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ABSTRACT
Algorithms for dynamically maintaining minimum spanning trees

(MSTs) have received much attention in both the parallel and se-

quential settings. While previous work has given optimal algo-

rithms for dense graphs, all existing parallel batch-dynamic algo-

rithms perform polynomial work per update in the worst case for

sparse graphs. In this paper, we present the first work-efficient paral-

lel batch-dynamic algorithm for incremental MST, which can insert

ℓ edges in𝑂 (ℓ lg(1 + 𝑛/ℓ)) work in expectation and𝑂 (polylog(𝑛))
span w.h.p. The key ingredient of our algorithm is an algorithm for

constructing a compressed path tree of an edge-weighted tree, which

is a smaller tree that contains all pairwise heaviest edges between

a given set of marked vertices. Using our batch-incremental MST

algorithm, we demonstrate a range of applications that become

efficiently solvable in parallel in the sliding-window model, such

as graph connectivity, approximate MSTs, testing bipartiteness,

𝑘-certificates, cycle-freeness, and maintaining sparsifiers.
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1 INTRODUCTION
Computing the minimum spanning tree (MST) of a weighted undi-

rected graph is a classic and fundamental problem that has been

studied for nearly a century, going back to early algorithms of

Borůvka [10], and Jarník [35] (later rediscovered by Prim [45] and

Dijkstra [18]), and later, the perhaps more well-known algorithm

of Kruskal [40]. The MST problem is, given a connected weighted

undirected graph, to find a set of edges of minimum total weight

that connect every vertex in the graph. More generally, the min-

imum spanning forest (MSF) problem is to compute an MST for

every connected component of the graph. The dynamic MSF prob-

lem is to do so while responding to edges being inserted into and

deleted from the graph. The incremental MSF problem is a special
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case of the dynamic problem in which edges are only inserted.

While most dynamic data structures handle only a single update at

a time, there has also been work on batch-dynamic data structures,

which process a batch of updates. Typically, it is assumed that the

size of a batch can vary from round to round. Batch-dynamic data

structures have two potential advantages—they can allow for more

parallelism, and they can, in some situations, perform less work

than processing updates one at a time.

There has been significant interest in parallelizing incremental

and dynamic MSF. Some of this work studies how to implement

single updates in parallel [14, 16, 20, 21, 37, 39, 44, 52–54], and

some studies batch updates [22, 23, 36, 42, 43, 46]. The most re-

cent and best result [39] requires 𝑂 (
√
𝑛 lg𝑛) work per update on 𝑛

vertices, and only allows single edge updates. All previous results

that support batches of edge updates in polylogarithmic time re-

quire Ω(𝑛min(ℓ, 𝑛)) work, where ℓ is the size of the batch. This
is very far from the work performed by the best sequential data

structures, which is 𝑂 (lg𝑛) worst-case time for incremental edge

insertions [5, 48], and 𝑂

(
lg

4 𝑛

lg lg𝑛

)
amortized expected time for fully

dynamic edge insertions and deletions [33].

In this paper, we start by presenting a parallel data structure for

the batch-incremental MSF problem. It is the first such data structure

that achieves polylogarithmic work per edge insertion. The data

structure is work efficient with respect to the fastest sequential

single-update data structure, and even more efficient for large batch

sizes, achieving optimal linear expected work [38] when inserting

all edges as a batch. The size of a batch can vary from round to round.

Our main contribution is summarized by the following theorem:

Theorem 1.1. There exists a data structure that maintains the

MSF of a weighted undirected graph that can insert a batch of ℓ edges

into a graph with 𝑛 vertices in 𝑂
(
ℓ lg

(
1 + 𝑛

ℓ

) )
work in expectation

and 𝑂 (lg2 (𝑛)) span w.h.p.
1
in the arbitrary-CRCW PRAM.

We then use our batch-incremental MSF data structure to develop

various data structures for graph problems in a batch variant of

the sliding-window model. In the sliding-window model [17], one

keeps a fixed-size window that supports adding new updates to

the new side of the window and dropping them from the old side.

Each insertion on the new side does a deletion of the oldest element

on the old side. In general, this can be more difficult than pure

incremental algorithms, but not as difficult as supporting arbitrary

deletion in fully dynamic algorithms. This setup has become popular

in modeling an infinite stream of data when there is only bounded

memory, and a desire to “forget” old updates in favor of newer

1
We say that 𝑔 (𝑛) ∈ 𝑂 (𝑓 (𝑛)) with high probability (w.h.p.) if 𝑔 (𝑛) ∈ 𝑂 (𝑘𝑓 (𝑛))
with probability at least 1 −𝑂 (1/𝑛𝑘 ) for all 𝑘 ≥ 1

Session: Full Paper  SPAA ’20, July 15–17, 2020, Virtual Event, USA

51

https://doi.org/10.1145/3350755.3400241
https://doi.org/10.1145/3350755.3400241
https://doi.org/10.1145/3350755.3400241
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3350755.3400241&domain=pdf&date_stamp=2020-07-09


ones. There have been many dozens, perhaps hundreds, of papers

using the model in general. Crouch et. al. [13] have derived several

algorithms for graph problems in this model. For graph algorithms,

the goal is typically to use only 𝑂̃ (𝑛) memory.

Here we extend the model to allow for rounds of batch (edge)

insertions on the new side of the window, and batch (edge) deletions

from the old side. Our results allow for arbitrary interleavings of

batch insertions or deletions, and each of arbitrary size. Matching

up equal sized inserts and deletes gives a fixed sized window, but

we do not require this. Based on our batch-incremental MSF data

structure, we are able to efficiently solve a variety of problems in the

batch sliding-window model, including connectivity, 𝑘-certificate,

bipartiteness, (1 + 𝜖)-MSF, cycle-freeness, and sparsification. This

uses an approach similar to the one of Crouch et. al. [13], which is

based on sequential incremental MSF. In this work, other than using

the batch-incremental MSF data structures, more work is required

to augment their data structures in several ways. Our results are

summarized by the following theorem:

Theorem 1.2. There exist data structures for the batch sliding-

window model (batch edge insertions on the new side and deletions on

the old size) for the problems of maintaining connectivity, 𝑘-certificate,

bipartiteness, (1 + 𝜖)-MSF, cycle-freeness, and 𝜀-sparsifiers, that all

require 𝑂̃ (𝑛) memory, support batch updates of size ℓ in 𝑂̃ (ℓ) work
and polylogarithmic span, and queries (except for sparsifiers) in poly-

logarithmic work, where 𝑛 denotes the number of vertices.

Finally, we note that we can also apply these techniques to the in-

cremental setting, and, using existing results on batch-incremental

graph connectivity [47], obtain fast algorithms there as well. Table 1

gives more specifics on the individual results and compares them to

the existing bounds for parallel dynamic graphs in the incremental

and fully dynamic settings.

1.1 Technical Overview
The key ingredient in our batch-incremental MSF data structure is

a data structure for dynamically producing a compressed path tree.

Given a weighted tree with some marked vertices, the compressed

path tree with respect to the marked vertices is a minimal tree on

the marked vertices and some additional “Steiner vertices” such

that for every pair of marked vertices, the heaviest edge on the path

between them is the same in the compressed tree as in the original

tree. That is, the compressed path tree represents a summary of

all possible pairwise heaviest edge queries on the marked vertices.

An example of a compressed path tree is shown in Figure 1. More

formally, consider the subgraph consisting of the union of the paths

between every pair of marked vertices. The compressed path tree

is precisely this subgraph but with all of the non-marked vertices

of degree at most two spliced out. To produce the compressed path

tree, we leverage some recent results on parallel batch-dynamic

tree contraction and parallel rake-compress trees (RC trees) [2].

Given a compressed path tree for each component of the graph,

our algorithm follows from a generalization of the classic “cycle

rule” (or “red rule”) for MSTs, which states that given a heaviest

edge on a cycle in a graph, there exists an MST that doesn’t contain

it. This fact is used to produce the efficient𝑂 (lg(𝑛)) time solution to

the sequential incremental MSF problem [48]. To handle a batch of

edge insertions, our algorithm computes the compressed path tree
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(a) A weighted tree, with some important vertices marked (in gray).
The paths between the marked vertices are highlighted.
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(b) The corresponding compressed path tree. The edges areweighted
to represent the heaviest edge on the corresponding path.

Figure 1: A weighted tree and its corresponding compressed
path tree with respect to some marked vertices.

with respect to their endpoints which, in a sense, generalizes the red

rule, because it represents the heaviest edges on all pairwise paths,

and hence all possible cycles between the newly inserted edges.

More specifically, our algorithm takes the compressed path trees

and inserts the new batch of edges into them, and computes theMSF

of the resulting graph. For the MSF, we can use the algorithm of

Cole et. al. [12], which is linear work in expectation and logarithmic

span w.h.p., which in turn is based on the linear time sequential

algorithm [38]. Since the compressed path tree has size 𝑂 (ℓ), this
can be done efficiently. We then show that the edges selected by

this MSF can be added to the MSF of the main graph, and those that

were not selected can be removed, correctly updating the MSF.

Lastly, using a mix of known reductions and several new ideas,

we show how our batch-incremental MSF algorithm can be used to

solve problems in a parallel version of the sliding-window graph

streaming model. A useful ingredient in this step is the recent edge

property [13], which says that by weighting the edges of a graph

stream with successively lower weights over time, connectivity

between a pair of vertices in the window can be tested by inspecting

the heaviest (i.e. oldest) edge on the path from 𝑢 to 𝑣 in an MSF

of the graph so far. Combining this idea with the use of several

work-efficient parallel batch-dynamic data structures, we show

how to maintain graph connectivity, bipartiteness, approximate

MSFs, 𝑘-certificates, cycle-freeness, and sparsifiers, subject to batch

updates in 𝑂 (polylog(𝑛)) work and span per edge update, and

𝑂 (𝑛 polylog(𝑛)) space.

1.2 Related Work
MSTs have a long and interesting history. The problem of dynami-

cally maintaining the MST under modifications to the underlying

graph has been well studied. Spira and Pan [49] were the first

to tackle the dynamic problem, and give an 𝑂 (𝑛) sequential algo-
rithm for vertex insertion that is based on Boruvka’s algorithm. The
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Incremental (This paper) Sliding window (This paper) Fully dynamic (Previous work)

Connectivity 𝑂 (ℓ𝛼 (𝑛))∗ (Previous work [47]) 𝑂 (ℓ lg(1 + 𝑛/ℓ))∗ 𝑂 (ℓ lg(𝑛) lg(1 + 𝑛/ℓ))∗,† [1]
𝑘-certificate 𝑂 (𝑘ℓ𝛼 (𝑛))∗ 𝑂 (𝑘ℓ lg(1 + 𝑛/ℓ))∗ -

Bipartiteness 𝑂 (ℓ𝛼 (𝑛))∗ 𝑂 (ℓ lg(1 + 𝑛/ℓ))∗ -

Cycle-freeness 𝑂 (ℓ𝛼 (𝑛))∗ 𝑂 (ℓ lg(1 + 𝑛/ℓ))∗ -

MSF 𝑂 (ℓ lg(1 + 𝑛/ℓ))∗ 𝑂 (𝜀−1ℓ lg(𝑛) lg(1 + 𝑛/ℓ))∗,‡ 𝑂 (ℓ𝑛 lg lg lg(𝑛) lg(𝑚/𝑛)) [22]
𝜀-sparsifier 𝑂 (𝜀−2ℓ lg4 (𝑛)𝛼 (𝑛))∗ 𝑂 (𝜀−2ℓ lg4 (𝑛) lg(1 + 𝑛/ℓ))∗ -

Table 1: Work bounds for new and known parallel batch-dynamic graph algorithms in the incremental (insert-only), sliding
window, and fully dynamic settings. All algorithms run in 𝑂 (polylog(𝑛)) span and use 𝑂 (𝑛 polylog(𝑛)) space. ℓ denotes the
batch size of updates. Note that the algorithms in the sliding window model are also applicable to the incremental setting,
by simply never moving the left endpoint of the window. For large batch sizes ℓ , these algorithms sometimes achieve better
bounds. Some bounds given are randomized (∗), amortized (†), or give (1 + 𝜀)-approximate solutions (‡)

first sublinear time algorithm for edge updates was given by Fred-

erickson [24], who gave an 𝑂 (
√
𝑚) algorithm. A well-celebrated

improvement to Frederickson’s algorithm was given by Eppstein et.

al [19], who introduced the sparsification technique to reduce the

cost to 𝑂 (
√
𝑛). A great number of subsequent dynamic algorithms,

including parallel ones, take advantage of Eppstein’s sparsification.

The sequential incremental MST problem, i.e., maintaining the MST

subject to new edge insertions but no deletions, requires 𝑂 (lg(𝑛))
time per update using dynamic trees [5, 48] to find the heaviest

weight edge on the cycle induced by the new edge and remove it.

Holm et al. gave the first polylogarithmic time algorithm for fully

dynamic MST [32], supporting updates in𝑂 (lg4 (𝑛)) amortized time

per operation, later improved by a lg lg𝑛 factor [33] in expectation.

No worst-case polylogarithmic time algorithm is known for the

fully dynamic case. This paper is concerned with algorithms for

MSTs that are both parallel and dynamic.

Parallel single-update algorithms. Work by Pawagi and Ra-

makrishnan [44] gives a parallel algorithm for vertex insertion

(with an arbitrary number of adjacent edges) and edge-weight up-

dates in 𝑂 (lg(𝑛)) span but 𝑂 (𝑛2 lg(𝑛)) work. Varman and Doshi

[53, 54] improve this to 𝑂 (𝑛 lg(𝑛)) work. Jung and Mehlhorn [37]

give an algorithm for vertex insertion in 𝑂 (lg(𝑛)) span, and 𝑂 (𝑛)
work. While this bound is optimal for dense insertions, i.e. inserting

a vertex adjacent to Θ(𝑛) edges, it is inefficient for sparse graphs.

Tsin [52] extended the work of Pawagi and Ramakrishnan [44]

to handle vertex deletions in the same time bounds, thus giving

a fully vertex-dynamic parallel algorithm in 𝑂 (lg(𝑛)) span and

𝑂 (𝑛2 lg(𝑛)) work. Das and Ferragina [14] give algorithms for insert-

ing and deleting edges in 𝑂 (lg(𝑚𝑛 ) lg(𝑛)) span and 𝑂 (𝑛2/3 lg(𝑚𝑛 ))
work. Subsequent improvements by Ferragina [20, 21], and Das

and Ferragina [16] improve the span bound to 𝑂 (lg(𝑛)) with the

same work bound. A recent result by Kopelowitz et al. [39] gives

an algorithm that takes 𝑂 (
√
𝑛 lg(𝑛)) work and 𝑂 (lg(𝑛)) span.

Parallel batch-dynamic algorithms.The above are all algorithms

for single vertex or edge updates. To take better advantage of par-

allelism, some algorithms that process batch updates have been

developed. Pawagi [42] gives an algorithm for batch vertex insertion

that inserts ℓ vertices in 𝑂 (lg(𝑛) lg(ℓ)) span and 𝑂 (𝑛ℓ lg(𝑛) lg(ℓ))
work. Johnson and Metaxas [36] give an algorithm for the same

problem with 𝑂 (lg(𝑛) lg(ℓ)) span and 𝑂 (𝑛ℓ) work.
Pawagi and Kaser [43] were the first to give parallel batch-

dynamic algorithms for fully-dynamic MSTs. For inserting ℓ in-

dependent vertices, inserting ℓ edges, or decreasing the cost of ℓ

edges, their algorithms takes 𝑂 (lg(𝑛) lg(ℓ)) span and 𝑂 (𝑛ℓ) work.

Their algorithms for increasing the cost of or deleting ℓ edges, or

deleting a set of vertices with total degree ℓ take 𝑂 (lg(𝑛) + lg2 (ℓ))
span and 𝑂

(
𝑛2

(
1 + lg

2 (ℓ)
lg(𝑛)

))
work. Shen and Liang [46] give an al-

gorithm that can insert ℓ edges, modify ℓ edges, or delete a vertex of

degree ℓ in𝑂 (lg(𝑛) lg(ℓ)) span and𝑂 (𝑛2) work. Ferragina and Luc-
cio [22, 23] give algorithms for handling ℓ = 𝑂 (𝑛) edge insertions
in 𝑂 (lg(𝑛)) span and 𝑂 (𝑛 lg lg lg(𝑛) lg(𝑚/𝑛)) work, and ℓ edge up-
dates in𝑂 (lg(𝑛) lg(𝑚/𝑛)) span and𝑂 (ℓ𝑛 lg lg lg(𝑛) lg(𝑚/𝑛)) work.
Lastly, Das and Ferragina’s algorithm [14] can be extended to the

batch case to handle ℓ edge insertions in𝑂 (ℓ + lg(𝑚/𝑛) lg(𝑛)) span
and 𝑂 (𝑛2/3 (ℓ + lg(𝑚/𝑛))) work.

For a thorough and well written survey on the techniques used

in many of the above algorithms, see Das and Ferragina [15].

Sliding window dynamic graphs. Dynamic graphs in the sliding

window model were studied by Crouch et. al [13]. In the sliding

window model, there is an infinite stream of edges ⟨𝑒1, 𝑒2, ...⟩, and
the goal of queries is to compute some property of the graph over

the edges ⟨𝑒𝑡−𝐿+1, 𝑒𝑡−𝐿+2, . . . , 𝑒𝑡 ⟩, where 𝑡 is the current time and

𝐿 is the fixed length of the window. Crouch et. al showed that sev-

eral problems, including 𝑘-connectivity, bipartiteness, sparsifiers,

spanners, MSFs, and matchings, can be efficiently computed in this

model. Several of these results used a data structure for incremental

MSF as a key ingredient. All of these results assumed a sequential

model of computation.

2 PRELIMINARIES
2.1 Model of Computation
Parallel RandomAccessMachine (PRAM). The parallel random
access machine (PRAM) is a parallel machine model with 𝑝 proces-

sors that work in lockstep, connected to a shared memory [34]. In

this paper we work with the Concurrent-Read Concurrent-Write

model (CRCW PRAM), where memory locations are allowed to be

concurrently read and concurrently written to. If multiple writers

write to the same location concurrently, we assume that an arbi-

trary writer wins. We analyze algorithms in terms of their work and

span, where work is the total number of instructions performed

by the algorithm and span (also called depth) is the length of the

longest chain of sequentially dependent instructions [7].

2.2 Tree Contraction and Rake-compress trees
Tree contraction produces, from a given input tree, a set of smaller

(contracted) trees, each with a subset of the vertices from the previ-

ous one, until the final layer which has a single remaining vertex.
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Miller and Reif [41] give an algorithm for tree contraction that pro-

duces a set of𝑂 (lg(𝑛)) trees w.h.p, with a geometrically decreasing

number of vertices in each one. Specifically, the technique of Miller

and Reif involves sequential rounds of applying two operations in

parallel across every vertex of the tree, rake and compress. The

rake operation removes a leaf from the tree and merges it with

its neighbor. The compress operation takes a vertex of degree two

whose neighbors are not leaves and removes it, merging the two

adjacent edges. The algorithm operates on bounded-degree trees,

but arbitrary degree trees can easily be handled by converting them

into equivalent bounded degree trees, as described in [2].

A powerful application of tree contraction is that it can be used

to produce a recursive clustering of the given tree with attractive

properties. Using Miller and Reif’s tree contraction, a recursive

clustering can be produced that consists of 𝑂 (𝑛) clusters, with re-

cursive height𝑂 (lg(𝑛)) w.h.p. Such a clustering can be represented

as a so-called rake-compress tree (RC tree) [3]. Recent work has

shown how to maintain a tree contraction dynamically subject to

batch-dynamic updates, work efficiently, and with low span [2].

These results also facilitate maintaining RC trees subject to batch-

dynamic updates work-efficiently and in low span. Specifically, an

RC tree can be built in 𝑂 (𝑛) work in expectation and 𝑂 (lg2 (𝑛))
span w.h.p., and subsequently updated in 𝑂 (ℓ lg(1 + 𝑛/ℓ)) work in

expectation and 𝑂 (lg2 (𝑛)) span w.h.p. for batches of ℓ edges.

Rake-compress trees. RC trees encode a recursive clustering of

a tree. A cluster is defined to be a connected subset of vertices and

edges of the original tree. Importantly, it is possible for a cluster to

contain an edge without containing its endpoints. The boundary

vertices of a cluster𝐶 are the vertices 𝑣 ∉ 𝐶 such that an edge 𝑒 ∈ 𝐶
has 𝑣 as one of its endpoints. All of the clusters in an RC tree have

at most two boundary vertices. A cluster with no boundary vertices

is called a nullary cluster, a cluster with one boundary is a unary

cluster (corresponding to a rake) and a cluster with two boundaries

is binary cluster (corresponding to a compress). The root cluster is

always a nullary cluster. Nodes in an RC tree correspond to clusters,

such that a node is always the disjoint union of its children. The

leaf clusters of the RC tree are the vertices and edges of the original

tree. Note that all non-leaf clusters have exactly one vertex (leaf)

cluster as a child. This vertex is that cluster’s representative vertex.

Clusters have the useful property that the constituent clusters of a

parent cluster 𝐶 share a single boundary vertex in common—the

representative of𝐶 , and their remaining boundary vertices become

the boundary vertices of 𝐶 . See Figure 2 for an example of a tree, a

recursive clustering, and its corresponding RC tree. Note that for a

disconnected forest, the RC tree algorithm will simply produce a

separate root cluster for each component.

RC trees support a multitude of different kinds of queries [3], all

in 𝑂 (lg(𝑛)) time. In this paper, we will make use of path queries:

given a pair of vertices 𝑢 and 𝑣 , find the heaviest edge on the path

from 𝑢 to 𝑣 . We refer the reader to [2] and [3] for a more in-depth

explanation of RC trees and their properties.

3 THE COMPRESSED PATH TREE
Given an RC tree and a set of ℓ marked vertices, our algorithm

produces the compressed path tree in 𝑂 (ℓ lg(1 + 𝑛/ℓ)) work in

expectation and 𝑂 (lg(𝑛)) span w.h.p.

a

c

b d e h i

f

g j

k l

(a) A tree

a

c

b d e h i

f

g j

k l

(b) A recursive clustering of the tree produced by tree contraction.
Clusters produced in earlier rounds are depicted in a darker color.

E

e F I B
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(e,f)

(e,h)
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d (b,d) (d,e)
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c (b,c) a (a,b)

g (g,h) l (k,l)

G

H D

(c) The corresponding RC tree. (Non-base) unary clusters are shown
as circles, binary clusters as rectangles, and the finalize (nullary)
cluster at the root with two concentric circles. The base clusters (the
leaves) are labeled in lowercase, and the composite clusters are la-
beled with the uppercase of their representative.

Figure 2: A tree, a recursive clustering of the tree, and the
corresponding RC tree [2].

Broadly, our algorithm for producing the compressed path tree

works as follows. The algorithm begins by marking the clusters

in the RC tree that contain a marked vertex, which is achieved

by a simple bottom-up traversal of the tree. It then traverses the

clusters of the RC tree in a recursive top-down manner. When the

algorithm encounters a cluster that contains no marked vertices,

instead of recursing further, it can simply generate a compressed

representation of the contents of that cluster immediately. The

algorithm uses the following key recursive subroutine.

— ExpandCluster(𝐶 : Cluster) : Graph
Return the compressed path tree of the subgraph corresponding

to the graph 𝐶 ∪ Boundary(𝐶), assuming that the boundary

vertices of 𝐶 are marked.

We use the following primitives to interact with the RC tree. As the

RC tree has bounded degree, each of them takes constant time.

— Boundary(𝐶 : Cluster) : vertex list
Given a cluster in the RC tree, return its boundary vertices.

— Children(𝐶 : Cluster) : Cluster list
Given a cluster in the RC tree, return its child clusters.
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— Representative(𝐶 : Cluster) : vertex
Given a non-leaf cluster in the RC tree, return its representative.

— Weight(𝐵: BinaryCluster) : number
Given a binary cluster in the RC tree, return the weight of the

heaviest edge on the path between its two boundary vertices.

Lastly, we use the following primitives for constructing the resulting

compressed path tree.

— SpliceOut(𝐺 : Graph, 𝑣 : vertex) : Graph
If 𝑣 has degree two in 𝐺 and is not marked, splice 𝑣 out by

replacing its two incident edges with a contracted edge. The

weight of the new edge is the heaviest of the two removed edges.

— Prune(𝐺 : Graph, 𝑣 : vertex) : Graph
If 𝑣 has degree two in 𝐺 , return SpliceOut(𝐺). Otherwise, if 𝑣

has degree one in𝐺 , with neighbor𝑢, and is not marked, remove

𝑣 and the edge (𝑢, 𝑣), and return SpliceOut(𝐺 ′, 𝑢), where 𝐺 ′ is
the graph remaining after removing 𝑣 and (𝑢, 𝑣).

The intuition behind the Prune primitive is that without it, our

algorithm could add redundant vertices to the compressed path

tree. The proof of Lemma 3.1 illuminates the reason for the precise

behavior of Prune. We give pseudocode for ExpandCluster in

Algorithm 1. The compressed path tree of a marked tree is obtained

by calling ExpandCluster(root), where root is the root cluster

of the correspondingly marked RC tree. For a disconnected forest,

simply call ExpandCluster on the root cluster of each component.

