Ex: minimum volume ellipsoid

- Given points $\underline{x}_1, \underline{x}_2, ..., \underline{x}_k$
- $\min_{\substack{A,x_{c} \\ (X_{i} X_{c})^{T} \\ A \in S^{n^{*}n}}} \underbrace{(X_{i} X_{c}) \leq 1}_{Vol (A) \propto \frac{1}{\sqrt{|A|}}}$ $\max_{\substack{A \in S^{n^{*}n} \\ A \geq 0}} \underbrace{Vol (A) \propto \frac{1}{\sqrt{|A|}}}_{Vol (A) = -\frac{1}{2} \ln |A| + const}$ $\max_{\substack{A \in S^{n^{*}n} \\ A \geq 0}} \underbrace{Vol (A) = -\frac{1}{2} \ln |A| + const}_{\sum_{\substack{A \in S^{n^{*}n} \\ A \geq 0}}}$

Schur complement

- Symmetric block matrix $M = \begin{pmatrix} A & B \\ B^{T} & C \end{pmatrix}$ Schur complement is $S = \begin{pmatrix} A & B \\ B^{T} & C \end{pmatrix}$ M & 0 iff $A \geq 0$ and $S \geq 0$

Back to min-volume ellipsoid

- $\max_{A,x_{c}} \log |A| \text{ s.t.}$ $(x_{i} - x_{c})^{T} A (x_{i} - x_{c}) \le 1 \quad i = 1, ..., k$ $A = A^{T}, A \ge 0$
- $\max_{A,B,u,z} \log |A|$ s.t.

Ex: manifold learning

- Given points $x_1, ..., x_m \in \mathbb{R}$ Find points $y_1, ..., y_m \in \mathbb{R}^d$ Preserving

 - Preserving local geometry
 - neighbor edges N $(i,j) \in N \bigoplus preserve geometry$ distances $\|y_i x_j\| = \|y_i y_j\|(i,j) \in N$
 - If we preserve distances we also preserve angles $(x_i - x_i) \cdot (x_i - x_e)$

Step 1: "embed" Rⁿ into Rⁿ

- While preserving local distances, move points to make manifold as flat as possible
- max
 - s.t.

Step 2: reduce to R^d

• Now that manifold is flat, just use PCA:

Maximizing variance

• max s.t.

• max s.t.

Summary

- Solve SDP to "embed" Rⁿ into Rⁿ
- Use PCA to embed R^n into R^d
- Called "semidefinite embedding" or "maximum variance unfolding"
- Problems?

Problem: solving SDP

- Kernel matrix K
- Idea: suppose we know a subspace that preserves geometry

Side note: non-Euclidean

- If original distances are not Euclidean, might not be able to duplicate them exactly in Euclidean Rⁿ
- Would need to soften constraints: approximately preserve local distances

Ex: convex games

• "Robin hood" game:

- shoot two arrows at target simultaneously

– Robin Hood's cost:

– Sheriff of Nottingham's reward:

Convex games: definition

- Players p_1, p_2, \dots, p_k
- p_i chooses x_i from convex set X_i all simultaneously
- Cost to p_i is $f_i(x_1, x_2, ..., x_k)$
- Cost f_i is convex in x_i for fixed x_{-i}
- Zero-sum:

2 players, $f_1(x_1, x_2) = -f_2(x_1, x_2)$

Equilibrium

- Minimax equilibrium: find
 - value v
 - distribution P(x)
- such that

Solving convex programs

- Linear programs:
- General CP:
- Interesting special cases: QP, SOCP, SDP

Separation oracle: QPs

Separation oracle: SOCPs

- SOC constraint: $||Ax + b|| \le c'x + d$
- Given x₀ that fails:

Separation oracle: SDPs

• SDP constraint:

$$A = x_1 A_1 + x_2 A_2 + \dots$$
$$A \in S_+$$

Multi-criterion optimization

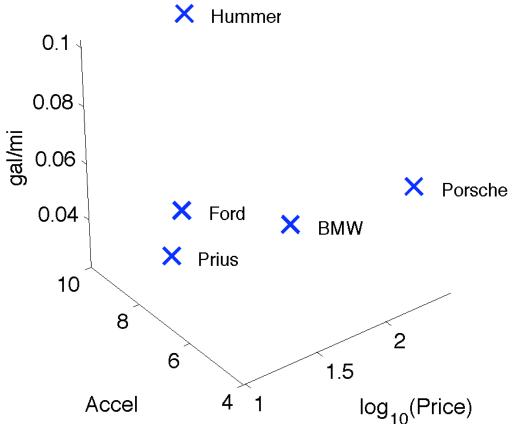
- Ordinary feasible region
- Indecisive optimizer: wants all of

Buying the perfect car

\$K 0-60 MPG

Pareto optimality

x* Pareto optimal =



Pareto examples

Scalarization

• To find Pareto optima of convex problem: