
Improved Parallel Cache-Oblivious Algorithms for

Dynamic Programming [Extend Abstract]
∗

Guy E. Blelloch
†

Yan Gu
‡

Abstract
Emerging non-volatile main memory (NVRAM) technologies pro-

vide byte-addressability, low idle power, and improved memory-

density, and are likely to be a key component in the future memory

hierarchy. However, a critical challenge in achieving high perfor-

mance is in accounting for the asymmetry that NVRAM writes can

be signi�cantly more expensive than NVRAM reads.

In this paper, we consider a large class of cache-oblivious

algorithms for dynamic programming (DP) and try to reduce the

writes in the asymmetric setting while maintaining high parallelism.

To achieve that, our key approach is to show the correspondence

between these problems and an abstraction for their computation,

which is referred to as the k-d grids. Then by showing lower bound

and new algorithms for computing k-d grids, we show a list of

improved cache-oblivious algorithms of many DP recurrences in

the asymmetric setting, both sequentially and in parallel.

Surprisingly, even without considering the read-write asym-

metry (i.e., setting the write cost to be the same as the read cost

in the algorithms), the new algorithms improve the existing cache

complexity of many problems. We believe the reason is that the

extra level of abstraction of k-d grids helps us to better understand

the complexity and di�culties of these problems. We believe that

the novelty of our framework is of theoretical interest and leads to

many new questions for future work.

1 Introduction
The ideal-cache model [36] is widely used in designing

algorithms that optimize the communication between CPU

and memory. The model is comprised of an unbounded

memory and a cache of size M . Data are transferred between

the two levels using cache lines of size B, and all computation

occurs on data in the cache. An algorithm is cache-oblivious
if it is unaware of both M and B. The goal of designing such

algorithms is to reduce the cache complexity1
(or the I/O

cost indistinguishably) of an algorithm, which is the number

of cache lines transferred between the cache and the main

memory assuming an optimal (o�ine) cache replacement

policy. Sequential cache-oblivious algorithms are �exible

∗
Full version of this paper is available at arXiv:1809.09330

†
Carnegie Mellon University

‡
University of California, Riverside

1
In this paper, we refer to it as symmetric cache complexity to distinguish

from the case when reads and writes have di�erent costs.

and portable, and adapt to all levels of a multi-level memory

hierarchy. Such algorithms are well studied [7, 24, 31],

and in many cases they asymptotically match the best

cache complexity for cache-aware algorithms. Regarding

parallelism, Blelloch et al. [18] suggest that analyzing the

depth and sequential cache complexity of an algorithm

is su�cient for deriving upper bounds on parallel cache

complexity.

Recently, emerging non-volatile main memory

(NVRAM) technologies, such as Intel’s Optane DC Per-

sistent Memory, are readily available on the market, and

provide byte-addressability, low idle power, and improved

memory-density. Due to these advantages, NVRAMs

are likely to become a key component in the memory

hierarchy. However, a signi�cant programming challenge

arises due to an underlying asymmetry between reads and

writes—reads are much cheaper than writes in terms of both

latency, bandwidth, and throughput. This property requires

researchers to rethink the design of algorithms and software,

and optimize the existing ones accordingly to reduce the

writes. Such algorithms are referred to as write-e�cient
algorithms [40].

Many cache-oblivious algorithms are a�ected by this

challenge. Taking matrix multiplication as an example, the

cache-aware tiling-based algorithm [4] uses Θ(n3/B
√
M)

cache-line reads andΘ(n2/B) cache-line writes for square ma-

trices with size n-by-n. The cache-oblivious algorithm [36],

despite the advantages described above, uses Θ(n3/B
√
M)

cache-line reads and writes. When considering the more

expensive writes, the cache-oblivious algorithm is no longer

asymptotically optimal. Can we asymptotically improve

the cache complexity of these cache-oblivious algorithms?

Can they match the best counterpart without considering

cache-obliviousness? These remain to be open problems at

the very beginning of the study of write-e�ciency of algo-

rithms [14, 25].

In this paper, we provide the answers to these questions

for a large class of cache-oblivious algorithms that have

computation structures similar to matrix multiplication and

can be coded up in nested for-loops. Their implementations

are based on a divide-and-conquer approach that partitions

the ranges of the loops and recurses on the subproblems until

the base case is reached. Such algorithms are in the scope of

105
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Dimension Problems
Cache Complexity

Symmetric Asymmetric

k = 2 LWS/GAP*/RNA/knapsack recurrences Θ

(
C

BM

)
Θ

(
ω1/2C

BM

)
k = 3

Combinatorial matrix multiplication,

Θ

(
C

B
√
M

)
Θ

(
ω1/3C

B
√
M

)
Kleene’s algorithm (APSP), Parenthesis recurrence

Table 1: Cache complexity of the algorithms based on the k-d grid computation structures. Here C is the number of

algorithmic instructions in the corresponding computation. (*) For the GAP recurrence, the upper bounds have addition

terms as shown in Section 7.2.

dynamic programming (e.g., the LWS/GAP/RNA/Parenthesis

problems) and linear algebra (e.g., matrix multiplication,

Gaussian elimination, LU decomposition) [18, 26–28, 36, 47,

55, 58].

Since we try to cover many problems and algorithms,

in this paper we propose a level of abstraction of the

computation in these cache-oblivious algorithms, which is

referred to as the k-d grid computation structures (or k-d

grids, for short). A more formal de�nition is given Section 3.

This structure and similar ones were �rst used by Hong and

Kung [43] (implicitly) in their seminal paper in 1981, and then

by a subsequence of later work (e.g., [2, 8, 9, 28, 46]), mostly

on analyzing the lower bounds of matrix multiplication and

linear algebra problems in a variety of settings. By allowing

the output to be the same as the input, in this paper, we show

the relationship of the k-d grids and many other dynamic

programming problems, and new results (algorithms and

lower bounds) related to the k-d grids.

The �rst intellectual contribution of this paper is to

draw the connection between many dynamic programming

(DP) problems and k-d grids. Previous DP algorithms are

usually designed and analyzed based on the number of nested

loops, or the number of dimensions of which the input and

output are stored and organized. However, we observe

that the key underlying factor in determining the cache

complexity of these computations is the number of input
entries involved in each basic computation cell, and such a

relationship will be de�ned formally later in Section 3. A few

examples (e.g., matrix multiplication, tensor multiplication,

RNA and GAP recurrences) are also provided in Section 3 to

illustrate the idea. This property is re�ected by the nature of

the k-d grids, and the correspondence between the problems

and the k-d grids is introduced in Section 7 and 8. We note

that such a relationship for an DP algorithm can be much

more complicated than the linear algebra algorithms, and

in many cases the computation of one algorithm consists of

many (e.g., O(n)) k-d grids.

The second intellectual contribution of this paper is a list

of new results fork-d grids. We �rst discuss the lower bounds

to compute such k-d grids considering the asymmetric cost

between writes and reads (in Section 4). Based on the analysis

of the lower bounds, we then propose algorithms with the

matching upper bound to compute a k-d grid (in Section 5).

Finally, we also show how to parallelize the algorithm in

Section 6. We note that the approach for parallelism is

independent of the asymmetric read-write cost so that the

parallel algorithms can be applied to both symmetric and

asymmetric algorithms.

In summary, we have shown the correspondence be-

tween the problems and the k-d grids, new lower and upper

cache complexity bounds for computing the k-d grids in the

asymmetric setting, and parallel algorithms in both symmet-

ric and asymmetric settings. Putting all pieces together, we

can show lower and upper cache complexity bounds of the

original problems in both the symmetric and asymmetric

settings, as well as spans (length of dependence) for the al-

gorithms. The cache complexity bounds are summarized in

Table 1, and the results of the asymmetric setting answer the

open problem in [14]. The span bound is analyzed for each

speci�c problem and given in Section 7 and the full version

of this paper.

Surprisingly, even without considering the read-write

asymmetry (i.e., setting the write cost to be the same as the

read cost in the algorithms), the new algorithms proposed in

this paper improve the existing cache complexity of several

problems. We believe the reason is that the extra level of

abstraction of k-d grids helps us to better understand the

complexity and di�culties in these problems. Since k-d grids

are used to lower bounds, they decouple the computation

structures from the complicated data dependencies, which

exposes some techniques to improve the bounds that were

previously obscured. Also, k-d grids reveal the similarities

and di�erences between these problems, which allows the

optimizations in some algorithms to apply to other problems.

In summary, we believe that the framework for analyz-

ing cache-oblivious algorithms based on k-d grids provides

a better understanding of these algorithms. In particular, the

new theoretical results in this paper include:

• We provide write-e�cient cache-oblivious algorithms

(i.e., in the asymmetric setting) for all problems we dis-

cussed in this paper, including matrix multiplication,

all-pair shortest-paths, and a number of dynamic pro-

gramming recurrences. If a write costs ω times more

than a read (the formal computational model shown

106
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

in Section 2), the asymmetric cache complexity is im-

proved by a factor of Θ(ω1/2) or Θ(ω2/3) on each prob-

lem compared to the best previous results [16]. We also

show that this improvement is optimal under certain as-

sumptions (the CBCO paradigm, de�ned in Section 4.2).

• We show algorithms with improved symmetric cache

complexity on many problems, including the GAP re-

currence, protein accordion folding, and the RNA re-

currence. We show that the previous cache complexity

bound O(n3/B
√
M) for the GAP recurrence and protein

accordion folding is not optimal, and we improve the

bound to O(n2/B · (n/M + logmin{n/
√
M,
√
M})) and

Θ(n2/B · (1 + n/M)) respectively
2
. For RNA recurrence,

we show an optimal cache complexity of Θ(n4/BM),
which improves the best existing result by Θ(M3/4).

• We show the �rst race-free linear-span cache-oblivious

algorithms solving all-pair shortest-paths, LWS recur-

rences, and protein accordion folding. Some previous

algorithms [32, 56] have linear span, but they are not

race-free and rely on a stronger model (discussed in Sec-

tion 2). Our approaches are under the standard nested-

parallel model, race-free, and arguably simpler. Our al-

gorithms are not in-place, but we discuss in Section 6.1

about the extra storage needed.

We believe that the analysis framework is concise. In

this single paper (and full version in [19]), we discuss the

lower bounds and parallel algorithms on a dozen or so

computations and DP recurrences, which can be further

applied to dozens of real-world problems
3
. The results are

shown in both settings with or without considering the

asymmetric cost between reads and writes.

2 Preliminaries and Related Work

Ideal-cache model and cache-oblivious algorithms. In

modern computer architecture, a memory access is much

more expensive compared to an arithmetic operation due

to larger latency and limited bandwidth (especially in the

parallel setting). To capture the cost of an algorithm

on memory access, the ideal-cache model, a widely-used

cost model, is a two-level memory model comprised of

an unbounded memory and a cache of size M .
4

Data are

transferred between the two levels using cache lines of size

B, and all computation occurs on data in the cache. The

cache complexity (or the I/O cost indistinguishably) of an

algorithm is the number of cache lines transferred between

2
The improvement is O (

√
M) from an asymptotic perspective (i.e., n

approaching in�nity). For smaller range of n that O (
√
M) ≤ n ≤ O (M),

the improvement is O (n/
√
M/log(n/

√
M)) and O (n/

√
M) respectively for

the two cases. (The computation fully �t into the cache when n < O (
√
M).)

3
Like in this paper we abstract the “2-knapsack recurrence”, which �ts

into our k-d grid computation structure and applies to many algorithms.

4
In this paper, we often assume the cache size to be O (M) since it

simpli�es the description and only a�ects the bounds by a constant factor.

the cache and the main memory assuming an optimal (o�ine)

cache replacement policy. An algorithm on this model is

cache-oblivious with the additional feature that it is not

aware of the value of M and B. In this paper, we refer to

this cost as the symmetric cache complexity (as opposed

to asymmetric memory as discussed later). Throughout the

paper, we assume that the input and output do not �t into

the cache since otherwise the problems become trivial. We

usually make the tall-cache assumption that M = Ω(B2),

which holds for real-world hardware and is used in the

analysis in Section 7.3.

The nested-parallel model and work-span analysis. In

this paper, the parallel algorithms are within the standard

nested-parallel model, which is a computation model and

provides easy analysis of the work-e�ciency and parallelism.

In this model, a computation starts and ends with a single

root task. Each task has a constant number of registers

and runs a standard instruction set from a random access

machine, except it has one additional instruction called

FORK, which can create two independent tasks one at a

time that can be run in parallel. When the two tasks �nish,

they join back and the computation continues.

A computation can be viewed as a (series-parallel) DAG

in the standard way. The cost measures on this model are the

work and span—workW to be the total number of operations

in this DAG and span (depth) D equals to the longest path

in the DAG. The randomized work-stealing scheduler can

execute such a computation on the PRAM model with p
processors inW /p +O(D) time with high probability [22].

All algorithms in this paper are race-free [34]—no logically

parallel parts of an algorithm access the same memory

location and one of the accesses is a write. Here we do

not distinguish the extra write cost for asymmetric memory

onW and D to simplify the description of the results, and

we only capture this asymmetry using cache complexity.

Regarding parallel cache complexity, Blelloch et al. [18]

suggest that analyzing the span and sequential cache com-

plexity of an algorithm is su�cient for deriving upper bounds

on parallel cache complexity. In particular, let Q1 be the

sequential cache complexity. Then for a p-processor shared-

memory machine with private caches (i.e., each processor

has its own cache) using a work-stealing scheduler, the total

number of cache misses Qp across all processors is at most

Q1 +O(pDM/B) with high probability [1]. For a p-processor

shared-memory machine with a shared cache of sizeM+pBD
using a parallel-depth-�rst (PDF) scheduler, Qp ≤ Q1 [13].

We can extend these bounds to multi-level hierarchies of

private or shared caches, respectively [18].

Parallel and cache-oblivious algorithms for dynamic
programming. Dynamic Programming (DP) is an opti-

mization strategy that decomposes a problem into subprob-

lems with optimal substructure. It has been studied for over

sixty years [5, 10, 30]. For the problems that we consider

107
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

in this paper, the parallel DP algorithms were already dis-

cussed by a rich literature in the eighties and nighties (e.g.,

[33, 37, 39, 44, 45, 54]). Later work not only considers paral-

lelism, but also optimizes symmetric cache complexity (e.g.,

[18, 26–28, 32, 36, 47, 55, 56]).

Problem de�nitions. Since we are showing many optimal

cache-oblivious algorithms, we assume the operations in the

computations to be atomic using unit cost and unable to be

decomposed or batched (e.g., using integer tricks).

Algorithms with asymmetric read and write costs. In-

tel has already announced the new product of the Optane DC

Persistent Memory, which can be bought from many retail-

ers. The new memories sit on the main memory bus and are

byte-addressable. As opposed to DRAMs, the new memories

are persistent, so we refer to them as non-volatile RAMs

(NVRAMs). In addition, compared to DRAMs, NVRAMs

require signi�cantly lower energy, and have good read laten-

cies and higher density. Due to these advantages, NVRAMs

are likely to be a key component in the memory hierarchy.

However, a new property of NVRAMs is the asymmetric read

and write cost—write operations are more expensive than

reads regarding energy, bandwidth, and latency (benchmark-

ing results in [59]). This property requires researchers to

rethink the design of algorithms and software, and motivates

the need for write-e�cient algorithms [40] that reduce the

number of writes compared to existing algorithms.

Blelloch et al. [11, 14, 15] formally de�ned and analyzed

several sequential and parallel computation models that

take asymmetric read-write costs into account. The model

Asymmetric RAM (ARAM) extends the two-level memory

model and contains a parameter ω, which corresponds to

the cost of a write relative to a read to the non-volatile main

memory. In this paper, we refer to the asymmetric cache
complexity Q as the number of write transfers to the main

memory multiplied by ω, plus the number of read transfers.

This model captures di�erent system considerations (latency,

bandwidth, or energy) by simply plugging in a di�erent value

of ω, which allows algorithms to be analyzed theoretically

and practically. Similar scheduling results (upper bounds)

on parallel running time and cache complexity are discussed

in [11, 15] based on workW , span D and asymmetric cache

complexity Q of an algorithm. Based on this idea, many

interesting algorithms and lower bounds are designed and

analyzed by recent work [11, 12, 14, 15, 17, 20, 21, 41, 48].

In the analysis, we always assume that the input size is

much larger than the cache size (which is usually the case in

practice). Otherwise, both the upper and the lower bounds

on cache complexity also include the term for output—ω
times the output size. For simplicity, this term is ignored in

the asymptotic analysis.

3 k-d Grid Computation Structure
The k-d grid computation structure (short for the k-d grid)

is de�ned as a k-dimensional gridC of size n1 ×n2 × · · · ×nk .

Here we consider k to be a small constant greater than 1.

This computation requires k − 1 input arrays I1, · · · , Ik−1
and generates one output array O . The output array can

be the same as one of the input arrays. Each array has

dimension k − 1 and is the projection of the grid removing

one of the dimensions. Each cell in the grid represents

some certain computation that requires k − 1 inputs and

generates a temporary value. This temporary value is “added”

to the corresponding location in the output array using

an associative operation ⊕. The k − 1 inputs of this cell

are the projections of this cell removing each (but not the

last) of the dimensions, and the output is the projection

removing the last dimension. They are referred to as the

input and output entries of this cell. Figure 1 illustrates such

a computation in 2 and 3 dimensions. This structure (mostly

the special case for 3d as de�ned below) is used implicitly

and explicitly by Hong and Kung [43] and subsequence work

(e.g., [2, 8, 9, 28, 46]). In this paper, we will use it as a building

block to prove lower bounds and design new algorithms for

dynamic programming problems. When showing the cache

complexity, we assume the input and output entries must be

in the cache when computing each cell.

We refer to a k-d grid computation structure as a square
grid computation structure (short for a square grid) of size

n if it has size n1 = · · · = nk = n. More concisely, we say a

k-d grid has size n if it is square and of size n.

A formal de�nition of a square 3d grid of size n is as

follows:

Oi, j =
∑
k

д
(
(I1)i,k (I2)k, j , i, j,k

)
where 1 ≤ i, j,k ≤ n. д(·) computes a value based on the

two inputs (I1)i,k and (I2)k, j the indices, and some constant

amount of data that is associated with the indices. We assume

that computing д(·) takes unit cost. Each application of

д(·) corresponds to a cell, and (I1)i,k , (I2)k, j and Oi, j are

entries associated with this cell. The sum

∑
is based on an

associative operator ⊕. Similarly, the de�nition for the 2d

case is:

Oi =
∑
j

д
(
Ij , i, j

)
and we can extend it to non-square cases and for k > 3

accordingly.

