairs of non-adjacent variables A,B are independent given all

= gven:

Markov Blanket: V\%(A) > Ninhbug oF kST
Variable A independent of rest given its neighbors

12



Equivalence of independencies in
Markov networks
SN

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:

P entails the global Markov assumptions

Seor 0 Y] 2] o ALY [2

P entails the pairwise Markov assumptions

AR IN-148

P entails the local Markov assumptions (Markov blanket)

AL\ 1l

/&g’\% o Le ﬂ@&fﬁ/\&@'\’% Ut é %
Lof CmasT f«‘ Aﬂt‘”\bﬁmﬁﬁ‘{‘b 7{ 4




Minimal I-maps and Markov
Networks

A fully conngted graphis an I-map

Remember minimal I-maps?
A “simplesWDEreting an edge makes it no longer an I-map

In a BN, there is no unigue minimal I-map

Theorem: For positive distributions & Markov network, minimal I-map is
unique!! T

ﬁays to find minimal I-map, e.g., -
Take pairwise Markov assumption: A not CO”"’WW{ _’[O E =)

If P doesn't entail it, add edge: A ’L/B (>< i {AI}%

?# ALBNAAD | add el 4
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How about a perfect map?
" J
m Remember perfect maps?
Independencies in the graph are exactly the same as those in P

m For BNs, doesn’t always exist /4\
counter example: Swinging Couples \ B/
m How about for Markov networks?
Jol |
N Mnimal Lomed

N (S Ai% A — ) o
\JL/ 7/HMC \/ p-reg

C
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Unifying properties of BNs and MNs

" A
m BNSs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNS:

give you: cycles, and perfect maps for swinging couples

but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS???
skeleton + immoralities

provides a (somewhat) unified representation
—_—
see book for details
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What you need to know so far
about Markov networks
SR

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function

m Representation Theorem for Markov networks
if P factorizes, then it's an [-map
If P is an I-map, only factorizes for positive distributions

m Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions

m Minimal I-maps in MNs are unique
m Perfect maps don’t always exist
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Some common Markov networks

_and generalizations

m Pairwise Markov networks

m A very simple application in computer vision
m Logarithmic representation

m Log-linear models

m Factor graphs

18



Pairwise Markov Networks

" Y
m All factors are over single variables or pairs of @ @
variables:

Node potentials d); (X}B e
Edge potentials /).. G
m Facto?fizI;tion (P'3<7< f} o }Cérmc;we ;f\ '@
”)Cﬂﬂ V@ ﬁ @() %) ? oo
E (1)) ¢H
o@m d? b(\ V’Y> A erl? @SS BHU) (P‘d U

m Note that there may be bigger cligues in the
graph, but only consider pairwise potentials ™" ;uw}v

d)}s (K},){S/ r/‘;;/\>
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A very simple vision application
" I

m Image segmentation: separate foreground from
background "g T ust O“(j mﬂk
m  Graph structure: b fuls-

pairwise Markov net
grid with one node per pixel

r ﬂo\}g“

hjCH 5 fL

Gl o) O—p o s o
= Node potential: J | 2 | @l
“background color” v. “foreground coIon /4 ” 0 & 0— 0
Mgz 47 Fﬁ@[w §; Wi=f) = — i Iajdf&[—l
= QU Col()” <[lm: h/‘
o Eygzlge potentlal LP', (X = %7) = C ’L—’;f@” ﬂ””( MU
neighbors like to be of the same class oA Ve 4)6/ f’KQ(

1 f (\ﬂ

//O\H«rc\c’\\w_ V())f\,\lm :} (Dl “}WLS\

%\s Q{?%, bjjg
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Logarithmic representation

"
m Standard model: P(Xy,....X,) =

also called the energy function

60 =L (0 s im’%@ 170 i




Log-linear Markov network

Smost common representation)

m Feature is some function f [D] for some subset of variables D

e.g., indicator function 1“\/, /[}419390

m Log-linear model over aP/Ia?kov etwork H: o
a set of features f,[D,],..., f,[D,] iy o fr D] VDJ

m each D, is a subset of a clique in H &j i (ool .y
— e -, rfwsy - linea~
= two f's can be over the same variables pe 7 D; :W
a set of weights w,...,w, ) “/)@

m usually learned from data ( ("C/ (?Mo\r/ L)QCOOQL (oj?

k i, n W
szfa(Dz):| (risey besiigs wr‘f’b)é)

i=1 )U‘S(
4 B MN Wit PG‘) S

PO)= 0 & st bhan visky 2 ij)
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Structure In cliques
" J

m Possible potentials for this graph: Q'G)
\! E

(a4 + losk WC‘"H ~ KP(AEC)
f\ T Greph 5 / o
M puirwse -5 DAY {p,0)

—

Fel] Fhe diffioms P4 f)




Q” (5
Factor graphs
- .A 2

: : MA
m Very useful for approximate inference VZ\”" e
Make factor dependency explicit @

= Bipartite graph:

variable nodes (ovals) for X,,...,X,
factor nodes (squares) for ¢,,...,¢, @ @
edge X; — ¢; if X;&Scope[¢] <

A—b ( Dy
D W\j

?(%CD> :L (()I MBD) % (Nw @
t
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Exact inference in MNs and Factor

] Graghs

m Variable elimination algorithm presented in terms
of factors?exactly the same VE algorithm can be
applied to MNs & Factor Graphs

m Junction tree algorithms also applied directly here:
triangulate MN graph as we did with moralized graph

each factor belongs to a clique
same message passing algorithms
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Summary of types of Markov nets
"
m Pairwise Markov networks
very common
potentials over nodes and edges
m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs

m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference
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What you learned about so far
" A
a/Bayes nets
& Junction trees
® (General) Markov networks
“m Pairwise Markov networks
& Factor graphs

m How do we transform between them?

m More formally:

| give you an graph in one representation, find an I-map
In the other
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From Bayes nets to Markov nets

fAﬂL of ,,\duP
Qetigenc / el
Cormde> C RN /
/
= /
7 L1y Y



BNs+ MNs: Moralization
_ —

m Theorem: Given a BN G the Markov net
H formed by moralizing G is the minimal
I-map for I(G)

m Intuition:

In a Markov net, each factor must correspond
to a subset of a clique

the factors in BNs are the CPTs

—————

CPTs are factors over a node and its parents

_" —

thus node and its parents must form a clique

m Effect:

some independencies that could be read from
the BN graph become hidden
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From Markov nets to Bayes nets

w —
] )
n 0/7



MNSs | BNs: Triangulation

" A
m Theorem: Given a MN H, let G be the

Bayes net that is a minimal I-map for |(H)
then G must be chordal

m [Intuition:
v-structures in BN introduce immoralities

these immoralities were not presentin a
Markov net

the triangulation eliminates immoralities

m Effect:

many independencies that could be read from
the MN graph become hidden

10-708 — [ ICarlos Guestrin 2006-2008
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Markov nets v. Pairwise MNs
I

m Every Markov network can be
transformed into a Pairwise Markov net

introduce extra “variable” for each factor
over three or more variables

domain size of extra variable is exponential
In number of vars in factor

m Effect:
any local structure in factor is lost
a chordal MN doesn’t look chordal anymore
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Overview of types of graphical models

and transformations between them
=
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