
1

Review of Linear Algebra

10-725 - Optimization

1/16/08 Recitation

Joseph Bradley

In this review

• Recall concepts we’ll need in this class

• Geometric intuition for linear algebra

• Outline:

– Matrices as linear transformations or as sets 
of constraints

– Linear systems & vector spaces

– Solving linear systems

– Eigenvalues & eigenvectors
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Basic concepts

• Vector in Rn is an ordered 
set of n real numbers.

– e.g. v = (1,6,3,4) is in R4

– “(1,6,3,4)” is a column 

vector:

– as opposed to a row 

vector:

• m-by-n matrix is an object 
with m rows and n columns, 
each entry fill with a real 
number:





















4

3

6

1

( )4361

















239

6784

821

Basic concepts

• Transpose: reflect vector/matrix on line:

( )ba
b

a
T

=















=









db

ca

dc

ba
T

– Note: (Ax)T=xTAT (We’ll define multiplication soon…)

• Vector norms:

– Lp norm of v = (v1,…,vk) is (Σi |vi|
p)1/p

– Common norms: L1, L2

– Linfinity = maxi |vi|

• Length of a vector v is L2(v)
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Basic concepts

• Vector dot product:

– Note dot product of u 

with itself is the square 

of the length of u.

• Matrix product:

( ) ( ) 22112121 vuvuvvuuvu +=•=•










++

++
=









=








=

2222122121221121

2212121121121111

2221

1211

2221

1211
,

babababa

babababa
AB

bb

bb
B

aa

aa
A

Basic concepts

• Vector products:

– Dot product:

– Outer product:

( )
2211

2

1

21 vuvu
v

v
uuvuvu

T +=







==•

( ) 







=








=

2212

2111

21

2

1

vuvu

vuvu
vv

u

u
uv

T
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Matrices as linear transformations









=

















5

5

1

1

50

05
(stretching)








−
=















 −

1

1

1

1

01

10
(rotation)

Matrices as linear transformations









=

















1

0

0

1

01

10
(reflection)









=

















0

1

1

1

00

01
(projection)

(shearing)






 +
=

















y

cyx

y

xc

10

1
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Matrices as sets of constraints

22

1

=+−

=++

zyx

zyx









=


























− 2

1

112

111

z

y

x

Special matrices

















f

ed

cba

00

0
















c

b

a

00

00

00



















ji

hgf

edc

ba

00

0

0

00

















fed

cb

a

0

00

diagonal upper-triangular

tri-diagonal lower-triangular

















100

010

001

I (identity matrix)
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Vector spaces
• Formally, a vector space is a set of vectors which is 

closed under addition and multiplication by real numbers.

• A subspace is a subset of a vector space which is a 

vector space itself, e.g. the plane z=0 is a subspace of 

R3 (It is essentially R2.).

• We’ll be looking at Rn and subspaces of Rn

Our notion of planes in R3

may be extended to 
hyperplanes in Rn (of 
dimension n-1)

Note: subspaces must 
include the origin (zero 
vector).

Linear system & subspaces
• Linear systems define certain 

subspaces

• Ax = b is solvable iff b may be 

written as a linear combination 

of the columns of A

• The set of possible vectors b 

forms a subspace called the 
column space of A

















=
























3

2

1

31

32

01

b

b

b

v

u

















=
















+
















3

2

1

3

3

0

1

2

1

b

b

b

vu
(1,2,1)

(0,3,3)
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Linear system & subspaces

� Null space: {(c,c,-c)}

















=
























0

0

0

31

32

01

v

u

















=
































0

0

0

431

532

101

z

y

x

The set of solutions to Ax = 0 forms a subspace 

called the null space of A.

� Null space: {(0,0)}

Linear independence and basis

















=
































0

0

0

|||

|||

3

2

1

321

c

c

c

vvv

Recall nullspace contained 

only (u,v)=(0,0).
i.e. the columns are linearly 

independent.

• Vectors v1,…,vk are linearly independent if 
c1v1+…+ckvk = 0 implies c1=…=ck=0

(0,1)

(1,0)

(1,1)

(2,2)

















=
























0

0

0

31

32

01

v

u

i.e. the nullspace is the origin
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Linear independence and basis

















+
















+
















=
















1

0

0

2

0

1

0

2

0

0

1

2

2

2

2

• If all vectors in a vector space may be 
expressed as linear combinations of v1,…,vk, 
then v1,…,vk span the space.

(0,0,1)

(0,1,0)

(1,0,0)

(.1,.2,1)

(.3,1,0)

(.9,.2,0)

















+
















+
















=
















1

2.

1.

2

0

1

3.

29.1

0

2.

9.

57.1

2

2

2

Linear independence and basis
• A basis is a set of linearly independent vectors which span the 

space. 

• The dimension of a space is the # of “degrees of freedom” of the 
space; it is the number of vectors in any basis for the space.

• A basis is a maximal set of linearly independent vectors and a 
minimal set of spanning vectors.

















+
















+
















=
















1

0

0

2

0

1

0

2

0

0

1

2

2

2

2

(0,0,1)

(0,1,0)

(1,0,0)

(.1,.2,1)

(.3,1,0)

(.9,.2,0)

















+
















+
















=
















1

2.

1.

2

0

1

3.

29.1

0

2.

9.

57.1

2

2

2
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Linear independence and basis

• Two vectors are orthogonal if their dot product is 0.

• An orthogonal basis consists of orthogonal vectors.

• An orthonormal basis consists of orthogonal vectors 

of unit length.

















+
















+
















=
















1

0

0

2

0

1

0

2

0

0

1

2

2

2

2

(0,0,1)

(0,1,0)

(1,0,0)

(.1,.2,1)

(.3,1,0)

(.9,.2,0)

















+
















+
















=
















1

2.