For the DP recurrences the output array O is always

the same as one of the input array(s) I . In these algorithms,

some of the cells are empty to avoid cyclic dependencies. For

example, in a 2d grid, we may want to restrict 1 ≤ j < i . In

these cases, a constant fraction of the grid cells are empty. We

call such a grid an α-full grid for some constant 0 < α < 1

if at least an α ± o(1) fraction of the cells are non-empty. We

will show that all properties we show for a k-d grid also work

108
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Input 𝐼1

Output 𝑂 Output 𝑂

Input 𝐼1

Input 𝐼2

Figure 1: An illustration of a 2d and a 3d grid. The left �gure shows the 2d case where the input I1 and output O are 1d

arrays, and each computation cell д(·) requires exactly one entry in I1 as input, and update one entry in O . For the 3d case

on the right, the inputs and output are 2d arrays, and each computation cell д(·) requires one entry from input I1 and one

from input I2. The input/output entries of each cell are the projections of this cell on di�erent 2d arrays.

for the α-full case, since the constant α a�ects the analysis

of neither the lower bounds nor upper bounds.

We now show some examples that can be matched to

k-d grids. Multiplying two matrices of size n-by-n on a

semiring (·,+) (i.e.,Oi, j =
∑

k (I1)i,k (I2)k, j) exactly matches a

3d square grid. A corresponding 2d case is when computing a

matrix-vector multiplication Oi =
∑

j Ij · f (i, j) where f (i, j)
does not need to be stored. Such applications are commonly

seen in dynamic programming algorithms, and we refer

readers to Section 7 �rst if they are not familiar with dynamic

programming. For example, the widely used LWS recurrence

(Section 7.1) that computes D j = min0≤i<j {Di +w(i, j)} is a

2d grid, and the associative operator ⊕ is min. In this case the

input is the same array as the output. These are the simple

cases, so even without using the k-d grid, the algorithms for

them in the symmetric setting are already studied in [27, 36].

However, not all DP recurrences can be viewed as k-d

grids straightforwardly. As shown above, the key aspect of

deciding the dimension of a computation is the number of

inputs that each basic cell д(·) requires. For example, when

multiplying two dense tensors, although each tensor may

have multiple dimensions, each multiply operation is only

based on two entries and can be written in the previous 3d

form, so the computation is a 3d grid. Another example is

the RNA recurrence that computes a 2D array

Di, j = min

0≤p<i,0≤q<j
{Dp,q +w(p,q, i, j)} .

Assuming w(p,q, i, j) can be queried on-the-�y, the compu-

tation is the simplest 2d grid. Despite that the DP table has

size O(n2) and O(n4) updates in total, the computation is no

harder than the simplest LWS recurrence mentioned in the

previous paragraph. Similarly, in the GAP recurrence in Sec-

tion 7.2, each element in the DP table is computed using many

other elements similar to matrix multiplication. However,

each update only requires the value of one input element

and can be represented by a set of 2d grids, unlike matrix

multiplication that is a 3d grid and uses the values of two

input elements in each update. The exact correspondence

between the k-d grid and the DP recurrences are usually

more sophisticated than their classic applications in linear

algebra problems, as shown in Section 7, 8 and appendices in

the full paper. The cache-oblivious algorithms discussed in

this paper are based on k-d grids with k = 2 or 3, but we can

also �nd applications with larger k (e.g., a Nim game with

some certain rules on multiple piles [23]).

4 Lower Bounds
We �rst discuss the lower bounds of the cache complexities

for a k-d grid computation structure, which sets the target to

design the algorithms in the following sections. In Section 4.1

we show the symmetric cache complexity. This is a direct

extension of the classic result by Hong and Kong [43] to an

arbitrary dimension, and allowing the output array to be

the same as an input array. Then in Section 4.2 we discuss

the asymmetric cache complexity when writes are more

expensive than reads, which is more interesting and has a

more involved analyses.

4.1 Symmetric Cache Complexity The symmetric

cache complexity of a k-d grid is simple to analyze, yielding

the following result:

Theorem 4.1. ([43]) The symmetric cache complexity of a k-d

grid computation structure with size n is Ω
(

nk

M1/(k−1)B

)
.

Proof. In a k-d grid computation structure with size n there

are nk cells. Let’s sequentialize these cells in a list and

consider each block of cells that considers S = 2
kMk/(k−1)

consecutive cells in the list. The number of input entries

required of each block is the projection of all cells in

this block along one of the �rst k − 1 dimensions (see

Figure 1), and this is similar for the output. Loomis-Whitney

inequality [9, 53] indicates that the overall number of input

and output entries is minimized when the cells are in a square

k-d cuboid, giving a total of S (k−1)/k =
(
2M1/(k−1))k−1 ≥ 2M

input and output entries. Since only a total of M entries can

be held in the cache at the beginning of the computation

of this block, the number of cache-line transfer for the

109
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

input/output during the computation for such a block is

Ω(M/B). Since there are nk/S = Θ(nkM−k/(k−1)) such

blocks, the cache complexity of the entire computation is

Ω(M/B) · nk/S = Ω(nk/(M1/(k−1)B)).

Notice that the proof does not assume cache-

obliviousness, but the lower bound is asymptotically tight

by applying a sequential cache-oblivious algorithm that is

based on 2
k

-way divide-and-conquer [36].

4.2 Asymmetric Cache Complexity We now consider

the asymmetric cache complexity of a k-d grid computation

structure assuming writes are more expensive. Unfortu-

nately, this case is signi�cantly harder than the symmetric

setting. Again for simplicity we �rst analyze the square grid

of size n, which can be extended to the more general cases

similar to [36].

Interestingly, there is no speci�c pattern that a cache-

oblivious algorithm has to follow. Some existing algorithms

use “bu�ers” to support cache-obliviousness (e.g., [6]), and

many others use a recursive divide-and-conquer framework.

For the recursive approaches, when the cache complexity of

the computation is not leaf-dominated (like various sorting

algorithms [14, 36]), a larger fan-out in the recursion is

preferable (usually set to O(
√
n)). Otherwise, when it is leaf-

dominated, existing e�cient algorithms all pick a constant

fan-out in the recursion in order to reach the base case and

�t in the cache with maximal possible subproblem size. All

problems we discuss in this paper are in this category, so we

analyze under the following constraints. More discussion

about this constraint is in the full version of this paper.

Definition 1. (CBCO paradigm) We say a divide-and-
conquer algorithm is under the constant-branching cache-

oblivious (CBCO) paradigm if it has an input-value indepen-
dent computational DAG, such that each task has constant5

fan-outs of its recursive subtasks until the base cases, and the
partition of each task is decided by the ratio of the ranges in all
dimensions of the (sub)problem and independent of the cache
parameters (M and B).

Notice thatω is a parameter of the main memory, instead

of a cache parameter, so the algorithms can be aware of it.

One can de�ne resource-obliviousness [29] so that the value

of ω is not exposed to the algorithms, but this is out of the

scope of this paper.

We now prove the (sequential) lower bound on the

asymmetric cache complexity of a k-d grid under the CBCO

paradigm. The constant branching and the partition based

on the ratio of the ranges in all dimensions restrict the

computation pattern and lead to the “scale-free” property of

the cache-oblivious algorithms—the structure or the “shape”

of each subproblem in the recursive levels is similar, and only

5
It can exponentially depend on k since we assume k is a constant.

the size varies. The proof references this property when it is

used.

Theorem 4.2. The asymmetric cache complexity of k-d grid

is Ω
(

nkω1/k

M1/(k−1)B

)
under the CBCO paradigm.

Proof. We prove the lower bound using the same approach

as in Section 4.1—putting all operations (cells) executed

by the algorithm in a list and analyzing blocks of S cells.

The cache can hold M entries as temporary space for the

computation. For the lower bound, we only consider the

computation in each cell without considering the step of

adding the calculated value back into the output array, which

only makes the problem easier. Again when applying the

computation of each cell, the k input and output entries have

to be in the cache.

For a block of cells with size S , the cache needs to hold

the entries in I1, · · · , Ik−1 and O corresponding to the cells

in this block at least once during the computation. Similar

to the symmetric setting discussed above, the number of

entries is minimized when the sequence of operations are

within a k-d cuboid of size S = a1 × a2 × · · · × ak where

the projections on Ii and O are (k − 1)-d arrays with sizes

a1×· · ·×ai−1×ai+1×· · ·×ak and a1×· · ·×ak−1. Namely, the

number of entries is at least S/B · 1/ai for the corresponding

input or output array.

Note that the input arrays are symmetric to each other

regarding the access cost, but in the asymmetric setting

storing the output entries is more expensive since they have

to be written back to the asymmetric memory. As a result, the

cache complexity is minimized when a1 = · · · = ak−1 = a,

and let’s denote ak = ar where r is the ratio between ak
and other ai . Here we assume r ≥ 1 since reads are cheaper.

Due to the scale-free property that M and n are arbitrary, r
should be �xed (within a small constant range) for the entire

recursion.

