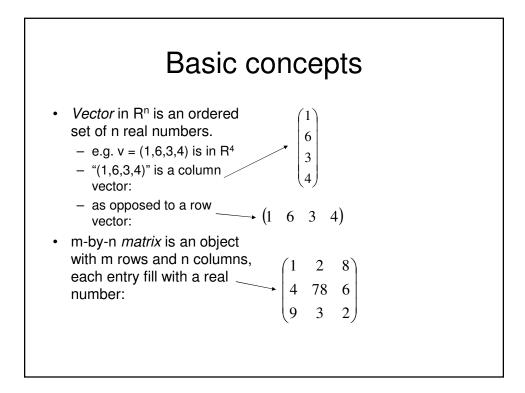
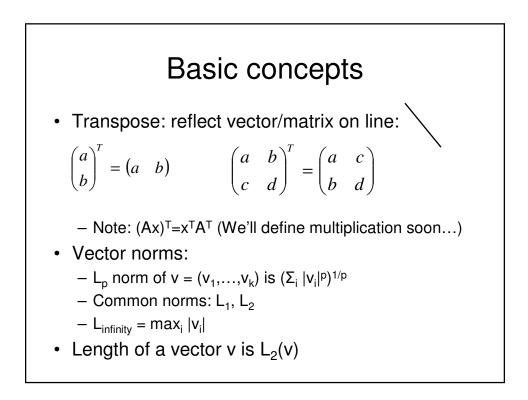
Review of Linear Algebra

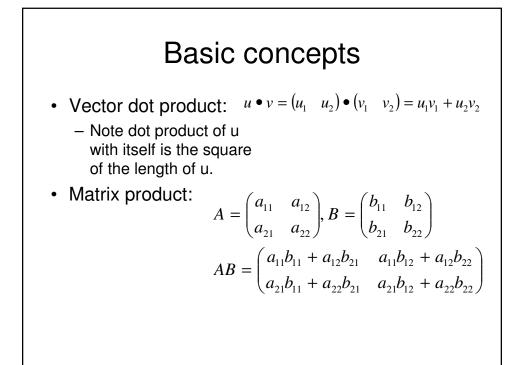
10-725 - Optimization 1/16/08 Recitation Joseph Bradley

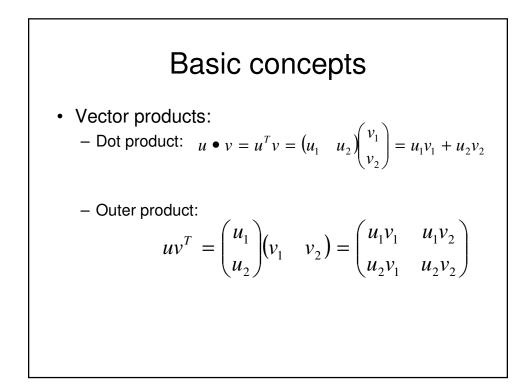
In this review

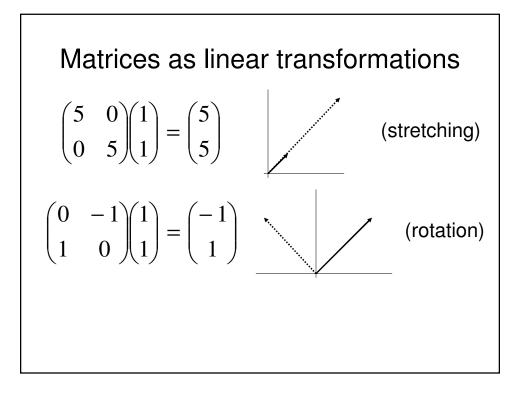
- · Recall concepts we'll need in this class
- · Geometric intuition for linear algebra
- Outline:
 - Matrices as linear transformations or as sets of constraints
 - Linear systems & vector spaces
 - Solving linear systems
 - Eigenvalues & eigenvectors