1.

2

0

1

3.

29.1

0

2.

9.

57.1

2

2

2

About subspaces

• The rank of A is the dimension of the column space of A.

• It also equals the dimension of the row space of A (the 
subspace of vectors which may be written as linear 

combinations of the rows of A).

















31

32

01 (1,3) = (2,3) – (1,0)

Only 2 linearly independent 

rows, so rank = 2.
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About subspaces
Fundamental Theorem of Linear Algebra:

If A is m x n with rank r,

Column space(A) has dimension r

Nullspace(A) has dimension n-r (= nullity of A)

Row space(A) = Column space(AT) has dimension r

Left nullspace(A) = Nullspace(AT) has dimension m - r

Rank-Nullity Theorem:  rank + nullity = n

(0,0,1)

(0,1,0)

(1,0,0)

















00

10

01
m = 3

n = 2
r = 2

Non-square matrices

















=
























1

1

1

32

10

01

2

1

x

x

















32

10

01
m = 3

n = 2
r = 2

System Ax=b may 

not have a solution 

(x has 2 variables 

but 3 constraints).










310

201

m = 2

n = 3
r = 2

System Ax=b is 

underdetermined 

(x has 3 variables 

and 2 constraints).









=


























1

1

310

201

3

2

1

x

x

x
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Basis transformations

• Before talking about basis transformations, 

we need to recall matrix inversion and 

projections.

Matrix inversion

• To solve Ax=b, we can write a closed-form solution 

if we can find a matrix A-1

s.t. AA-1 =A-1A=I (identity matrix)

• Then Ax=b iff x=A-1b:

x = Ix = A-1Ax = A-1b

• A is non-singular iff A-1 exists iff Ax=b has a unique 

solution.

• Note: If A-1,B-1 exist, then (AB)-1 = B-1A-1,

and (AT)-1 = (A-1)T
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Projections

































=
















2

2

2

000

010

001

0

2

2

(0,0,1)

(0,1,0)

(1,0,0)

(2,2,2)

a = (1,0)

b = (2,2)









==

0

2
a

aa

ba
c

T

T

Basis transformations

































=
















2

29.1

57.1

100

2.12.

1.3.9.

2

2

2

































=
















2

2

2

100

010

001

2

2

2

(0,0,1)

(0,1,0)

(1,0,0)

(.1,.2,1)

(.3,1,0)

(.9,.2,0)

We may write v=(2,2,2) in terms of an alternate basis:

Components of (1.57,1.29,2) are projections of v onto new basis vectors, 

normalized so new v still has same length.
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Basis transformations

Given vector v written in standard basis, rewrite as vQ

in terms of basis Q.

If columns of Q are orthonormal, vQ = QTv

Otherwise, vQ = (QTQ)QTv

Special matrices

• Matrix A is symmetric if A = AT

• A is positive definite if xTAx>0 for all non-zero x (positive semi-

definite if inequality is not strict)

( ) 222

100

010

001

cba

c

b

a

cba ++=
































( ) 222

100

010

001

cba

c

b

a

cba +−=
































−
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Special matrices

• Matrix A is symmetric if A = AT

• A is positive definite if xTAx>0 for all non-zero x (positive semi-

definite if inequality is not strict)

• Useful fact: Any matrix of form ATA is positive semi-definite.

To see this, xT(ATA)x = (xTAT)(Ax) = (Ax)T(Ax) ≥ 0

Determinants

• If det(A) = 0, then A is 
singular.

• If det(A) ≠ 0, then A is 
invertible.

• To compute:

– Simple example:

– Matlab: det(A)

bcad
dc

ba
−=








det



15

Determinants

• m-by-n matrix A is rank-deficient if it has 

rank r < m (≤ n)

• Thm: rank(A) < r iff

det(A) = 0 for all t-by-t submatrices,

r ≤ t ≤ m

Eigenvalues & eigenvectors

• How can we characterize matrices?

• The solutions to Ax = λx in the form of eigenpairs

(λ,x) = (eigenvalue,eigenvector) where x is non-zero

• To solve this, (A – λI)x = 0

• λ is an eigenvalue iff det(A – λI) = 0
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Eigenvalues & eigenvectors

(A – λI)x = 0

λ is an eigenvalue iff det(A – λI) = 0

Example:

















=

2/100

64/30

541

A

)2/1)(4/3)(1(

2/100

64/30

541

)det( λλλ

λ

λ

λ

λ −−−=
















−

−

−

=− IA

2/1,4/3,1 === λλλ

Eigenvalues & eigenvectors









=

10

02
A

Eigenvalues λ = 2, 1 with 

eigenvectors (1,0), (0,1)

(0,1)

(2,0)

Eigenvectors of a linear transformation A are not rotated (but will be 

scaled by the corresponding eigenvalue) when A is applied.

v
Av

(1,0)
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Solving Ax=b
x +  2y + z = 0

y - z = 2

x          +2z= 1

-------------

x +  2y + z = 0

y - z = 2

-2y + z= 1

-------------

x +  2y + z = 0

y - z = 2

- z = 5
















−

−

















−

−

















−

5100

2110

0121

1120

2110

0121

1201

2110

0121 Write system of 

equations in matrix 

form.

Subtract first row from 

last row.

Add 2 copies of second 

row to last row.

Now solve by back-substitution: z = -5, y = 2-z = 7, x = -2y-z = -9

Solving Ax=b & condition numbers

• Matlab: linsolve(A,b)

• How stable is the solution?

• If A or b are changed slightly, how much does it 

effect x?

• The condition number c of A measures this:

c = λmax/ λmin

• Values of c near 1 are good.