Similar to the analysis for Theorem 4.1, for a block

of size S , the read transfers required by the cache is

Ω

(
nk

SB
·max{ak−1r −M, 0}

)
, where nk/S is the number of

such blocks, and max{ak−1r − M, 0}/B lower bounds the

number of reads per block because at most M entries can be

stored in the cache from the previous block. Similarly, the

write cost is Ω

(
ωnk

SB
·max{ak−1 −M, 0}

)
. In total, the cost

is:

Q = Ω

(
nk

SB
·

(
max{ak−1r −M, 0} + ωmax{ak−1 −M, 0}

))
= Ω

(
nk

SB

(
max{S (k−1)/kr 1/k −M, 0}

+ωmax

{
S (k−1)/k

r (k−1)/k
−M, 0

}))

110
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The second step is due to S = Θ(akr).
The cost decreases with increasing S , but it has two

discontinuous points S1 = Mk/(k−1)/r 1/(k−1) and S2 =
Mk/(k−1)r . Therefore,

Q = Ω

(
nk

S1B
S (k−1)/k
1

r 1/k+

nk

S2B

(
S (k−1)/k
2

r 1/k +
ωS (k−1)/k

2

r (k−1)/k

))
= Ω

(
nk

S1/k
1

B
r 1/k +

nk

S1/k
2

B

(
r 1/k +

ω

r (k−1)/k

))
= Ω

(
nk

M1/kB

(
r 1/k +

ω

r

))
Setting r = ω(k−1)/k minimizes

nk
M1/kB

(
r 1/k + ω

r

)
. In this case,

the lower bound of the asymmetric cache complexity Q is

Ω

(
nkω1/k

M1/(k−1)B

)
, and this leads to the theorem.

5 AMatching Upper Bound onAsymmetricMemory
In the sequential and symmetric setting, the classic cache-

oblivious divide-and-conquer algorithms to compute the k-

d grid (e.g., 3D case is shown in [36]) is optimal. In the

asymmetric setting, the proof of Theorem 4.2 indicates that

the classic algorithm is not optimal and o� by a factor of

ω(k−1)/k . This gap is captured by the balancing factor r in the

proof, which leads to more cheap reads and less expensive

writes in each sub-computation.

We now show that the lower bound in Theorem 4.2 is

tight by a (sequential) cache-oblivious algorithm with such

asymmetric cache complexity. The algorithm is given in

Algorithm 1, which can be viewed as a variant of the classic

approach with minor modi�cations on how to partition the

computation. Notice that in line 6 and 10, “conceptually”

means the partitions are used for the ease of algorithm

description. In practice, we can just pass the ranges of

indices of the subtask in the recursion, instead of actually

partitioning the arrays.

Compared to the classic approaches (e.g., [36]) that

partition the largest input dimension among ni , the only

underlying di�erence in the new algorithm is in line 4—

when partitioning the dimension not related to the output

array O (line 6–8), nk has to be ω(k−1)/k times larger than

n1, · · · ,nk−1. This modi�cation introduces an asymmetry

between the input size and output size of each subtask, which

leads to fewer writes in total and an improvement in the

cache e�ciency.

For simplicity, we show the asymmetric cache com-

plexity for square grids (i.e., n1 = · · · = nk) and n =
Ω(ω(k−1)/kM), and the general case can be analyzed simi-

lar to [36].

Algorithm 1: Asym-Alg(I1, · · · , Ik−1,O)
Input: k − 1 input arrays I1, · · · , Ik−1, read/write asymmetry

ω
Output: Output array O

1 The computation has size n1 × n2 × · · · × nk

2 if I1, · · · , Ik−1,O are small enough then
3 Solve the base case and return
4 i ← argmax

1≤i≤k {nixi } where xk = ω
−(k−1)/k

and x j = 1

for 1 ≤ j < k
5 if i = k then
6 (Conceptually) equally partition I1, · · · , Ik−1 into

{I1,a , I1,b }, · · · , {Ik−1,a , Ik−1,b } on k-th dimension

7 Asym-Alg(I1,a , · · · , Ik−1,a ,O)
8 Asym-Alg(I

1,b , · · · , Ik−1,b ,O)

9 else
10 (Conceptually) equally partition

I1, · · · , Ii−1, Ii+1, · · · , Ik−1,O into

{I1,a , I1,b }, · · · , {Ik−1,a , Ik−1,b }, {Oa ,Ob } on i-th
dimension

11 Asym-Alg(I1,a , · · · , Ii−1,a , Ii , Ii+1,a , · · · , Ik−1,a ,Oa)
12 Asym-Alg(I

1,b , · · · , Ii−1,b , Ii , Ii+1,b , · · · , Ik−1,b ,Ob)

Theorem 5.1. Algorithm 1 computes the k-d grid of size n

with asymmetric cache complexity Θ

(
nkω1/k

M1/(k−1)B

)
.

Proof. We separately analyze the numbers of reads and

writes in Algorithm 1. In the sequential execution of

Algorithm 1, each recursive function call only requires O(1)
extra temporary space. Also, our analysis ignores rounding

issues since they will not a�ect the asymptotic bounds.

When starting from the square grid at the beginning,

the algorithm �rst partitions in the �rst k − 1 dimensions

(via line 10 to 12) into ω(k−1)
2/k

subproblems (referred to

as second-phase subproblems) each with size (n/ω(k−1)/k) ×
· · · × (n/ω(k−1)/k) × n, and then partition k dimensions in

turn until the base case is reached.

The number of writes of the algorithmW (n) (to array

O) follows the recurrences:

W ′(n) = 2
kW ′(n/2) +O(1)

W (n) = (ω(k−1)/k)k−1 ·
(
W ′(n/ω(k−1)/k) +O(1)

)
where W ′(n) is the number of writes of the second-phase

subproblems with the size of O being n × · · · × n. The

base case is when W ′(M1/(k−1)) = O(M/B). Solving the

recurrences gives W ′(n/ω(k−1)/k) = O

(
nkω1−k

M1/(k−1)B

)
, and

W (n) = O

(
nkω(1−k)/k

M1/(k−1)B

)
.

We can analyze the reads similarly by de�ning R(n) and

R′(n). The recurrences are therefore:

R′(n) = 2
kR′(n/2) +O(1)

111
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

and

R(n) = (ω(k−1)/k)k−1 ·
(
R′(n/ω(k−1)/k) +O(1)

)
The di�erence from the write cost is in the base case since

the input �ts into the cache sooner when n = M1/(k−1)/ω1/k
.

Namely, R′(M1/(k−1)/ω1/k) = O(M/B). By solving the

recurrences, we have R′(n/ω(k−1)/k) = O

(
nkω2−k

M1/(k−1)B

)
and

R(n) = O

(
nkω1/k

M1/(k−1)B

)
.

The overall (sequential) asymmetric cache complexity

for Algorithm 1 is:

Q(n) = R(n) + ωW (n) = O

(
nkω1/k

M1/(k−1)B

)
and combining with the lower bound of Theorem 4.2 proves

the theorem.

Comparing to the classic approach, the new algo-

rithm improves the asymmetric cache complexity by a

factor of O(ω(k−1)/k), since the classic algorithm requires

Θ(nk/(M1/(k−1)B)) reads and writes. Again here we assume

nk−1 is much larger than M . Otherwise, the lower and upper

bounds should include Θ(ωnk−1/B) for storing the output O
on the memory.

6 Parallelism
We now show the parallelism in computing the k-d grids.

The parallel versions of the cache-oblivious algorithms only

have polylogarithmic span, indicating that they are highly

parallelized.

6.1 The Symmetric Case We �rst discuss how to paral-

lelize the classic algorithm on symmetric memory. For a

square grid, the algorithm partitions the k-dimensions in

turn until the base case is reached.

Notice that in every k consecutive partitions, there are

no dependencies in k − 1 of them, so we can fully parallelize

these levels with no additional cost. The only exception is

during the partition in the k-th dimension, whereas both

subtasks share the same output array O and cause write

concurrence. If such two subtasks are sequentialized (like

in [36]), the span is D(n) = 2D(n/2) +O(1) = O(n).
We now introduce the algorithm with logarithmic depth.

As just explained, to avoid the two subtasks from modifying

the same elements in the output array O , our algorithm

works as follows when partitioning the k-th dimension:

1. Allocating two stack-allocated temporary arrays with

the same size of the output array O before the two

recursive function calls.

2. Applying computation for the k-d grid in two subtasks

using di�erent output arrays that are just allocated (no

concurrency to the other subtask).

3. When both subtasks �nish, the computed values are

merged (added) back in parallel, with work proportional

to the output size and O(logn) span.

4. Deallocating the temporary arrays.

Notice that the algorithm also works if we only allocate

temporary space for one of the subtasks, while the other

subtask still works on the original space for the output array.

This can be a possible improvement in practice, but in high

dimensional cases (k > 2), it requires complicated details to

pass the pointers of the output arrays to descendant nodes,

aligning arrays to cache lines, etc. Theoretically, this version

does not change the bounds except for the stack space in

Lemma 6.1 when k = 2.

We �rst analyze the cost of square grids of size n in the

symmetric setting, and will discuss the asymmetric setting

later.

Lemma 6.1. The overall stack space for a subtask of size n is
O(nk−1).

Proof. The parallel algorithm allocates memory only when

partitioning the output (k-th) dimension. In this case, it

allocates and computes two subtasks of size n/2 where n is

the size of the output dimension. This leads to the following

recurrence:

S(n) = 2S(n/2) +O(nk−1)

The recurrence solves to S(n) = O(nk−1) when k > 2 since

the recurrence is root-dominated. When k = 2, we can

apply the version that only allocates temporary space for

one subtask, which decreases the constant before S(n/2) to

1, and yields S(n) = O(n). Note that we only need to analyze

one of the branches, since the temporary spaces that are not

allocated in the direct ancestor of this subtask have already

been deallocated, and will be reused for later computations

for the current branch.

With the lemma, we have the following corollary:

Corollary 6.1. A subtask of size n ≤ M1/(k−1) can be
computed within a cache of size O(M).