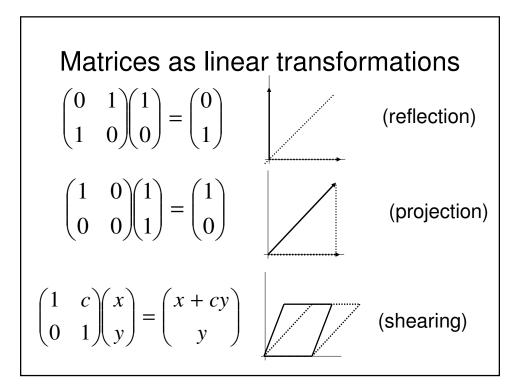


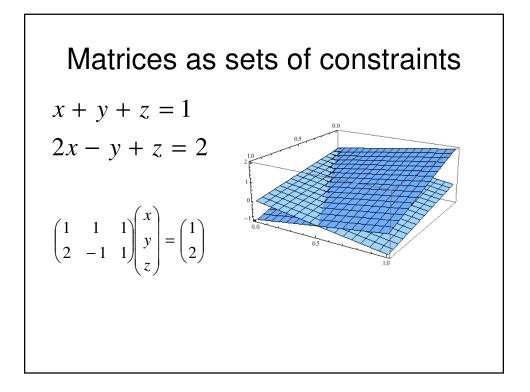


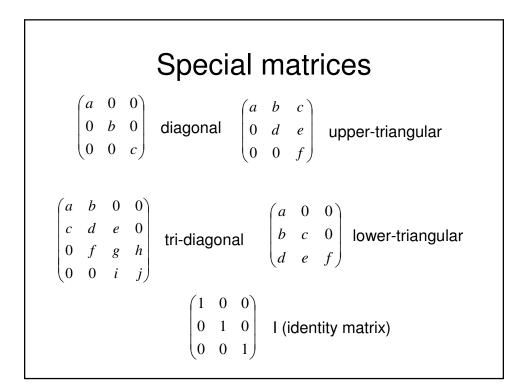


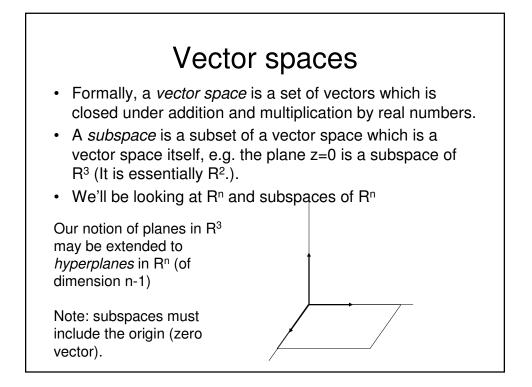


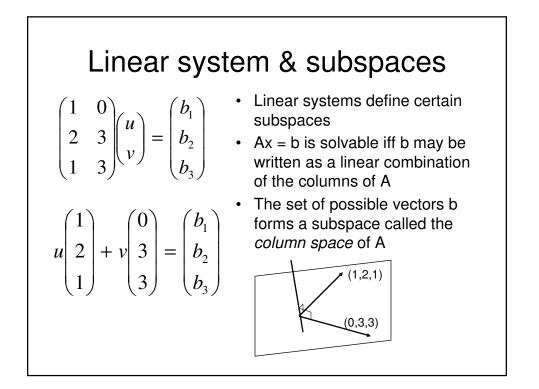


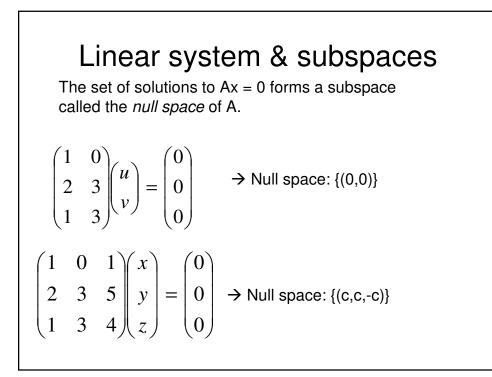


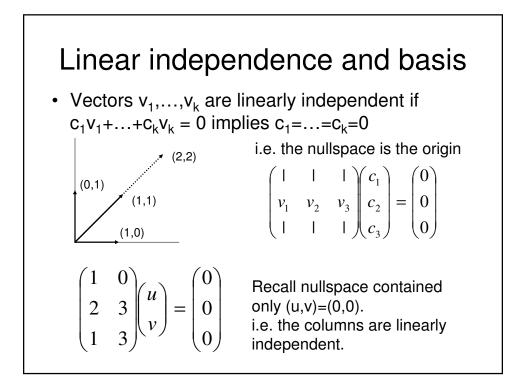


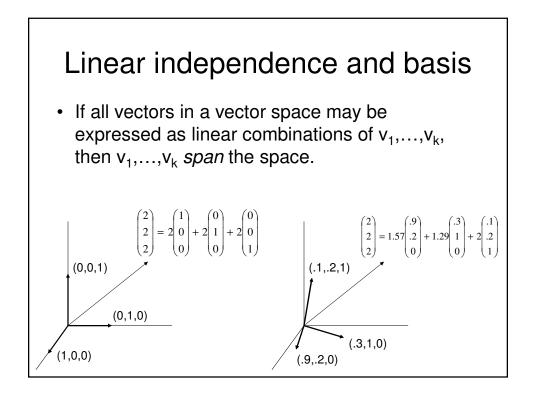


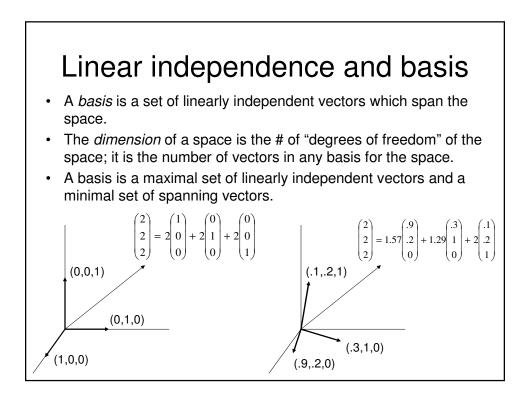


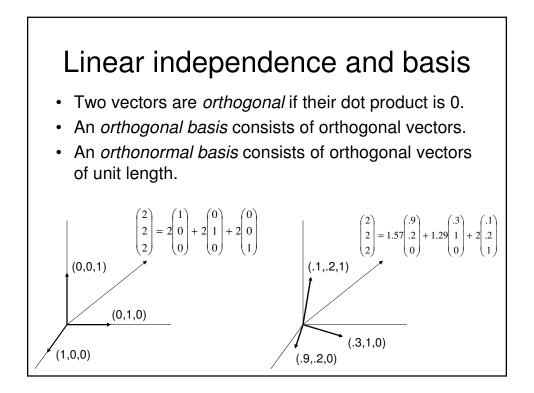