Algorithm 1 Compressed path tree algorithm

1: // Returns a graph𝐺 , which is represented by a pair of sets (𝑉 , 𝐸),
where 𝑉 is the vertex set and 𝐸 is a set of weighted edges. Edges

are represented as pairs, the first element of which is the set of

endpoints of the edge, and the second of which is the weight

2: procedure ExpandCluster(𝐶 : Cluster): Graph
3: if not Marked(𝐶) then
4: local 𝑉 ← Boundary(𝐶)

5: if 𝐶 is a BinaryCluster then
6: local 𝑒 ← (𝑉 ,Weight(𝐶))
7: return (𝑉 , {𝑒})
8: else
9: return (𝑉 , {})
10: else if 𝐶 is a vertex 𝑣 then
11: return ({𝑣}, {})
12: else
13: local 𝐺 ← ⋃

𝑐∈Children(𝐶) ExpandCluster(𝑐)
14: return Prune(𝐺 , Representative(𝐶))

3.1 Analysis
Correctness. We first argue that our algorithm for producing the

compressed path tree is correct.

Lemma 3.1. Given a marked tree 𝑇 and its RC tree, for any cluster

𝐶 , ExpandCluster(𝐶) returns the compressed path tree of the graph

𝐶 ∪ Boundary(𝐶), assuming the boundary vertices of 𝐶 are marked.

Proof. We proceed by structural induction on the clusters, with

the inductive hypothesis that ExpandCluster(𝐶) returns the com-

pressed path tree for the subgraph 𝐶 ∪ Boundary(𝐶), assuming

that, in addition to the marked vertices of 𝑇 , the boundary vertices

of 𝐶 are marked. First, consider an unmarked cluster 𝐶 .

(1) If 𝐶 is a NullaryCluster, then it has no boundary vertices, and

since no vertices are marked, the compressed path tree should

be empty. Line 9 therefore returns the correct result.

(2) If 𝐶 is a UnaryCluster, then it has as single marked boundary

vertex and no other marked vertices. Therefore the compressed

path tree consists of the just the boundary vertex, so Line 9

returns the correct result.

(3) If 𝐶 is a BinaryCluster, the compressed path tree contains its

endpoints, and an edge between them annotated with the weight

of the corresponding heaviest edge in the original tree. Line 7

returns this.

Suppose 𝐶 is a leaf cluster. Since edges cannot be marked, it must

be a cluster corresponding to a single vertex, 𝑣 . Since 𝑣 is marked,

the compressed path tree just contains 𝑣 (returned by Line 11).

We now consider the inductive case, where𝐶 is a marked cluster

that is not a leaf of the RC tree. Recall the important facts that

the boundary vertices of the children of 𝐶 consist precisely of the

boundary vertices of 𝐶 and the representative of 𝐶 , and that the

disjoint union of the children of𝐶 is𝐶 . Using these two facts and the

inductive hypothesis, the graph 𝐺 (Line 13) is the compressed path

tree of the graph 𝐶 ∪ Boundary(𝐶), assuming that the boundary

vertices of 𝐶 and the representative of 𝐶 are marked.

It remains to prove that the Prune procedure (Line 14) gives the

correct result, i.e., it should produce the compressed path tree with-

out the assumption that Representative(𝐶) is necessarily marked.

Recall that the compressed path tree is characterized by having no

unmarked vertices of degree less than three. If Representative(𝐶)

is marked, or if Representative(𝐶) has degree at least three, then

Prune does nothing, which is correct. Suppose Representative(𝐶)

has degree two and is unmarked. Prune will splice out this vertex

and combine its adjacent edges. Observe that splicing out a ver-

tex does not change the degree of any other vertex in the tree. By

the inductive hypothesis, no other vertex of 𝐺 (Line 13) was un-

marked and had degree less than three, hence the result of Line 14

is the correct compressed path tree. Lastly, consider the case where

Representative(𝐶) has degree one and is not marked. Prune will

correctly remove it from the tree, but this will change the degree

of its neighboring vertex by one. If the neighbor was marked or

had degree at least four, then it correctly remains in the tree. If

the neighbor had degree three and was not marked, then it will

now have degree two, and hence should be spliced out. As before,

this does not change the degree of any other vertex in the tree,

and hence is correct. By the inductive hypothesis, the neighbor

cannot have had degree less than three and been unmarked before

calling Prune. Therefore, in all cases, Line 14 returns the correct

compressed path tree.

By induction on the clusters, we can conclude that the algorithm

returns the compressed path tree of the graph 𝐶 ∪ Boundary(𝐶),
assuming that the boundary vertices of 𝐶 are marked. □

Theorem 3.2. Given a marked tree 𝑇 and its RC tree, Expand-

Cluster(root), where root is the root of the RC tree, produces the

compressed path tree of 𝑇 with respect to the marked vertices.
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Proof. This follows from Lemma 3.1 and the fact that the root

cluster is a nullary cluster and hence has no boundary vertices. □

Efficiency. We now show that the compressed path tree can be

computed efficiently.

Lemma 3.3. A compressed path tree for ℓ marked vertices has at

most 𝑂 (ℓ) vertices.

Proof. Since a compressed path tree has no non-marked leaves,

it has at most ℓ leaves. Similarly, by definition, the compressed path

tree has at most ℓ internal nodes of degree at most two. The result

then follows from the fact that a tree with ℓ leaves and no internal

nodes of degree less than two has 𝑂 (ℓ) vertices. □

Lemma 3.4 ([2]). Given the RC tree of an 𝑛-vertex tree, ℓ root-to-

leaf paths in the RC tree touch 𝑂 (ℓ lg(1 + 𝑛/ℓ)) nodes in expectation.

Theorem 3.5. Given the RC tree of a tree on 𝑛 vertices, the com-

pressed path tree for ℓ marked vertices can be produced in 𝑂 (ℓ lg(1 +
𝑛/ℓ)) expected work and 𝑂 (lg(𝑛)) span w.h.p. on the CRCW PRAM.

Proof. The algorithm for producing the compressed path tree

consists of two bottom-up traversals of the RC tree from the ℓ

marked vertices to mark and unmark the clusters, and a top-down

traversal of the same paths in the tree. Non-marked paths in the RC

tree are only visited if their parent is marked, and since the RC tree

has constant degree, work performed here can be charged to the

parent. Also due to the constant degree of the RC tree, at each node

during the traversal, the algorithm performs a constant number of

recursive calls. Assuming that Lines 13 and 14 can be performed in

constant time (to be shown), Lemma 3.4 implies the work bound of

𝑂 (ℓ lg(1 + 𝑛/ℓ)) in expectation.

To perform Line 13 in constant time, our algorithm can perform

the set union of the vertex set lazily. That is, first run the algorithm

to determine the sets of vertices generated by all of the base cases,

and then flatten these into a single set by making another traversal

of the tree. Duplicates can be avoided by noticing that the only

duplicate in a union of clusters is the representative of their parent

cluster. Line 14 can be performed by maintaining the edge set as

an adjacency list. Since the underlying tree is always converted to

a bounded-degree equivalent by the RC tree, the adjacency list can

be modified in constant time.

The span bound follows from the fact that the RC tree has height

𝑂 (lg(𝑛)) w.h.p. and that each recursive call takes constant time.

Lastly, note that this argument also holds for disconnected graphs

by simply traversing each component (i.e. each root cluster) in

parallel after the marking phase. □

Building compressed path trees concurrently. As described,
since the algorithm for producing a compressed path tree marks

the underlying RC tree, this method can not be used to construct

multiple compressed path trees concurrently. Although our algo-

rithm does not need this feature, we remark on it here since other

applications may wish to take advantage. To support the ability

to build multiple compressed path trees concurrently, we can in-

stead use a local hashtable to remember the marked nodes. Since

hashtable operations can be supported in 𝑂 (1) expected work and

𝑂 (lg(𝑛)) span w.h.p., this leaves the work of the algorithm unaf-

fected, but increases the span to 𝑂 (lg2 (𝑛)) w.h.p.

4 PARALLEL BATCH-INCREMENTAL MSF
Armed with the compressed path tree, our algorithm for batch-

incremental MSF is a natural generalization of the standard sequen-

tial algorithm: Use a dynamic tree data structure [48] to find the

heaviest edge on the cycle created by the newly inserted edge. By

the classic “red rule,” delete this edge to obtain the new MSF.

In the batch setting, when multiple new edges are added, many

cycles may be formed, but the same idea still applies. Broadly, our

algorithm takes the batch of edges and produces the compressed

path trees with respect to all of their endpoints. The key obser-

vation here is that the compressed path trees will represent all of

the possible paths between the new edge endpoints, and hence, all

possible cycles that could be formed by their inclusion. Taking the

compressed path tree and adding the newly inserted edges there-

fore results in a small graph that represents all possible cycles made

by the new edges. To determine which edges should be added to

the MSF, it is then a matter of computing the MSF of this repre-

sentative graph, and taking the newly inserted edges that were

selected. Conversely, the edges to be removed from the MSF are

those corresponding to the compressed path tree edges that were

not selected for the MSF of the representative graph.