This corollary indicates that this modi�ed parallel algo-

rithm has the same sequential cache complexity since it �ts

into the cache in the same level as the classic algorithm (the

only minor di�erence is the required cache size increases by

a small constant factor). Therefore we can apply the a similar

analysis in [36] (k = 3 in the paper) to show the following

lemma:

Lemma 6.2. The sequential symmetric cache complexity of the
parallel cache-oblivious algorithm to compute a k-d grid of
size n is O(nk/M1/(k−1)B).

Assuming that we can allocate a chunk of memory in

constant time, the span of this approach is simplyO(log2 n)—
O(logn) levels of recursion, each with O(logn) span for the

additions [18].

112
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We have shown the parallel span and symmetric cache

complexity. By applying the scheduling theorem in Section 2,

we have the following result for parallel symmetric cache

complexity.

Corollary 6.2. The k-d grid of size n can be computed with
the parallel symmetric cache complexity of O(nk/M1/(k−1)B +
pM log

2 n) with private caches, or O(nk/M1/(k−1)B) with a
share cache of sizeM + pB log

2 n.

We now analyze the overall space requirement for this

algorithm. Lemma 6.1 shows that the extra space required is

S1 = O(n
k−1) for sequentially running the parallel algorithm.

Naïvely the parallel space requirement is pS1, which can be

very large. We now show a better upper bound for the extra

space.

Lemma 6.3. The overall space requirement of the parallel
algorithm to compute the k-d grid is O(p1/knk−1).

Proof. We analyze the total space allocated for all processors.

Lemma 6.1 indicates that if the root of the computation

on one processor has the output array of size (n′)k−1, then

the space requirement for this task is O((n′)k−1). There are

in total p processors. There can be at most 2
k

processors

starting with their computations of size nk−1/2k−1, (2k)2 of

size nk−1/(2k−1)2, until (2k)q processors of size nk−1/(2k−1)q

where q = log
2
k p. This case maximizes the overall space

requirement for p processors, which is:

log
2
k p∑

h=1

O

(
nk−1

(2k−1)h

)
· (2k)h = p ·O

(
nk−1

(2k−1)log2k p

)
= O(p1/knk−1)

This shows the stated bound.

Combining all results gives the following theorem:

Theorem 6.1. There exists a cache-oblivious algorithm to
compute a k-d grid of size n that requires Θ(nk) work,

Θ

(
nk

M1/(k−1)B

)
symmetric cache complexity, O(log2 n) span,

and O(p1/knk−1) main memory size.

6.2 The Asymmetric Case Algorithm 1 considers the

write-read asymmetry, which involves some minor changes

to the classic cache-oblivious algorithm. Regarding paral-

lelism, the changes in Algorithm 1 only a�ect the order of

the partitioning of the k-d grid in the recurrence, but not

the parallel version and the analysis in Section 6.1. As a

result, the span of the parallel variant of Algorithm 1 is also

O(log2 n). The extra space upper bound is actually reduced,

because the asymmetric algorithm has a higher priority in

partitioning the input dimensions that does not requires

allocation temporary space.

Lemma 6.4. The space requirement of Algorithm 1 on p pro-
cessors is O(nk−1(1 + p1/k/ω(k−1)/k)).

Proof. Algorithm 1 �rst partition the input dimensions

until q = O(ω(k−1)
2/k) subtasks are generated. Then the

algorithm will partition k dimensions in turn. If p <
q, then each processor requires no more than O(nk−1/q)
extra space at any time, so the overall extra space is O(p ·
nk−1/q) = O(n). Otherwise, the worst-case appears when

O(p/q) processors work on each of the subtasks. Based on

Lemma 6.3, the extra space is bounded by O((p/q)1/k · q ·
nk−1/q) = O(p1/knk−1/ω(k−1)/k). Combining the two cases

gives the stated bounds.

Lemma 6.4 indicates that Algorithm 1 requires extra

space no more than the input/output size asymptotically

when p = O(ωk−1), which should always be true in practice.

The challenge arises in scheduling this computation.

The scheduling theorem for the asymmetric case [11] re-

quires the non-leaf stack memory to be a constant size. This

contradicts the parallel version in Section 6.1. This problem

can be �xed based on Lemma 6.1 that upper bounds the over-

all extra memory on one task. Therefore the stack-allocated

array can be moved to the heap space. Once a task is stolen,

the �rst allocation will annotate a chunk of memory with

size order of |O | where O is the current output. Then all

successive heap-based memory allocation can be simulated

on this chunk of memory. In this manner, the stack memory

of each node corresponding to a function call is constant,

which allows us to apply the scheduling theorem in [11].

Theorem 6.2. Algorithm 1 with input size n requires Θ(nk)

work, Θ

(
nkω1/k

M1/(k−1)B

)
asymmetric cache complexity, and

O(log2 n) span to compute a k-d grid of size n.

7 Dynamic Programming Recurrences
In this section, we discuss a number of new results on dy-

namic programming (DP). To show lower and upper bounds

on parallelism and cache e�ciency in either symmetric and

asymmetric setting, we focus on the speci�c DP recurrences

instead of the problems. We assume each update in the re-

currences takes unit cost, just like the k-d grid in Section 3.

The goal of this section is to show how the DP recur-

rences can be viewed as and decomposed into the k-d grids.

Then the lower and upper bounds discussed in Section 4

and 5, as well as the analysis of parallelism in Section 6, can

be easily applied to the computation of these DP recurrences.

When the dimension of the input/output is the same as the

number of entries in each grid cell, then the sequential and

symmetric versions of the algorithms in this section are the

same as the existing ones discussed in [26–28, 36, 58], but

the others are new. Also, the asymmetric versions and most

parallel versions are new.

Symmetric cache complexity. We show improved algo-

rithms for a number of problems when the number of entries

per cell di�ers from the dimension of input/output arrays.

113
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Such algorithms are for the GAP recurrence, protein accor-

dion folding, and the RNA recurrence. We show that the

previous cache bound O(n3/B
√
M) for the GAP recurrence

and protein accordion folding is not optimal, and we improve

the bounds in Theorem 7.2 and 7.3. For the RNA recurrence,

we show an optimal cache complexity of Θ(n4/BM) in Theo-

rem 7.2, which improves the best existing result by O(M3/4).

Asymmetric cache complexity. By applying the asym-

metric version for the k-d grid computation discussed in

Section 5, we show a uniform approach to provide write-

e�cient algorithms for all DP recurrences in this section.

We also show the optimality of all these algorithms regard-

ing asymmetric cache complexity, except for the one for the

GAP recurrence.

Parallelism. The parallelism of these algorithms is provided

by the parallel algorithms discussed in Section 6. Polyloga-

rithmic span can be achieved in computing the 2-knapsack

recurrence, and linear span in LWS recurrence and protein

accordion folding. The linear span for LWS can be achieved

by previous work [32, 56], but they are not in the nested-

parallel model. Meanwhile, our algorithms are arguably

simpler.

7.1 LWS Recurrence We start with the simple example

of the LWS recurrence, where optimal sequential upper

bound in the symmetric setting is known [27]. We show

new results for lower bounds, write-e�cient cache-oblivious

algorithms, and new span bound.

The LWS (least-weighted subsequence) recurrence [42]

is one of the most commonly-used DP recurrences in practice.

Given a real-valued functionw(i, j) for integers 0 ≤ i < j ≤ n
and D0, for 1 ≤ j ≤ n,

D j = min

0≤i<j
{Di +w(i, j)}

This recurrence is widely used as a textbook algorithm

to compute optimal 1D clustering [50], line breaking [51],

longest increasing sequence, minimum height B-tree, and

many other practical algorithms in molecular biology and

geology [38, 39], computational geometry problems [3], and

more applications in [52]. Here we assume thatw(i, j) can be

computed in constant work based on a constant size of input

associated to i and j, which is true for all these applications.

Although di�erent special properties of the weight function

w can lead to speci�c optimizations, the study of recurrence

itself is interesting, especially regarding cache e�ciency and

parallelism.

We note that the computation of this recurrence is a

standard 2d grid. Each cell д(Di , i, j) = Di + w(i, j) and

updates D j as the output entry, so Theorem 4.1 and 4.2 show

lower bounds on cache complexity on this recurrence (the

grid is (1/2)-full).

We now introduce cache-oblivious implementation

considering the data dependencies. Chowdhury and Ra-

machandran [27] solve the recurrence with O(n2) work and

O(n2/BM) symmetric cache complexity. This algorithm is

simply a divide-and-conquer approach and we describe and

extend it based on k-d grids. A task of range (p,q) com-

putes the cells (i, j) such that p ≤ i < j ≤ q. To compute it,

the algorithm generates two equal-size subtasks (p, r) and

(r + 1,q) where r = (p + q)/2, solves the �rst subtask (p, r)
recursively, then computes the cells corresponding to w(i, j)
for p ≤ i ≤ r < j ≤ q, and lastly solves the subtask (r + 1,q)
recursively. Note that the middle step also matches a 2d

grid with no dependencies between the cells, which can be

directly solved using the algorithms in Section 5. This leads

the cache complexity and span to be:

Q(n) = 2Q(n/2) +Q2C (n/2)

D(n) = 2D(n/2) + D2C (n/2)

Here 2C denotes the computation of a 2d grid. The recur-

rence is root-dominated with base cases Q(M) = Θ(M/B)
and D(1) = 1. This solves to the following theorem.

Theorem 7.1. The LWS recurrence can be computed in Θ(n2)

work, Θ
(
n2

BM

)
and Θ

(
ω1/2n2

BM

)
optimal symmetric and asym-

metric cache complexity respectively, and O(n) span.