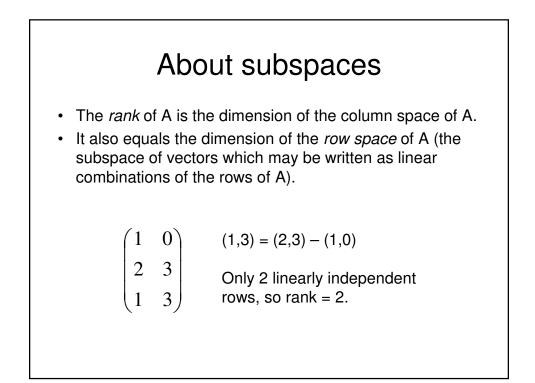


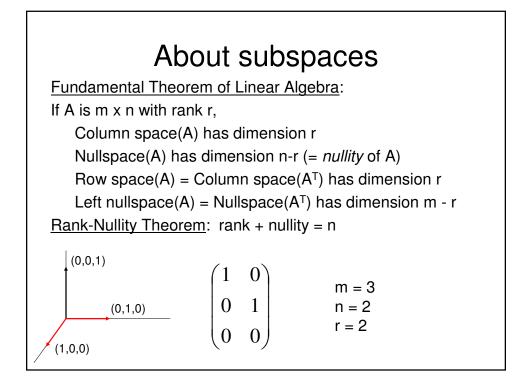


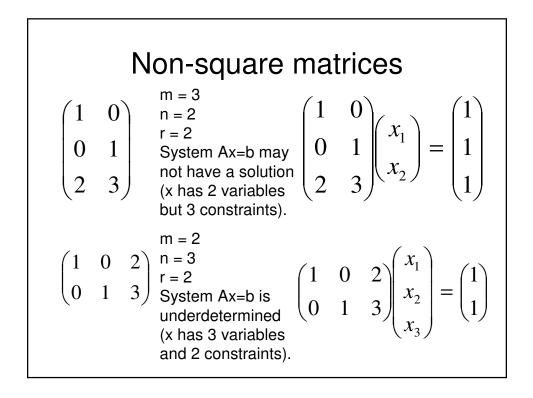


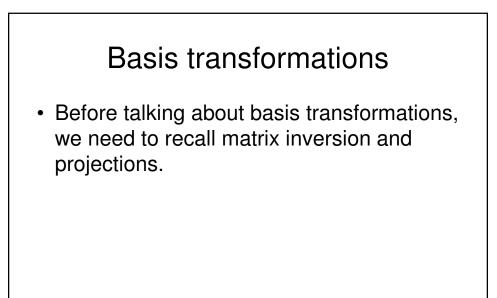


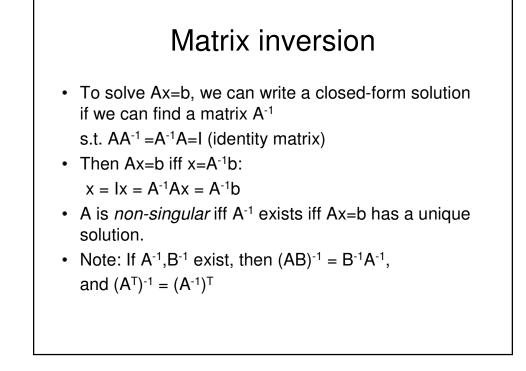


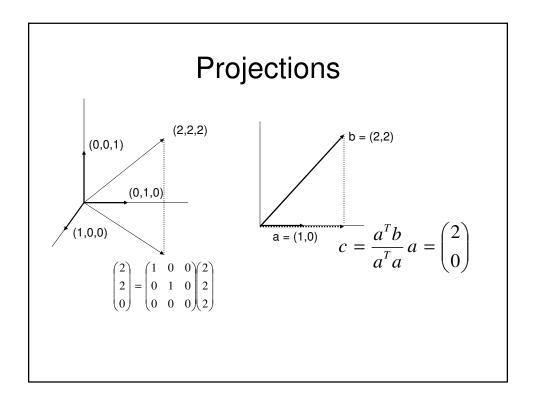


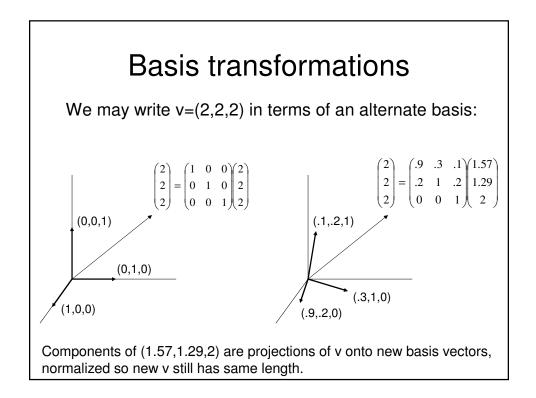










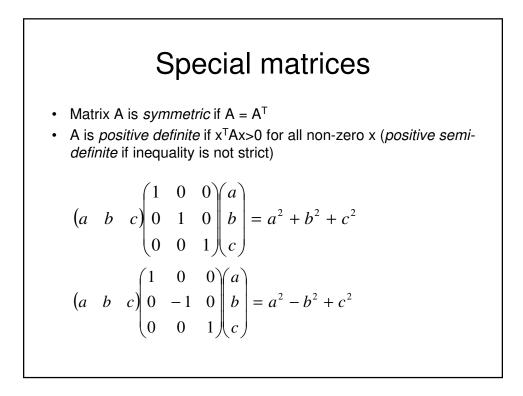


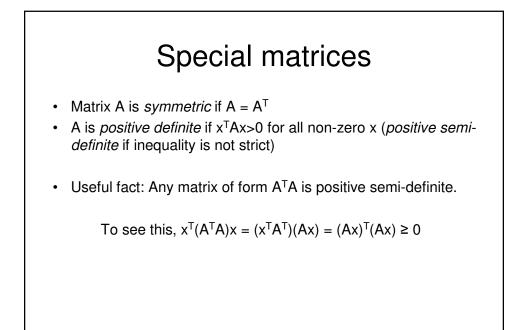
Basis transformations