We express the algorithm in pseudocode in Algorithm 2. It takes

as input, an RC tree of the current MSF, and the new batch of edges

to insert, and modifies the RC tree to represent the new MSF. The

subroutine CompressedPathTrees computes the compressed path

trees for all components containing a marked vertex (in 𝐾) using

Algorithm 1. We simplify the pseudocode by referring to edges

in the compressed path trees and the corresponding edges in the

MSF interchangably. That is, when we say to insert edges from the

compressed path tree into the MSF, we really mean to insert the

edges from 𝐸+ whose heaviest weight that they correspond to, and

similarly for deletion.

Algorithm 2 Batch-incremental MSF

1: procedure BatchInsert(T : RCTree, 𝐸+ : edge list)
2: local 𝐾 ← ⋃

( {𝑢,𝑣 },𝑤) ∈𝐸+ {𝑢, 𝑣}
3: local 𝐶 ← CompressedPathTrees(RC, 𝐾 )

4: local𝑀 ← MSF(𝐶 ∪ 𝐸+)
5: T.BatchDelete(𝐸 (𝐶) \ 𝐸 (𝑀))
6: T.BatchInsert(𝐸 (𝑀) ∩ 𝐸+)

4.1 Analysis
Correctness. We first argue that our algorithm for updating the

MSF is correct. We will invoke a classic staple of MST algorithms

and their analysis, the “cycle rule” (called the “red rule” by Tarjan).

Lemma 4.1 (Red rule [51]). For any cycle 𝐶 in a graph, and a

heaviest edge 𝑒 on that cycle, there exists a minimum spanning forest

of 𝐺 not containing 𝑒 .

Theorem 4.2. Let𝐺 be a connected graph. Given a set of edges 𝐸+,
let𝐶 be the compressed path tree of𝐺 with respect to the endpoints of

𝐸+, and let𝑀 be the MST of 𝐶 ∪ 𝐸+. Then a valid MST of 𝐺 ∪ 𝐸+ is
𝑀 ′ = MST(𝐺) ∪ (𝐸 (𝑀) ∩ 𝐸+) \ (𝐸 (𝐶) \ 𝐸 (𝑀)),

where the edges of 𝐶 are identified with their corresponding heaviest

edges in 𝐺 whose weight they are labeled with.
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Proof. First, we use the fact that 𝐴 ∪ (𝐵 \𝐶) = (𝐴 ∪ 𝐵) \𝐶 as

long as𝐴 and𝐶 are disjoint. Then, by some simple Boolean algebra,

since 𝐸 (𝑀) ∩ 𝐸+ = 𝐸+ \ (𝐸+ \ 𝐸 (𝑀)), we have
𝑀 ′ = (MST(𝐺) ∪ 𝐸+) \ (𝐸 (𝐶) \ 𝐸 (𝑀)) \ (𝐸+ \ 𝐸 (𝑀)) .

We will prove the result using the following strategy. We will begin

with the graph MST(𝐺) ∪ 𝐸+, and then show, using the red rule,

that we can remove all of the edges in 𝐸 (𝐶) \ 𝐸 (𝑀) and 𝐸+ \ 𝐸 (𝑀),
such that the resulting graph is still a superset of an MST. We will

then show that𝑀 ′ has the same number of edges as an MST, and

hence is in fact an MST.

Let 𝑒 = (𝑢, 𝑣) be an edge in 𝐸 (𝐶) \ 𝐸 (𝑀). We want to show that

𝑒 is a heaviest edge on a cycle in 𝐶 ∪ 𝐸+. To do so, consider the

cycle formed by inserting 𝑒 into 𝑀 . If 𝑒 was not a heaviest edge

on the cycle, then we could replace the heavier edge with 𝑒 in 𝑀

and reduce its weight, which would contradict 𝑀 being an MST.

Therefore, 𝑒 is a heaviest edge on a cycle in 𝐶 ∪ 𝐸+. Since every
edge in 𝐶 represents a corresponding heaviest edge on a path in

𝐺 , 𝑒 must also correspond to a heaviest edge on the corresponding

cycle in𝐺 ∪ 𝐸+. Since 𝑒 is a heaviest edge on some cycle of𝐺 ∪ 𝐸+,
the red rule says that it can be safely removed. Since we never

remove an edge in 𝑀 , the graph remains connected, and hence

we can continue to apply this argument to remove every edge in

𝐸 (𝐶) \ 𝐸 (𝑀), as desired.
The exact same argument also shows that we can remove all of

the edges in 𝐸+ \ 𝐸 (𝑀), and hence, we can conclude that 𝑀 ′ is a
superset of an MST. It remains to show, lastly, that𝑀 ′ is an MST,

i.e. contains no cycles. To do so, we will show that the algorithm

removes the same number of edges that it inserts. First, since we

assume that 𝐺 is connected, |𝐸 (𝑀) | = |𝐸 (𝐶) | = |𝑉 (𝐶) | − 1. Then,
since 𝐸 (𝐶) and 𝐸+ are disjoint, and 𝐸 (𝑀) ⊂ 𝐸 (𝐶) ∪ 𝐸+, simple

Boolean algebra yields |𝐸 (𝑀) ∩ 𝐸+ | = |𝐸 (𝐶) \ 𝐸 (𝑀) |, which shows

that the algorithm inserts and removes the same number of edges.

Therefore, since 𝑀 ′ is a superset of an MST and has the same

number of edges as an MST, it must be an MST. □

Corollary 4.3. Algorithm 2 correctly updates the MSF.

Proof. Theorem 4.2 shows that the algorithm is correct for con-

nected graphs. For disconnected graphs, apply the same argument

for each component, and observe that the previously disconnected

components that become connected are connected by an MSF. □

Efficiency. We now show that the batch-incremental MSF algo-

rithm achieves low work and span.

Theorem 4.4. Batch insertion of ℓ edges using Algorithm 2 takes

𝑂 (ℓ lg(1 + 𝑛/ℓ)) expected work and 𝑂 (lg2 (𝑛)) span w.h.p.

Proof. Collecting the endpoints of the edges (Line 2) takes𝑂 (ℓ)
work in expectation and𝑂 (lg(ℓ)) span w.h.p. using a semisort [31].

By Theorem 3.5, Line 3 takes 𝑂 (ℓ lg(1 + 𝑛/ℓ)) work in expectation

and𝑂 (lg(𝑛)) span w.h.p. By Lemma 3.3, the graph𝐶 ∪ 𝐸+ is of size
𝑂 (ℓ), and hence by using the MSF algorithm of Cole et. al. [12],

which runs in linear work in expectation and logarithmic span

w.h.p, Line 4 takes 𝑂 (ℓ) work in expectation and 𝑂 (lg(ℓ)) span
w.h.p. Then, since 𝐶 ∪ 𝐸+ is of size 𝑂 (ℓ), the batch updates to the

RC tree (Lines 5 and 6) take𝑂 (ℓ lg(1+𝑛/ℓ)) work in expectation and
𝑂 (lg2 (𝑛)) span w.h.p. Lastly, since 𝑂 (lg(ℓ)) = 𝑂 (lg(𝑛)), summing

these up, we can conclude that Algorithm 2 takes 𝑂 (ℓ lg(1 + 𝑛/ℓ))
work in expectation and 𝑂 (lg2 (𝑛)) span w.h.p. □

5 APPLICATIONS TO SLIDINGWINDOW
We apply our batch-incremental MSF algorithm to efficiently solve

a number of graph problems on a sliding window. For each prob-

lem, we present a data structure that implements the following

operations to handle the arrival and departure of edges:

— BatchInsert(𝐵 : edge list) Insert the set of edges 𝐵 into the

underlying graph.

— BatchExpire(Δ : int) Delete the oldest Δ edges from the under-

lying graph.

Additionally, the data structure provides query operations specific

to the problem. For example, the graph connectivity data structure

offers an isConnected query operation.

This formulation is a natural extension of the sequential sliding-

windowmodel. Traditionally, the sliding-windowmodel [17] entails

maintaining the most recent𝑊 items, where𝑊 is a fixed, prespeci-

fied size. Hence, an explicit expiration operation is not necessary.

More recently, there has been interest in maintaining variable-sized

sliding windows (e.g., events in the past 11 minutes). The interface

used in this work allows for rounds of batch inserts (to accept new

items) and batch expirations (to evict items from the old side). No-

tice that BatchExpire differs from a delete operation in dynamic

algorithms in that it only expects a count, so the user does not

need to know the actual items being expired to call this operation.

Our results allow for arbitrary interleavings of batch insertions or

expirations, and each of arbitrary size.