7.2 GAP Recurrence We now consider the GAP recur-

rence, where the analysis of the lower bounds and the new

algorithm make use of multiple grid computation. The GAP

problem [37, 39] is a generalization of the edit distance prob-

lem that has many applications in molecular biology, geology,

and speech recognition. Given a source string X and a target

string Y , other than changing one character in the string,

we can apply a sequence of consecutive deletes that corre-

sponds to a gap in X , and a sequence of consecutive inserts

that corresponds to a gap inY . For simplicity here we assume

both strings have length n, but the algorithms and analyses

can easily be adapted to the more general case. Since the

cost of such a gap is not necessarily equal to the sum of the

costs of each individual deletion (or insertion) in that gap,

we de�ne w(p,q) (0 ≤ p < q ≤ n) as the cost of deleting

the substring of X from (p + 1)-th to q-th character, w ′(p,q)
for inserting the substring of Y accordingly, and r (i, j) as the

cost to change the i-th character in X to j-th character in Y .

Let Di, j be the minimum cost for such transformation

from the pre�x of X with i characters to the pre�x of Y with

j characters, the recurrence for i, j > 0 is:

Di, j = min


min0≤q<j {Di,q +w

′(q, j)}
min0≤p<i {Dp, j +w(p, i)}

Di−1, j−1 + r (i, j)

corresponding to either replacing a character, inserting or

deleting a substring. The base case is set to be D0,0 = 0,

114
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

𝐷00 𝐷01

𝐷10 𝐷11

𝐷00 𝐷01

𝐷10 𝐷11

𝐷00 𝐷01

𝐷10 𝐷11

Recursively solve 𝐷00 Recursively solve 𝐷01, 𝐷10 Recursively solve 𝐷11

(a) (b) (c) (d) (e)

Figure 2: The new cache-oblivious algorithm for GAP

recurrences (n is the input size). The algorithm has �ve

steps. Step (a) �rst recursively solves the D00 quadrant, then

Step (b) apply n/2 inter-quadrant column updates and n/2
row updates, each corresponding to a 2d grid. After that, Step

(c) recursively solves D01 and D10, Step (d) applies another

n inter-quadrant updates, and �nally Step (e) recursively

solves D11. More details about maintaining cache-e�ciency

is described in Section 7.2 in details.

D0, j = w(0, j) and Di,0 = w
′(0, i). The diagonal dependency

from Di−1, j−1 will not a�ect the asymptotic analysis since

it will at most double the memory footprint, so it will not

show up in the following analysis.

The best existing algorithms on GAP Recurrence [27, 55]

have symmetric cache complexity ofO(n3/B
√
M). This upper

bound seems to be reasonable, since in order to compute

Di, j , we need the input of two vectors Di,q and Dp, j , which

is similar to matrix multiplication and other algorithms in

Section 8. However, as indicated in Section 3, each update

in GAP only requires one entry, while matrix multiplication

has two. Therefore, if we ignore the data dependencies, the

�rst line of the GAP recurrence can be viewed as n LWS

recurrences, independent of the dimension of i (similarly

for the second line). This derives a lower bound on cache

complexity to be that of an LWS recurrence multiplied by

2n, which is Ω(n3/BM) (assuming n > M). Hence, the gap

between the lower and upper bounds is Θ(
√
M).

We now discuss an I/O-e�cient algorithm to close this

gap. This algorithm is not optimal, but reduce the gap to

1 + o(1). How to remove the low-order term remains an

open problem. The new algorithm is similar to Chowdhury

and Ramachandran’s approach [27] based on divide-and-

conquer to compute the output D. The algorithm recursively

partitions D into four equal-size quadrants D00, D01, D10

and D11, and starts to compute D00 recursively. After this is

done, it uses the computed value in D00 to update D01 and

D10. Then the algorithm computes D01 and D10 within their

own ranges, updates D11 using the results from D01 and D10,

and solves D11 recursively at the end. The high-level idea is

shown in Figure 2.

We note that in Steps (b) and (d), the inter-quadrant

updates compute 2 × (n′/2) LWS recurrences (with no data

dependencies) each with size n′/2 (assuming D has size

n′ × n′). Therefore, our new algorithm reorganizes the data

layout and the order of computation to take advantage of

our I/O-e�cient and parallel algorithm on 2d grids. Since

the GAP recurrence has two independent sections, one in

a column and the other in a row, we keep two copies of

D, one organized in column-major and the other in row-

major. Then when computing on the inter-quadrant updates

as shown in Steps (b) and (d), we start 2 × (n′/2) parallel

tasks each with size n′/2 and compute a 2d grid on the

corresponding row or column, taking the input and output

with the correct representation. These updates require work

and cache complexity shown in Theorem 7.1. We also need

to keep the consistency of the two copies. After the update

of a quadrant D01 or D10 is �nished, we apply a matrix

transpose [18] to update the other copy of this quadrant

by taking a min as the associative operator ⊕, so that the

two copies of D are consistent before Steps (c) and (e). The

cost of the transpose is a lower-order term. For the quadrant

D11, we wait until the two updates from D01 and D10 �nish,

and then apply the matrix transpose to update the values in

each other. It is easy to check that by induction, the values

in both copies in a quadrant are up-to-date at the beginning

of each recursion in Step (c) and (e).

Our new algorithm still requiresΘ(n3)work since it does

not require extra asymptotic work relative to the original

algorithm.. The cache complexity and span satisfy:

Q(n) = 4Q(n/2) + 4(n/2) ·Q2C (n/2)

D(n) = 3D(n/2) + 2D2C (n/2)

The coe�cients are easily determined from the algorithm

in Figure 2. We �rst discuss the symmetric setting. The

base cases are Q(
√
M) = O(M/B) and Q2C (m) = O(m/B)

for m ≤ M . This is a “balanced” recurrence with O(M/B)
I/O cost per level for log

2

√
M levels. This indicates Q(M) =

O((M/B) log
2

√
M). The top-level computation is root domi-

nated since the overall number of cells in a level decreases

by a half after every recursion. Therefore, if n > M , Q(n) =
O(n2Q(M)/M)+O(n) ·Q2C (n) = O(n

2/B · (n/M + log
2

√
M)),

which is the base-case cost plus the top-level cost. Other-

wise, all input/output for each 2d grid in the inter-quadrant

update �t in the cache, so we just need to pay O(n2/B)
I/O cost for log

2
(n/
√
M) rounds of recursion, leading to

Q(n) = O(n2 log
2
(n/
√
M)/B). Similarly we can show the

asymmetric results by plugging in di�erent base cases.

Theorem 7.2. The GAP recurrence can be computed in Θ(n3)
work, O(nlog2 3) span, symmetric cache complexity of

O

(
n2

B
·

(
n

M
+ log

2
min

{
n
√
M
,
√
M

}))
,

and asymmetric cache complexity of

O

(
n2

B
·

(
ω1/2n

M
+ ω log

2
min

{
n
√
M
,
√
M

}))
.

Compared to the previous results [26–28, 47, 55, 58], the

improvement on the symmetric cache complexity is asymp-

totically O(
√
M) (i.e., n approaching in�nity). For smaller

115
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

range of n that O(
√
M) ≤ n ≤ O(M), the improvement is

O(n/
√
M/log(n/

√
M)). (The computation fully �t into the

cache when n < O(
√
M).)

Protein accordion folding. The recurrence for protein

accordion folding [58] is Di, j = max1≤k<j−1{D j−1,k +

w(i, j,k)} for 1 ≤ j < i ≤ n, with O(n2/B) cost to

precompute w(i, j,k) (only O(n2) possible values). Although

there are some minor di�erences, from the perspective of

the computation structure, the recurrence can basically be

viewed as only containing the �rst section of the GAP

recurrence. As a result, the same lower bounds of GAP

can also apply to this recurrence.

In terms of the algorithm, we can compute n 2d grids

with the increasing order of j from 1 to n, such that the

input are D j−1,k for 1 ≤ k < j − 1 and the output are

Di, j for j < i ≤ n. For short, we refer to a 2d grid as a

task. However, the input and output arrays are in di�erent

dimensions. To handle it, we use a similar method to the

GAP algorithm that keeps two separate copies for D, one

in column-major and one in row-major. They are used

separately to provide the input and output for the 2d grid. We

apply the transpose in a divide-and-conquer manner—once

the �rst half of the tasks �nish, we transpose all computed

values from the output matrix to the input matrix (which is a

square matrix), and then compute the second half of the task.

Both matrix transposes in the �rst and second halves are

applied recursively with geometrically decreasing sizes. The

correctness of this algorithm can be veri�ed by checking the

data dependencies so that all required values are computed

and moved to the correct positions before they are used for

further computations.

The cache complexity is from two subroutines: the

computations of 2d grids and matrix transpose. The cost

of 2d grids is simply upper bounded by n times the cost of

each task, which is O(n2/B · (1 + n/M)) and O(n2/B · (ω +
ω1/2n/M)) for symmetric and asymmetric cache complexity,

and O(n log2 n) span. For matrix transpose, the cost can be

derived from the following recursions.

Q(n) = 2Q(n/2) +QTr (n/2)

D(n) = 2D(n/2) + DTr (n/2)

where Tr indicates the matrix transpose. The base case is

Q(
√
M) = O(M/B) and D(1) = 1. Applying the bound for

matrix transpose [18] provides the following theorem.

Theorem 7.3. Protein accordion folding can be computed in
O(n3) work, symmetric and asymmetric cache complexity

of Θ
(
n2

B

(
1 +

n

M

))
and Θ

(
n2

B

(
ω +

ω1/2n

M

))
respectively, and

O(n log2 n) span.

