
4

Theoretically Efficient Parallel Graph Algorithms
Can Be Fast and Scalable

LAXMAN DHULIPALA, MIT CSAIL

GUY E. BLELLOCH, Carnegie Mellon University

JULIAN SHUN, MIT CSAIL

There has been significant recent interest in parallel graph processing due to the need to quickly analyze

the large graphs available today. Many graph codes have been designed for distributed memory or external

memory. However, today even the largest publicly-available real-world graph (the HyperlinkWeb graph with

over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server.

Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones

for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can

efficiently solve a broad class of graph problems on this graph in memory.

This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-

available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give im-

plementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present

the interfaces, optimizations, and graph processing techniques that we used in our implementations, which

were crucial in enabling us to process these large graphs quickly. We show that the running times of our

implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For

many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We

have made the implementations developed in this work publicly-available as the Graph Based Benchmark

Suite (GBBS).

CCS Concepts: • Computing methodologies → Shared memory algorithms;

Additional Key Words and Phrases: Parallel graph algorithms, parallel graph processing

ACM Reference format:

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically Efficient Parallel Graph Algorithms

Can Be Fast and Scalable. ACM Trans. Parallel Comput. 8, 1, Article 4 (April 2021), 70 pages.

https://doi.org/10.1145/3434393

1 INTRODUCTION

Today, the largest publicly-available graph, the Hyperlink Web graph, consists of over 3.5 billion
vertices and 128 billion edges [107]. This graph presents a significant computational challenge

A conference version of this paper appeared in the 30th Symposium on Parallelism in Algorithms and Architectures

(2018) [53]; in this version we give significantly more detail on the interface and algorithms.

Authors’ addresses: L. Dhulipala and J. Shun, MIT CSAIL, 32 Vassar Street Cambridge, MA 02139; email: {laxman,

jshun}@mit.edu; G. E. Blelloch, Computer Science Department, Carnegie Mellon University Pittsburgh, PA 15213; email:

guyb@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2329-4949/2021/04-ART4 $15.00

https://doi.org/10.1145/3434393

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

https://doi.org/10.1145/3434393
mailto:permissions@acm.org
https://doi.org/10.1145/3434393
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3434393&domain=pdf&date_stamp=2021-04-22

4:2 L. Dhulipala et al.

for both distributed and shared memory systems. Indeed, very few algorithms have been applied
to this graph, and those that have often take hours to run [85, 99, 154], with the fastest times
requiring between 1–6 minutes using a supercomputer [145, 146]. In this paper, we show that a
wide range of fundamental graph problems can be solved quickly on this graph, often in minutes,
on a single commodity shared-memory machine with a terabyte of RAM.1 For example, our k-core
implementation takes under 3.5 minutes on 72 cores, whereas Slota et al. [146] report a running
time of about 6 minutes for approximate k-core on a supercomputer with over 8000 cores. They
also report that they can identify the largest connected component on this graph in 63 seconds,
whereas we can identify all connected components in just 25 seconds. Another recent result by
Stergiou et al. [147] solves connectivity on the Hyperlink 2012 graph in 341 seconds on a 1000
node cluster with 12000 cores and 128TB of RAM. Compared to this result, our implementation is
13.6x faster on a system with 128x less memory and 166x fewer cores. However, we note that they
are able to process a significantly larger private graph that we would not be able to fit into our
memory footprint. A more complete comparison between our work and existing work, including
both distributed and disk-based systems [51, 78, 85, 99, 154], is given in Section 8.
Importantly, all of our implementations have strong theoretical bounds on their work and depth.

There are several reasons that algorithms with good theoretical guarantees are desirable. For one,
they are robust as even adversarially-chosen inputs will not cause them to perform extremely
poorly. Furthermore, they can be designed on pen-and-paper by exploiting properties of the prob-
lem instead of tailoring solutions to the particular dataset at hand. Theoretical guarantees also
make it likely that the algorithmwill continue to performwell even if the underlying data changes.
Finally, careful implementations of algorithms that are nearly work-efficient can perform much
less work in practice than work-inefficient algorithms. This reduction in work often translates to
faster running times on the same number of cores [52]. We note that most running times that have
been reported in the literature on the Hyperlink Web graph use parallel algorithms that are not
theoretically-efficient.
In this paper, we present implementations of parallel algorithms with strong theoretical bounds