Small space is a hallmark of streaming algorithms. For insert-

only streams, Sun and Woodruff [50] show a space lower-bound of

Ω(𝑛) words for connectivity, bipartiteness, MSF, and cycle-freeness,

and Ω(𝑘𝑛) words for 𝑘-certificate assuming a word of size 𝑂 (lg𝑛)
bits. All our results below, which support not only edge insertions

but also expirations, match these lower bounds except for MSF,

which is within a logarithmic factor.

5.1 Graph Connectivity
We begin with the problem of sliding-window graph connectivity:

to maintain a data structure so the users can quickly test whether a

given pair of vertices can reach each other in the graph defined by

the edges in the sliding window. We prove the following theorem:

Theorem 5.1 (Connectivity). For an 𝑛-vertex graph, there is

a data structure, SW-Conn, that requires 𝑂 (𝑛) words of space and
supports the following:

— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in 𝑂 (1 + ℓ lg(𝑛/ℓ))
expected work and 𝑂 (lg2 ℓ) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in 𝑂 (1) worst-case work
and span.

— isConnected(𝑢, 𝑣) returns whether 𝑢 and 𝑣 are connected in

𝑂 (lg𝑛) work and span w.h.p.

Following Crouch et al. [13], we will prove this by reducing it

to the problem of incremental minimum spanning tree. Let 𝜏 (𝑒) be
the index that edge 𝑒 appears in the whole stream. (The 𝑖th edge

has index 𝑖 .) Then, implicit in their paper is the following lemma:
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Lemma 5.2 (Recent Edge [13]). If 𝐹 is a minimum spanning forest

(MSF) of the edges in the stream so far, where each edge 𝑒 carries a

weight of −𝜏 (𝑒), then any pair of vertices𝑢 and 𝑣 are connected if and

only if (1) there is a path between 𝑢 and 𝑣 in 𝐹 and (2) the heaviest

edge 𝑒∗ (i.e., the oldest edge) on this path satisfies 𝜏 (𝑒∗) ≥ 𝑇𝑊 , where

𝑇𝑊 is the 𝜏 (·) of the oldest edge in the window.

Proof of Theorem 5.1. We maintain (i) an incremental MSF

data structure from Theorem 1.1 and (ii) a variable 𝑇𝑊 , which

tracks the arrival time 𝜏 (·) of the oldest edge in the window. The

operation BatchInsert(𝐵) is handled by performing a batch insert

of ℓ = |𝐵 | edges, where an edge 𝑒 ∈ 𝐵 is assigned a weight of −𝜏 (𝑒).
The operation BatchExpire(Δ) is handled by advancing 𝑇𝑊 by Δ.
The cost of these operations is clearly as claimed.

The query isConnected(𝑢, 𝑣) is answered by finding the heav-

iest edge on the path between 𝑢 and 𝑣 in the RC tree maintained

and applying the conditions in the recent edge lemma (Lemma 5.2).

The claimed cost bound follows because the MSF is maintained as

an RC tree, which supports path queries in 𝑂 (lg𝑛) [2]. □

Often, applications depend on an operation numComponents()

that returns the number of connected components in the graph. It

is unclear how to efficiently support this query using the above

algorithm, which uses lazy deletion. Below is a variant, known as

SW-Conn-Eager, which supports numComponents() in𝑂 (1) work.
The number of connected components can be computed from the

number of edges in the minimum spanning forest (MSF) that uses

only unexpired edges as # of components = 𝑛 − # of MSF edges.

To this end, we modify SW-Conn to additionally keep a parallel

ordered-set data structureD, which stores all unexpired MSF edges

ordered by 𝜏 (·). This is maintained as follows: The BatchInsert

operation causes some sets of edges to be added to and removed

from the MSF (Algorithm 2, Lines 5-6). We can then adjust D
using cost at most𝑂 (𝑛 lg(𝑛/𝑡)) work and𝑂 (lg2 𝑛) span (e.g., [8, 9]).

The BatchExpire operation applies Split to find expired edges

(costing 𝑂 (lg𝑛) work and span) and explicitly deletes these edges

from the MSF (costing expected 𝑂 (Δ lg(𝑛/Δ)) work and 𝑂 (lg2 𝑛)
span w.h.p.). With these changes, numComponents() is answered

by returning 𝑛 − |D| and SW-Conn-Eager has the following cost
bounds:

Theorem 5.3 (Connectivity With Component Counting).

For an 𝑛-vertex graph, there is a data structure, SW-Conn-Eager, that
requires 𝑂 (𝑛) space and supports the following:
— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in 𝑂 (1 + ℓ lg(𝑛/ℓ))

expected work and 𝑂 (lg2 𝑛) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in𝑂 (Δ lg(1+𝑛/Δ)+lg𝑛)
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— isConnected(𝑢, 𝑣) returns whether 𝑢 and 𝑣 are connected in

𝑂 (lg𝑛) work and span w.h.p.

— numComponents() returns the number of connected components

in 𝑂 (1) worst-case work and span.

5.2 Bipartiteness
To monitor bipartiteness, we apply a known reduction [4, 13]—a

graph 𝐺 is bipartite if and only if its cycle double cover 𝐷 (𝐺) has
exactly twice as many connected components as 𝐺 . A cycle double

cover is a graph in which each vertex 𝑣 is replaced by two vertices

𝑣1 and 𝑣2, and each edge (𝑢, 𝑣), by two edges (𝑢1, 𝑣2) and (𝑢2, 𝑣1).
Hence, 𝐷 (𝐺) has twice as many vertices as 𝐺 .

We can track the number of connected components of both the

graph in the sliding window and its double cover by running two

parallel instances of SW-Conn-Eager. Notice the edges of the cycle
double cover 𝐷 (𝐺) can be managed on the fly during BatchInsert

and BatchExpire. Hence, we have the following:

Theorem 5.4 (Bipartite Testing). For an 𝑛-vertex graph, there

is a data structure, SW-Bipartiteness, that requires 𝑂 (𝑛) space and
supports the following:

— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in 𝑂 (ℓ lg(1 + 𝑛/ℓ))
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in𝑂 (Δ lg(1+𝑛/Δ)+lg𝑛)
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— isBipartite() returns a Boolean indicating whether the graph is

bipartite in 𝑂 (1) worst-case work and span.

5.3 Approximate MSF Weight
For this problem, assume that the edge weights are between 1 and

𝑛𝑂 (1) . Using known reductions [4, 11, 13], the weight of the MSF

of 𝐺 can be approximated up to 1 + 𝜀 by tracking the number of

connected components in graphs𝐺0,𝐺1, . . . , where𝐺𝑖 is a subgraph

of 𝐺 containing all edges with weight at most (1 + 𝜀)𝑖 . Specifically,
the MSF weight is given by

(𝑛 − cc(𝐺0)) +
∑
𝑖≥1
(cc(𝐺𝑖−1) − cc(𝐺𝑖 )) (1 + 𝜀)𝑖 , (1)

where cc(𝐺) is the number of connected components in graph 𝐺 .

Let 𝑅 = 𝑂 (𝜀−1 lg𝑛). We maintain 𝑅 instances of SW-Conn-Eager
𝐹1, . . . , 𝐹𝑅−1 corresponding to the connectivity of 𝐺0,𝐺1, . . . ,𝐺𝑅−1.
The arrival of ℓ new edges involves batch-inserting into 𝑅 SW-
Conn-Eager instances in parallel. Symmetrically, edge expiration is

handled by batch-expiring edges in 𝑅 instances in parallel. Addition-

ally, at the end of each update operation, we recompute equation

(1), which involves 𝑅 terms and calls to numComponents(). This

recomputation step requires 𝑂 (𝑅) work and 𝑂 (lg𝑅) = 𝑂 (lg2 𝑛)
span. Overall, we have the following:

Theorem 5.5 (Approximate MSF). Fix 𝜀 > 0. For an 𝑛-vertex

graph, there is a data structure for approximate MSF weight that

requires 𝑂 (𝜀−1𝑛 lg𝑛) space and supports the following:
— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in 𝑂 (𝜀−1ℓ lg𝑛 lg(1 +
𝑛/ℓ)) expected work and 𝑂 (lg2 𝑛) span w.h.p.

— BatchExpire(Δ) expiresΔ oldest edges in𝑂 (𝜀−1Δ lg𝑛 lg(1+𝑛/Δ))
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— weight() returns an (1 + 𝜀)-approximation to the weight of the

MSF in 𝑂 (1) worst-case work and span.