The cache bounds in both symmetric and asymmetric cases

are optimal with respect to the recurrence.

7.3 RNA Recurrence The RNA problem [39] is a gen-

eralization of the GAP problem. In this problem a weight

function w(p,q, i, j) is given, which is the cost to delete the

substring of X from (p+1)-th to i-th character and insert the

substring of Y from (q + 1)-th to j-th character. Similar to

GAP, let Di, j be the minimum cost for such transformation

from the pre�x of X with i characters to the pre�x of Y with

j characters, the recurrence for i, j > 0 is:

Di, j = min

0≤p<i
0≤q<j

{Dp,q +w(p,q, i, j)}

with the boundary values D0,0, D0, j and Di,0. This recur-

rence is widely used in computational biology, such as in

computing the secondary structure of RNA [61].

While the cache complexity of this recurrence seems

to be hard to analyze in previous papers, it �ts into the

framework of this paper straightforwardly. Since each

computation in the recurrence only requires one input value,

the whole recurrence can be viewed as a 2d grid, with both

the input and output as D. The 2d grid is (1/4)-full, so we

can apply the lower bounds in Section 5 here.

Again for a matching upper bound, we need to consider

the data dependencies. We can apply the similar technique

as in the GAP algorithm to partition the output D into four

quadrants, compute D00, then D01 and D10, and �nally D11.

Each inter-quadrant update corresponds to a 1/2-full 2d grid.

Here maintaining two copies of the array is not necessary

with the tall-cache assumption M = Ω(B2). Applying the

similar analysis in GAP gives the following result:

Theorem 7.4. The RNA recurrence can be computed in Θ(n4)
work, optimal symmetric and asymmetric cache complexity of

Θ

(
n4

BM

)
and Θ

(
ω1/2n4

BM

)
respectively, and O(nlog2 3) span.

7.4 Other DP Recurrences Due to the space limit, we

overview the other results in this paper and leave the details

to the full version.

Parenthesis recurrence. The Parenthesis recurrence

solves the following problem: given a linear sequence of

objects, an associative binary operation on those objects,

and the cost of performing that operation on any two given

(consecutive) objects (as well as all partial results), the goal

is to compute the min-cost way to group the objects by ap-

plying the operations over the sequence. Let Di, j be the

minimum cost to merge the objects indexed from i + 1 to j
(1-based), the recurrence for 0 ≤ i < j ≤ n is:

Di, j = min

i<k<j
{Di,k + Dk, j +w(i,k, j)}

where w(i,k, j) is the cost to merge the two partial results

of objects indexed from i + 1 to k and those from k + 1 to

j. Here the cost function is only decided by a constant-size

116
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

input associated to indices i , j and k . Di,i+1 is initialized,

usually as 0. The computation of this recurrence (without

considering dependencies) is a (1/3)-full 3d grid, which has

the same lower bound shown in Corollary 8.1. The parallel

algorithm is shown in the full version of this paper.

Theorem 7.5. The Parenthesis recurrence can be computed
in Θ(n3) work, optimal symmetric and asymmetric cache

complexity of Θ
(

n3

B
√
M

)
and Θ

(
ω1/3n3

B
√
M

)
respectively, and

O(nlog2 3) depth.

2-Knapsack Recurrence. Given Ai and Bi for 0 ≤ i ≤ n,

the 2-knapsack recurrence computes:

Di = min

0≤j≤i
{Aj + Bi−j +w(j, i − j, i)}

for 0 ≤ i ≤ n. The cost function w(j, i − j, i) relies on

constant input values related on indices i , i − j and j . To the

best of our knowledge, this recurrence is �rst discussed in

this paper. We name it the “2-knapsack recurrence” since

it can be interpreted as the process of �nding the optimal

strategy in merging two knapsacks, given the optimal local

arrangement of each knapsack stored in A and B. Although

this recurrence seems trivial, the computation structure

of this recurrence actually forms some more complicated

DP recurrence. For example, many problems on trees

can be solved using dynamic programming, such that the

computation essentially applies the 2-knapsack recurrence a

hierarchical (bottom-up) manner.

Theorem 7.6. 2-knapsack recurrence can be computed using
O(n2) work, optimal symmetric and asymmetric cache com-

plexity of Θ
(
n2

BM

)
and Θ

(
ω1/2n2

BM

)
, and O(log2 n) depth.

8 Matrix Multiplication and All-Pair Shortest Paths
In this section, we discuss algorithms for combinatorial ma-

trix multiplication and Kleene’s algorithm [49] on all pair

shortest-paths. We show improved asymmetric cache com-

plexity for the problems, and the APSP algorithm has linear

span. We have also included some linear algebra algorithms,

including Strassen’s algorithm, Gaussian elimination (LU de-

composition), and triangular system solver in the full version

of this paper [19].

8.1 Matrix Multiplication The combinatorial matrix

multiplication (de�nition in Section 2) is one of the sim-

plest cases of the 3d grid. Given a semiring (×,+), in matrix

multiplication each cell corresponds to a “×” operation of

the two corresponding input values and the “+” operation

is associative. Since there are no dependencies between the

operations, we can simply apply Theorem 6.1 and 6.2 to get

the following result.

Algorithm 2: Kleene(A)

Input: Distance matrix A initialized based on the input graph

G = (V ,E)
Output: Computed Distance matrix A

1 if |A| = 1 then return A

2 A00 ← Kleene(A00)

3 A01 ← A01 +A00A01

4 A10 ← A10 +A10A00

5 A11 ← A11 +A10A01

6 A11 ← Kleene(A11)

7 A01 ← A01 +A01A11

8 A10 ← A10 +A11A10

9 A00 ← A00 +A10A01

10 return A

Corollary 8.1. Combinatorial matrixmultiplication of sizen
can be solved in Θ(n3) work, optimal symmetric and asymmet-

ric cache complexity ofΘ
(

n3

B
√
M

)
andΘ

(
ω1/3n3

B
√
M

)
respectively,

and O(log2 n) span.

The result for the symmetric case is well-known, but

that for the asymmetric case is new.

8.2 All-Pair Shortest Paths We now discuss the cache-

oblivious algorithms to solve all-pair shortest paths (APSP)

on a graph with improved asymmetric cache complexity

and linear span. Regarding the span, Chowdhury and

Ramachandran [28] showed an algorithm using O(n log2 n)
span. There exist work-optimal and sublinear span algorithm

for APSP [57], but we are unaware of how to make it I/O-

e�cient while maintaining the same span. Compared to

previous linear span algorithms in [32], our algorithm is

race-free and in the classic nested-parallel model. Also, we

believe our algorithms are simpler. The improvement is from

plugging in the algorithms introduced in Section 5 and 6 to

Kleene’s Algorithm.

An all-pair shortest-paths (APSP) problem takes a (usu-

ally directed) graphG = (V ,E) (with no negative cycles) as in-

put. Here we discuss the Kleene’s algorithm [49]. Kleene’s al-

gorithm has the same computational DAG as Floyd-Warshall

algorithm [35, 60], but it is described in a divide-and-conquer

approach, which is already I/O-e�cient, cache-oblivious, and

highly parallelized.

The pseudocode of Kleene’s algorithm is provided in

Algorithm 2. The matrix A is partitioned into 4 submatrices

indexed as

[
A00 A01

A10 A11

]
. The matrix multiplication is de�ned

in a closed semiring with (+,min). Kleene’s algorithm is a

divide-and-conquer algorithm to compute APSP. Its high-

level idea is to �rst compute the APSP between the �rst half

of the vertices only using the paths between these vertices.

Then by applying some matrix multiplications, we update

the shortest-paths between the second half of the vertices

117
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

using the computed distances from the �rst half. We then

apply another recursive subtask on the second half vertices.

The computed distances are �nalized, and lastly we use them

to update the shortest-paths from the �rst-half vertices.

The cache complexity Q(n) and span D(n) of this algo-

rithm follow the recursions:

Q(n) = 2Q(n/2) + 6QMM(n/2)

D(n) = 2D(n/2) + 2DMM(n/2)

where QMM(n) is the I/O cost of a matrix multiplication of

input size n. The recursion of Q(n) is root-dominated, which

indicates that computing all-pair shortest paths of a graph

has the same upper bound on cache complexity as matrix

multiplication.

Theorem 8.1. Kleene’s Algorithm to compute all-pair short-
est paths of a graph of size n uses Θ(n3) work, has symmet-

ric and asymmetric cache complexity of Θ
(

nk

M1/(k−1)B

)
and

Θ

(
nkω1/k

M1/(k−1)B

)
, and O(n) span.

Similar to some other problems in this paper, the

symmetric cache complexity is well-known, but the results

in the asymmetric setting as well as the parallel approach

are new.

9 Conclusions and Future Work
In this paper, we have shown improved cache-oblivious

algorithms of many DP recurrences in the symmetric and

asymmetric settings, both sequentially and in parallel. Our

key approach is to show the correspondence between the DP

recurrences and the k-d grid, and new results for computing

the k-d grid. We believe that this abstraction provides a

simpler and intuitive framework for better understanding

these algorithms, proving lower bounds, and designing

algorithms that are both I/O-e�cient and highly parallelized.

It also provides a uni�ed framework to bound the asymmetric

cache complexity of these algorithms.

We believe that the new viewing of these problems are

insightful, and based on it, we observe many new open

problems. Due to the space limit, these new open problems

are discussed in the full version of this paper [19].