on their work and depth for connectivity, biconnectivity, strongly connected components, low-
diameter decomposition, graph spanners, maximal independent set, maximal matching, graph
coloring, breadth-first search, single-source shortest paths, widest (bottleneck) path, betweenness
centrality, PageRank, spanning forest, minimum spanning forest, k-core decomposition, approxi-
mate set cover, approximate densest subgraph, and triangle counting. We describe the program-
ming interfaces, techniques, and optimizations used to achieve good performance on graphs with
billions of vertices and hundreds of billions of edges and share experimental results for the Hyper-
link 2012 and Hyperlink 2014Web crawls, the largest and second largest publicly-available graphs,
as well as several smaller real-world graphs at various scales. Some of the algorithms we describe
are based on previous results from Ligra, Ligra+, and Julienne [52, 136, 141], and other papers
on efficient parallel graph algorithms [32, 77, 142]. However, most existing implementations were
changed significantly in order to be more memory efficient. Several algorithm implementations
for problems like strongly connected components, minimum spanning forest, and biconnectiv-
ity are new, and required implementation techniques to scale that we believe are of independent
interest. We also had to extend the compressed representation from Ligra+ [141] to ensure that
our graph primitives for mapping, filtering, reducing and packing the neighbors of a vertex were
theoretically-efficient. We note that using compression techniques is crucial for representing the
symmetrized Hyperlink 2012 graph in 1TB of RAM, as storing this graph in an uncompressed for-
mat would require over 900GB to store the edges alone, whereas the graph requires 330GB in our

1These machines are roughly the size of a workstation and can be easily rented in the cloud (e.g., on Amazon EC2).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:3

Table 1. Running Times (in seconds) of Our Algorithms on the Symmetrized Hyperlink2012

Graph Where (1) is the Single-Thread Time, (72h) is the 72-core Time Using Hyper-threading,

and (SU) is the Parallel Speedup

Problem (1) (72h) (SU) Alg. Model Work Depth

Breadth-First Search (BFS) 576 8.44 68 – BF O (m) O (diam(G) logn)

Integral-Weight SSSP (weighted BFS) 3770 58.1 64 [52] PW-BF O (m)† O (diam(G) logn)‡

General-Weight SSSP (Bellman-Ford) 4010 59.4 67 [49] PW-BF O (diam(G)m) O (diam(G) logn)

Single-Source Widest Path (Bellman-Ford) 3210 48.4 66 [49] PW-BF O (diam(G)m) O (diam(G) logn)

Single-Source Betweenness Centrality (BC) 2260 37.1 60 [41] BF O (m) O (diam(G) logn)

O (k)-Spanner 2390 36.5 65 [110] BF O (m) O (k logn)‡

Low-Diameter Decomposition (LDD) 980 16.6 59 [111] BF O (m) O (log2 n)‡

Connectivity 1640 25.0 65 [140] BF O (m)† O (log3 n)‡

Spanning Forest 2420 35.8 67 [140] BF O (m)† O (log3 n)‡

Biconnectivity 9860 165 59 [148] FA-BF O (m)† O (diam(G) logn + log3 n)‡

Strongly Connected Components (SCC)* 8130 185 43 [33] PW-BF O (m logn)† O (diam(G) logn)‡

Minimum Spanning Forest (MSF) 9520 187 50 [155] PW-BF O (m logn) O (log2 n)‡

Maximal Independent Set (MIS) 2190 32.2 68 [32] FA-BF O (m) O (log2 n)‡

Maximal Matching (MM) 7150 108 66 [32] PW-BF O (m)† O (log2 m)‡

Graph Coloring 8920 158 56 [77] FA-BF O (m) O (logn + L logΔ)

Approximate Set Cover 5320 90.4 58 [36] PW-BF O (m)† O (log3 n)‡

k -core 8515 184 46 [52] FA-BF O (m)† O (ρ logn)‡

Approximate Densest Subgraph 3780 51.4 73 [18] FA-BF O (m) O (log2 n)

Triangle Counting (TC) — 1168 — [142] BF O (m3/2) O (logn)

PageRank Iteration 973 13.1 74 [42] FA-BF O (n +m) O (logn)

Theoretical bounds for the algorithms and the variant of the binary-forking model used are shown in the last

three columns. Section 3.3 provides more details about the binary-forking model. We mark times that did not

finish in 5 hours with —. *SCC was run on the directed version of the graph. † denotes that a bound holds in

expectation, and ‡ denotes that a bound holds with high probability. We say that an algorithm has O (f (n)) cost

with high probability (whp) if it hasO (k · f (n)) cost with probability at least 1 − 1/nk . We assumem = Ω(n).

compressed format (less than 1.5 bytes per edge). We show the running times of our algorithms
on the Hyperlink 2012 graph as well as their work and depth bounds in Table 1. To make it easy to
build upon or compare to our work in the future, we describe the Graph Based Benchmark Suite
(GBBS), a benchmark suite containing our problems with clear I/O specifications, which we have
made publicly-available.2

We present an experimental evaluation of all of our implementations, and in almost all cases,
the numbers we report are faster than any previous performance numbers for any machines, even
much larger supercomputers. We are also able to apply our algorithms to the largest publicly-
available graph, in many cases for the first time in the literature, using a reasonably modest ma-
chine. Most importantly, our implementations are based on reasonably simple algorithms with
strong bounds on their work and depth. We believe that our implementations are likely to scale to
larger graphs and lead to efficient algorithms for related problems.