5.4 𝑘-Certificate and Graph 𝑘-Connectivity
For a graph𝐺 , a pair of vertices𝑢 and 𝑣 are𝑘-connected if there are𝑘

edge-disjoint paths connecting 𝑢 and 𝑣 . Extending this, a graph𝐺 is

𝑘-connected if all pairs of vertices are 𝑘-connected. This generalizes

the notion of connectivity, which is 1-connectivity. To maintain

a “witness” for 𝑘-connectivity, we rely on a maximal spanning

forest decomposition of order 𝑘 , also known as a 𝑘-jungle, which

decomposes 𝐺 into 𝑘 edge-disjoint spanning forests 𝐹1, 𝐹2, . . . , 𝐹𝑘
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such that 𝐹𝑖 is amaximal spanning forest of𝐺 \ (𝐹1∪𝐹2∪· · ·∪𝐹𝑖−1).
This yields a number of useful properties, notably:

(P1) if𝑢 and 𝑣 are connected in 𝐹𝑖 , then they are at least 𝑖-connected;

(P2) 𝑢 and 𝑣 are 𝑘-connected in 𝐹1 ∪ 𝐹2 ∪ · · · ∪ 𝐹𝑘 iff. they are at

least 𝑘-connected in 𝐺 ; and

(P3) 𝐹1 ∪ 𝐹2 ∪ · · · ∪ 𝐹𝑘 is 𝑘-connected iff.𝐺 is at least 𝑘-connected.

Crouch et al. [13] show how to maintain such decomposition on a

sliding window. When extended to the batch setting, the steps are

as follows: Let 𝑂0 be the new batch of edges 𝐵. Then:

For 𝑖 = 1, . . . , 𝑘 , insert 𝑂𝑖−1 into 𝐹𝑖 , capture the edges
being replaced as 𝐹−

𝑖
and the edges from 𝑂𝑖−1 that

become part of 𝐹𝑖 as 𝐹
+
𝑖
, and set𝑂𝑖 = 𝐹

−
𝑖
∪(𝑂𝑖−1 \𝐹+𝑖 ).

Via known reductions [4, 13], we have that the 𝐹𝑖 ’s are maximal

spanning forests and the unexpired edges of 𝐹1∪𝐹2∪· · ·∪𝐹𝑘 form a

𝑘-certificate in the sense of properties (P1)–(P3) above. Additionally,

this preserves all cuts of size at most 𝑘 . We have the following:

Theorem 5.6 (𝑘-Certificate). For an 𝑛-vertex graph, there is a

data structure for 𝑘-certificate that requires𝑂 (𝑘𝑛) space and supports
the following:

— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in𝑂 (𝑘ℓ lg(1 +𝑛/ℓ))
expected work and 𝑂 (𝑘 lg2 𝑛) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in 𝑂 (𝑘Δ lg(1 + 𝑛/Δ))
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— makeCert() returns a 𝑘-certificate involving at most 𝑘 (𝑛 − 1)
edges in 𝑂 (𝑘𝑛) work and 𝑂 (lg𝑛) span.

Proof. We maintain each 𝐹𝑖 using a batch incremental MSF

data structure from Theorem 1.1. To allow eager eviction of expired

edges, we additionally keep for each 𝐹𝑖 a parallel ordered-set data

structure (e.g., [8, 9]) D𝑖 , which stores all unexpired edges of 𝐹𝑖 .

The operation BatchInsert is handled by sequentially working

on 𝑖 = 1, 2, . . . , 𝑘 , where for each 𝑖 , edges are bulk-inserted into the

MSF data structure for 𝐹𝑖 , propagating replaced edges to 𝐹𝑖+1. The
ordered-set data structureD𝑖 can be updated accordingly. Note that

the size of the changes to D𝑖 never exceeds 𝑂 (ℓ). The operation
BatchExpire involves expiring edges in all D𝑖 ’s. Finally, the op-

eration makeCert is supported by copying and returning ∪𝑘
𝑖=1
D𝑖 .

Because each 𝐹𝑖 is a forest, it has at most 𝑛 − 1 edges, for a total of
at most 𝑘 (𝑛 − 1) edges across 𝑘 spanning forests. □

Testing whether a graph is 𝑘-connected appears to be difficult in

the fully-dynamic setting. Sequentially, an algorithm with𝑂 (𝑛 lg𝑛)
time per update is known [19]. By contrast, for the incremental

setting, there is a recent algorithm with 𝑂 (1) time per update [30].

In the sliding window model, as a corollary of Theorem 5.6, the

𝑘-certificate can be used to test 𝑘-connectivity via a parallel global

min-cut algorithm (e.g., [27, 28]). Because there are 𝑂 (𝑘𝑛) edges,
this takes 𝑂 (𝑘𝑛 lg𝑛 + 𝑛 lg4 𝑛) work and 𝑂 (lg3 𝑛) span [28].

5.5 Cycle-freeness
To monitor whether a graph contains a cycle, we observe that a

graph that has no cycles is a spanning forest. Hence, if 𝐹1 is a

maximal spanning forest of a graph 𝐺 , then 𝐺 \ 𝐹1 must not have

any edges provided that 𝐺 has no cycles. To this end, we use the

data structure from Theorem 5.6 with 𝑘 = 2, though we are not

interested in making a certificate. To answer whether the graph

has a cycle, we check to see if 𝐹2 is empty, which can be done in

𝑂 (1) work and span. Hence, we have the following:

Theorem 5.7 (Cycle-freeness). For an 𝑛-vertex graph, there is a

data structure for cycle-freeness that requires𝑂 (𝑛) space and supports
the following:

— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in 𝑂 (ℓ lg(1 + 𝑛/ℓ))
expected work and 𝑂 (lg2 𝑛) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in 𝑂 (Δ lg(1 + 𝑛/Δ)) ex-
pected work and 𝑂 (lg2 𝑛) span w.h.p.

— hasCycle() returns true or false indicating whether the graph

has a cycle in 𝑂 (1) work and span.

5.6 Graph Sparsification
The graph sparsification problem is to maintain a small, space-

bounded subgraph so as to, when queried, produce a sparsifier of

the graph defined by the edges of the slidingwindow. An 𝜀-sparsifier

of a graph𝐺 is a weighted graph on the same set of vertices that pre-

serves all cuts of𝐺 up to 1± 𝜀 but has only about𝑂 (𝑛 · polylog(𝑛))
edges. Existing sparsification algorithms commonly rely on sam-

pling each edge with probability inversely proportional to that

edge’s connectivity parameter. We use the following result:

Theorem 5.8 (Fung et al. [25]). Given an undirected, unweighted

graph𝐺 , let 𝑐𝑒 denote the edge connectivity of the edge 𝑒 . If each edge

𝑒 is sampled independently with probability 𝑝𝑒 ≥ min

(
1, 253

𝑐𝑒𝜀
2
lg
2 𝑛

)
and assigned aweight of 1/𝑝𝑒 , then with high probability, the resulting
graph is an 𝜀-sparsifier of 𝐺 .

In the context of streaming algorithms, implementing this has

an important challenge: the algorithm has to decide whether to

sample/keep an edge before that edge’s connectivity is known.

Our aim is to show that the techniques developed in this paper

enable maintaining an 𝜀-sparsifier with 𝑂 (𝑛 · polylog(𝑛)) edges in
the batch-parallel sliding-window setting. To keep things simple,

the bounds, as stated, are not optimized for polylog factors.

We support graph sparsification by combining and adapting ex-

isting techniques for fast streaming connectivity estimation [29]

and sampling sufficiently many edges at geometric probability

scales (e.g., [4, 13]).

The key result for connectivity estimation is as follows: For 𝑖 =

1, 2, . . . , 𝐿 = 𝑂 (lg𝑛) and 𝑗 = 1, 2, . . . , 𝐾 = 𝑂 (lg𝑛), let 𝐺 ( 𝑗)
𝑖

denote

a subgraph of 𝐺 , where each edge of 𝐺 is sampled independently

with probability 1/2𝑖 and 𝐺 ( 𝑗)
0

= 𝐺 . Then, the level 𝐿(𝑢, 𝑣), defined
to be the largest 𝑖 such that 𝑢 and 𝑣 are connected in 𝐺

( 𝑗)
𝑖

for all

0 ≤ 𝑗 ≤ 𝐾 , gives an estimate of 𝑢𝑣 connectivity:

Lemma 5.9 ( [29]). With high probability, for every edge 𝑒 of 𝐺 ,

Θ(𝑠𝑒/lg𝑛) ≤ 2
𝐿 (𝑒) ≤ 2𝑐𝑒 , where 𝑠𝑒 denotes strong connectivity and

𝑐𝑒 denotes edge connectivity.