Acknowledgments This work is supported by the Na-

tional Science Foundation under CCF-1314590 and CCF-

1533858. The authors thanks Yihan Sun for valuable dis-

cussions on various ideas, and Yihan Sun and Yuan Tang for

the preliminary version of the algorithm in Section 5.

References
[1] U. Acar, G. Blelloch, and R. Blumofe. The data locality of work stealing.

Theory Comput. Sys., 35(3), 2002.

[2] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of

prams. Theor. Comput. Sci., 71(1):3–28, 1990.

[3] A. Aggarwal and M. Klawe. Applications of generalized matrix

searching to geometric algorithms. Discrete Applied Mathematics, 27(1-

2), 1990.

[4] A. Aggarwal and J. Vitter. The Input/Output complexity of sorting and

related problems. Communications of the ACM, 31(9), 1988.

[5] A. Aho and J. Hopcroft. The design and analysis of computer algorithms.
Pearson Education India, 1974.

[6] L. Arge. The bu�er tree: A technique for designing batched external

data structures. Algorithmica, 37(1), 2003.

[7] L. Arge, G. Brodal, and R. Fagerberg. Cache-oblivious data structures.

Handbook of Data Structures and Applications, 27, 2004.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Communication-

optimal parallel and sequential cholesky decomposition. SIAM J.
Scienti�c Computing, 32(6):3495–3523, 2010.

[9] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing

communication in numerical linear algebra. SIAM J. Matrix Analysis
Applications, 32(3):866–901, 2011.

[10] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[11] N. Ben-David, G. Blelloch, J. Fineman, P. Gibbons, Y. Gu, C. McGu�ey,

and J. Shun. Parallel algorithms for asymmetric read-write costs. In

ACM symposium on Parallelism in algorithms and architectures (SPAA),
2016.

[12] N. Ben-David, G. Blelloch, J. Fineman, P. Gibbons, Y. Gu, C. McGu�ey,

and J. Shun. Implicit decomposition for write-e�cient connectivity

algorithms. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018.

[13] G. Blelloch and P. Gibbons. E�ectively sharing a cache among threads.

In ACM symposium on Parallelism in algorithms and architectures (SPAA),
2004.

[14] G. Blelloch, J. Fineman, P. Gibbons, Y. Gu, and J. Shun. Sorting with

asymmetric read and write costs. In ACM symposium on Parallelism in
algorithms and architectures (SPAA), 2015.

[15] G. Blelloch, J. Fineman, P. Gibbons, Y. Gu, and J. Shun. E�cient algo-

rithms with asymmetric read and write costs. In European Symposium
on Algorithms (ESA), 2016.

[16] G. Blelloch, J. Fineman, P. Gibbons, Y. Gu, and J. Shun. Sorting with

asymmetric read and write costs. In arXiv preprint:1603.03505, 2016.

[17] G. Blelloch, P. Gibbons, Y. Gu, C. McGu�ey, and J. Shun. The

parallel persistent memory model. In ACM symposium on Parallelism in
algorithms and architectures (SPAA), 2018.

[18] G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-oblivious

algorithms. In ACM symposium on Parallelism in algorithms and
architectures (SPAA), 2010.

[19] G. Blelloch and Y. Gu. Improved parallel cache-oblivious algo-

rithms for dynamic programming and linear algebra. arXiv preprint
arXiv:1809.09330, 2018.

[20] G. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-e�cient

algorithms and data structures for computational geometry. In ACM
symposium on Parallelism in algorithms and architectures (SPAA), 2018.

[21] G. Blelloch, Y. Gu, Y. Sun, and Kanat Tangwongsan. Parallel shortest

paths using radius stepping. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2016.

[22] R. Blumofe and C. Leiserson. Scheduling multithreaded computations

by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[23] C. Bouton. Nim, a game with a complete mathematical theory. The
Annals of Mathematics, 3(1/4), 1901.

118
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[24] G. Brodal. Cache-oblivious algorithms and data structures. In

Scandinavian Workshop on Algorithm Theory (SWAT), volume 3111.

Springer, 2004.

[25] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O.

Schwartz, and H. Simhadri. Write-avoiding algorithms. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2016.

[26] R. Chowdhury, P. Ganapathi, J. Tithi, C. Bachmeier, B. Kuszmaul, C.

Leiserson, A. Solar-Lezama, and Y. Tang. Autogen: Automatic discovery

of cache-oblivious parallel recursive algorithms for solving dynamic

programs. In ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2016.

[27] R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic

programming. In ACM-SIAM symposium on Discrete algorithm (SODA),
2006.

[28] R. Chowdhury and V. Ramachandran. The cache-oblivious gaussian

elimination paradigm: theoretical framework, parallelization and exper-

imental evaluation. Theory of Computing Systems, 47(4), 2010.

[29] R. Cole and V. Ramachandran. Resource oblivious sorting on

multicores. In International Colloquium on Automata, Languages, and
Programming. Springer, 2010.

[30] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms (3rd edition). MIT Press, 2009.

[31] E. Demaine. Cache-oblivious algorithms and data structures. Lecture
Notes from the EEF Summer School on Massive Data Sets, 8(4), 2002.

[32] D. Dinh, H. Simhadri, and Y. Tang. Extending the nested parallel model

to the nested data�ow model with provably e�cient schedulers. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[33] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combina-

torial computation. International Colloquium on Automata, Languages,
and Programming (ICALP), 1989.

[34] M. Feng and C. Leiserson. E�cient detection of determinacy races in

cilk programs. Theory of Computing Systems, 32(3):301–326, 1999.

[35] R. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6), June

1962.

[36] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-

oblivious algorithms. In IEEE Symposium on Foundations of Computer
Science (FOCS), 1999.

[37] Z. Galil and R. Giancarlo. Speeding up dynamic programming with

applications to molecular biology. Theoretical Computer Science, 64(1),

1989.

[38] Z. Galil and K. Park. Dynamic programming with convexity, concavity

and sparsity. Theoretical Computer Science, 92(1), 1992.

[39] Z. Galil and K. Park. Parallel algorithms for dynamic programming

recurrences with more than O(1) dependency. Journal of Parallel and
Distributed Computing, 21(2), 1994.

[40] Y. Gu. Write-E�cient Algorithms. PhD Thesis, Carnegie Mellon

University, 2019.

[41] Y. Gu, Y. Sun, and G. Blelloch. Algorithmic building blocks for

asymmetric memories. In European Symposium on Algorithms (ESA),
2018.

[42] D. Hirschberg and L. Larmore. The least weight subsequence problem.

SIAM Journal on Computing, 16(4), 1987.

[43] J. Hong and H. Kung. I/O complexity: The red-blue pebble game. In

Proc. ACM Symposium on Theory of Computing (STOC), 1981.

[44] S. Huang, H. Liu, and V. Viswanathan. Parallel dynamic programming.

IEEE transactions on parallel and distributed systems, 5(3), 1994.

[45] S. Huang, H. Liu, and V. Viswanathan. A sublinear parallel algorithm

for some dynamic programming problems. Theoretical Computer Science,
106(2), 1992.

[46] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for

distributed-memory matrix multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[47] S. Itzhaky, R. Singh, A. Solar-Lezama, K. Yessenov, Y. Lu, C. Leiserson,

and R. Chowdhury. Deriving divide-and-conquer dynamic program-

ming algorithms using solver-aided transformations. In ACM Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2016.

[48] R. Jacob and N. Sitchinava. Lower bounds in the asymmetric external

memory model. In ACM Aymposium on Parallelism in Algorithms and
Architectures (SPAA), 2017.

[49] S. Kleene. Representation of events in nerve nets and �nite automata.

Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA,

1951.

[50] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India,

2006.

[51] D. Knuth and M. Plass. Breaking paragraphs into lines. Software:
Practice and Experience, 11(11), 1981.

[52] M. Künnemann, R. Paturi, and S. Schneider. On the �ne-grained

complexity of one-dimensional dynamic programming. arXiv preprint
arXiv:1703.00941, 2017.

[53] L. Loomis and H. Whitney. An inequality related to the isoperimetric

inequality. Bulletin of the American Mathematical Society, 55(10):961–

962, 1949.

[54] W. Rytter. On e�cient parallel computations for some dynamic

programming problems. Theoretical Computer Science, 59(3), 1988.

[55] Y. Tang and S. Wang. Brief announcement: Star (space-time adaptive

and reductive) algorithms for dynamic programming recurrences with

more than O(1) dependency. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2017.

[56] Y. Tang, R. You, H. Kan, J. Tithi, P. Ganapathi, and R. Chowdhury.

Cache-oblivious wavefront: improving parallelism of recursive dynamic

programming algorithms without losing cache-e�ciency. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
2015.

[57] A. Tiskin. All-pairs shortest paths computation in the BSP model.

In International Colloquium on Automata, Languages and Programming
(ICALP), pages 178–189, 2001.

[58] J. Tithi, P. Ganapathi, A. Talati, S. Aggarwal, and R. Chowdhury. High-

performance energy-e�cient recursive dynamic programming with

matrix-multiplication-like �exible kernels. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2015.

[59] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. Persistent

memory i/o primitives. In International Workshop on Data Management
on New Hardware, page 12. ACM, 2019.

[60] S. Warshall. A theorem on boolean matrices. Journal of the ACM
(JACM), 9(1), 1962.

[61] M. Waterman and T. Smith. Rna secondary structure: A complete

mathematical analysis. Mathematical Biosciences, 42(3-4), 1978.

119
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

08
/0

7/
23

 to
 7

4.
10

9.
24

5.
19

0
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20191107101303
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 670
 312
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 670
 312
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryList_V1
 qi2base