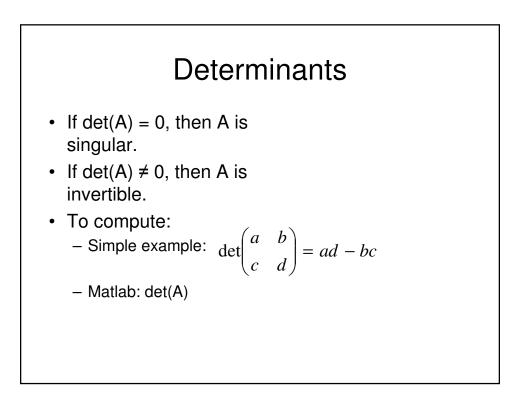
Given vector v written in standard basis, rewrite as $v_{\rm Q}$ in terms of basis Q.

If columns of Q are orthonormal, $v_Q = Q^T v$

Otherwise, $v_{Q} = (Q^{T}Q)Q^{T}v$

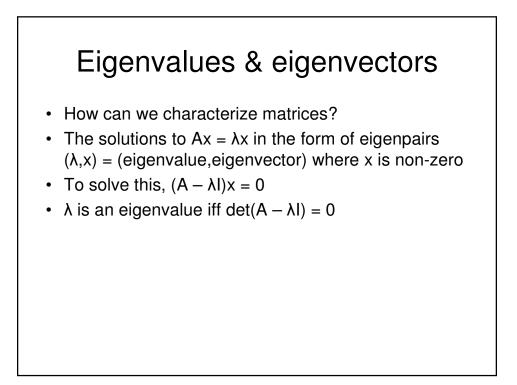






Determinants

- m-by-n matrix A is *rank-deficient* if it has rank r < m (≤ n)
- Thm: rank(A) < r iff det(A) = 0 for all t-by-t submatrices, r ≤ t ≤ m



Eigenvalues & eigenvectors

 $(A - \lambda I)x = 0$ $\lambda \text{ is an eigenvalue iff det}(A - \lambda I) = 0$ Example: $A = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 3/4 & 6 \\ 0 & 0 & 1/2 \end{pmatrix}$ $det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 4 & 5 \\ 0 & 3/4 - \lambda & 6 \\ 0 & 0 & 1/2 - \lambda \end{pmatrix} = (1 - \lambda)(3/4 - \lambda)(1/2 - \lambda)$ $\lambda = 1, \lambda = 3/4, \lambda = 1/2$