The same argument also gives 𝑐𝑒 ≤ Θ(2𝐿 (𝑒) lg𝑛) w.h.p. While

we cannot explicitly store all these 𝐺
( 𝑗)
𝑖

’s, it suffices to store each

𝐺
( 𝑗)
𝑖

as a SW-Conn data structure (Theorem 5.1), requiring a total

of 𝑂 (𝐾 · 𝐿 · 𝑛) = 𝑂 (𝑛 lg2 𝑛) space.
When an edge 𝑒 is inserted, if the algorithm were able to de-

termine that edge’s connectivity, it would sample that edge with
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the right probability (𝑝𝑒 ) and maintain exactly the edges in the

sparsifier. The problem, however, is that connectivity can change

until the query time. Hence, the algorithm has to decide how to

sample/keep an edge without knowing its connectivity. To this

end, we resort to a technique adapted from Ahn et al. [4]: Let 𝐻0

be the graph defined by the edges of the sliding window and for

𝑖 = 1, 2, . . . , 𝐿, let 𝐻𝑖 ⊆ 𝐻0 be obtained by independently sampling

each edge of 𝐻0 with probability 1/2𝑖 . Intuitively, every edge is

sampled at many probability scales upon arrival.

Storing all these 𝐻𝑖 ’s would require too much space. Instead, we

argue that keeping each 𝐻𝑖 as Q𝑖 , where Q𝑖 is a 𝑘-SW-Certificate
data structure (Theorem 5.6) with 𝑘 = 𝑂 ( 1

𝜀2
lg
3 𝑛) is sufficient

2
.

Maintaining these requires a total of𝑂 (𝑘𝑛𝐿) = 𝑂 (𝜀−2𝑛 lg4 𝑛) space.
Ultimately, our algorithm simulates sampling an edge 𝑒 with

probability 2
−⌊lg

2
𝑝𝑒 ⌋

, where

𝑝𝑒 = min

(
1,𝑂 (2−𝐿 (𝑒)𝜀−2 lg2 𝑛)

)
,

which uses an estimate of 2
𝐿 (𝑒)

in place of 𝑐𝑒 . It answers a sparsify

query as follows:

For 𝑒 ∈ ⋃𝐿
𝑖=1 Q𝑖 , output 𝑒 in the sparsifier with weight

1/𝑝𝑒 if 𝑒 appears in Q𝛽 (𝑒) , where 𝛽 (𝑒) = ⌊lg2 𝑝𝑒 ⌋.
We now show that the Q𝑖 ’s retain sufficient edges.

Lemma 5.10. With high probability, an edge 𝑒 that is sampled into

𝐻𝛽 (𝑒) is retained in Q𝛽 (𝑒) .

Proof. Consider an edge 𝑒 = {𝑢, 𝑣}. There are 𝑐𝑒 disjoint paths
between 𝑢 and 𝑣 . With high probability, because 𝑐𝑒 ≤ Θ(2𝐿 (𝑒) lg𝑛),
the expected number of paths that stay connected in 𝐻𝛽 (𝑒) is at
most 2𝑝𝑒 · 𝑐𝑒 ≤ 𝑂 (𝜀−2 lg3 𝑛). By Chernoff bounds, it follows that

w.h.p., 𝑒 has edge connectivity in𝐻𝛽 (𝑒) at most 𝑘 = 𝑂 (𝜀−2 lg3 𝑛) for
sufficiently large constant. Hence, 𝑒 is retained in Q𝛽 (𝑒) w.h.p. □

This means that at query time, with high probability, every edge

𝑒 is sampled into the sparsifier with probability 2
−⌊lg

2
𝑝𝑒 ⌋ ≥ 𝑝𝑒 , so

the resulting graph is an 𝜀-sparsifier w.h.p. (Theorem 5.8). Moreover,

the number of edges in the sparsifier is, in expectation, at most∑
𝑒∈𝐸 (𝐺)

2𝑝𝑒 = 𝑂 (𝜀−2 lg3 𝑛)
∑

𝑒∈𝐸 (𝐺)

1

𝑠𝑒
= 𝑂 (𝜀−2𝑛 lg3 𝑛),

where we used Lemma 5.9 and the fact that

∑
𝑒 1/𝑠𝑒 ≤ 𝑛 − 1 [6, 25].

All the ingredients developed so far are combined as follows: The

algorithm maintains a SW-Conn data structure for each𝐺
( 𝑗)
𝑖

and a

𝑘-SW-Certificate Q𝑖 for each 𝐻𝑖 . The BatchInsert operation in-

volves inserting the edges into 𝐾𝐿 + 𝐿 data structures and the same

number of independent coin flips. The cost is dominated by the cost

of inserting into the Q𝑖 ’s, each of which takes 𝑂 (𝑘ℓ lg(1 + 𝑛/ℓ))
expected work and 𝑂 (𝑘 lg2 𝑛) span w.h.p. The BatchExpire op-

eration involves invoking BatchExpire on all the data structures

maintained; the dominant cost here is expiring edges in the Q𝑖 ’s. Fi-
nally, the query operation sparsify involves considering the edges

of

⋃𝐿
𝑖=1 Q𝑖 in parallel, each requiring a call to 𝐿(𝑒), which can be an-

swered in 𝑂 (𝐿𝐾 lg𝑛) = 𝑂 (lg3 𝑛) work and span. In total, this costs

𝑂 (𝑛𝑘𝐿 lg3 𝑛) = 𝑂 (𝑛 polylog(𝑛))work and𝑂 (polylog(𝑛)) span. The
following theorem summarizes our result for graph sparsification:

2
We remark that the Q𝑖 instances themselves contain enough information to estimate

𝑐𝑒 for all edges, but we do not know how to do so efficiently.

Theorem 5.11 (Graph Sparsification). For an 𝑛-vertex graph,

there is a data structure for graph (cut) sparsification that requires

𝑂 (𝜀−2𝑛 lg4 𝑛) space and supports the following:
— BatchInsert(𝐵) handles ℓ = |𝐵 | new edges in𝑂 ( 1

𝜀2
ℓ lg(1+𝑛ℓ ) lg

4 𝑛)
expected work and 𝑂 (𝜀−2 lg5 𝑛) span w.h.p.

— BatchExpire(Δ) expires Δ oldest edges in𝑂 ( 1
𝜀2
Δ lg(1+ 𝑛

Δ ) lg
4 𝑛)

expected work and 𝑂 (lg2 𝑛) span w.h.p.

— sparsify() returns an 𝜀-sparsifier with high probability. The spar-

sifier has 𝑂 (𝜀−2𝑛 lg3 𝑛) edges and is produced in 𝑂 (𝑛 polylog(𝑛))
work and 𝑂 (polylog(𝑛)) span w.h.p.

5.7 Connection to Batch Incremental
All applications studied here were built on top of the connectivity

data structures (Theorem 5.1). In the related batch incremental set-

ting, an analog of Theorem 5.1was given by Simsiri et al. [47], where

BatchInsert takes 𝑂 (ℓ𝛼 (𝑛)) expected work and 𝑂 (polylog(𝑛))
span, and isConnected takes 𝑂 (𝛼 (𝑛)) work and span.

With this result, we can derive an analog of Theorem 5.3 us-

ing the following ideas: (i) maintain a component count variable,

which is decremented every time a union successfully joins two

previously disconnected components; and (ii) maintain a list of

inserted edges that make up the spanning forest. This can be im-

plemented as follows: Simsiri et al. maintains a union-find data

structure and handles batch insertion by first running a find on the

endpoints of each inserted edge and determining the connected

components using a spanning forest algorithm due to Gazit [26].

Notice that the edges that Gazit’s algorithm returns are exactly

the new edges for the spanning forest we seek to maintain and

can simply be appended to the list. This yields an analog of The-

orem 5.3, where BatchInsert still takes 𝑂 (ℓ𝛼 (𝑛)) expected work

and 𝑂 (polylog(𝑛)) span, isConnected takes 𝑂 (𝛼 (𝑛)) work and

span, and numComponents takes 𝑂 (1) work and span. Ultimately,

this means that replacing Theorems 5.1 and 5.3 with their analogs

in each application effectively replaces the lg(1 + 𝑛/ℓ) factor in the

work term with an 𝛼 (𝑛) term, leading to the cost bounds presented

in Table 1.

6 CONCLUSION
This paper presented the first work-efficient parallel algorithm

for batch-incremental MSFs. The algorithm is even asymptotically

faster than the sequential algorithm for sufficiently large batch

sizes. A key ingredient was the construction of a compressed path

tree—a tree that summarizes the heaviest edges on all pairwise

paths between a set of marked vertices. We demonstrated the use-

fulness of our algorithm by applying it to a range of problems in a

generalization of the sliding-window model.

We are, to the best of our knowledge, the first to tackle sliding

window dynamic graph problems in the parallel setting. Investigat-

ing other algorithms in this setting could lead to a variety of new

problems, tools, and solutions.
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