2 RELATED WORK

Parallel Graph Algorithms. Parallel graph algorithms have received significant attention since
the start of parallel computing, and many elegant algorithms with good theoretical bounds have
been developed over the decades (e.g., [5, 25, 45, 63, 84, 89, 98, 109, 111, 112, 121, 125, 135, 148]). A
major goal in parallel graph algorithm design is to findwork-efficient algorithmswith polylogarith-
mic depth. While many suspect that work-efficient algorithms may not exist for all parallelizable
graph problems, as inefficiency may be inevitable for problems that depend on transitive closure,

2https://github.com/ParAlg/gbbs.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

https://github.com/ParAlg/gbbs

4:4 L. Dhulipala et al.

many problems that are of practical importance do admit work-efficient algorithms [88]. For these
problems, which include connectivity, biconnectivity, minimum spanning forest, maximal inde-
pendent set, maximal matching, and triangle counting, giving theoretically-efficient implementa-
tions that are simple and practical is important, as the amount of parallelism available on modern
systems is still modest enough that reducing the amount of work done is critical for achieving good
performance. Aside from intellectual curiosity, investigating whether theoretically-efficient graph
algorithms also perform well in practice is important, as theoretically-efficient algorithms are less
vulnerable to adversarial inputs than ad-hoc algorithms that happen to work well in practice.
Unfortunately, some problems that are not known to admit work-efficient parallel algorithms

due to the transitive-closure bottleneck [88], such as strongly connected components (SCC) and
single-source shortest paths (SSSP) are still important in practice. One method for circumvent-
ing the bottleneck is to give work-efficient algorithms for these problems that run in depth pro-
portional to the diameter of the graph—as real-world graphs have low diameter, and theoreti-
cal models of real-world graphs predict a logarithmic diameter, these algorithms offer theoretical
guarantees in practice [33, 131]. Other problems, like k-core are P-complete [7], which rules out
polylogarithmic-depth algorithms for them unless P = NC [73]. However, even k-core admits an
algorithm with strong theoretical guarantees on its work that is efficient in practice [52].

Parallel Graph Processing Frameworks. Motivated by the need to process very large graphs,
there have been many graph processing frameworks developed in the literature (e.g., [71, 97, 101,
115, 136] among many others). We refer the reader to [105, 152] for surveys of existing frame-
works. Several recent graph processing systems evaluate the scalability of their implementations
by solving problems on massive graphs [52, 85, 99, 145, 147, 154]. All of these systems report
running times either on the Hyperlink 2012 graph or Hyperlink 2014 graphs, two web crawls re-
leased by the WebDataCommons that are the largest and second largest publicly-available graphs
respectively. We describe these recent systems and give a detailed comparison of how our imple-
mentations compare to these existing solutions in Section 8.

Benchmarking Parallel Graph Algorithms. There are a surprising number of existing bench-
marks of parallel graph algorithms. SSCA [15] specifies four graph kernels, which include gen-
erating graphs in adjacency list format, subgraph extraction, and graph clustering. The Problem
Based Benchmark Suite (PBBS) [139] is a general benchmark of parallel algorithms that includes
6 problems on graphs: BFS, spanning forest, minimum spanning forest, maximal independent set,
maximal matching, and graph separators. The PBBS benchmarks are problem-based in that they
are defined only in terms of the input and output without any specification of the algorithm used
to solve the problem. We follow the style of PBBS in this paper of defining the input and output
requirements for each problem. The Graph Algorithm Platform (GAP) Benchmark Suite [22] spec-
ifies 6 kernels: BFS, SSSP, PageRank, connectivity, betweenness centrality, and triangle counting.
Several recent benchmarks characterize the architectural properties of parallel graph algo-

rithms. GraphBIG [113] describes 12 applications, including several problems that we consider, like
k-core and graph coloring (using the Jones-Plassmann algorithm), but also problems like depth-
first search, which are difficult to parallelize, as well as dynamic graph operations. CRONO [4]
implements 10 graph algorithms, including all-pairs shortest paths, exact betweenness central-
ity, traveling salesman, and depth-first search. LDBC [81] is an industry-driven benchmark that
selects 6 algorithms that are considered representative of graph processing including BFS, and
several algorithms based on label propagation.
Unfortunately, all of the existing graph algorithm benchmarkswe are aware of restrict their eval-

uation to small graphs, often on the order of tens or hundreds of millions of edges, with the largest
graphs in the benchmarks having about two billion edges. As real-world graphs are frequently sev-

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:5

eral orders of magnitude larger than this, evaluation on such small graphs makes it hard to judge
whether the algorithms or results from a benchmark scale to terabyte-scale graphs. This paper
provides a problem-based benchmark in the style of PBBS for fundamental graph problems, and
evaluates theoretically-efficient parallel algorithms for these problems on the largest real-world
graphs, which contain hundreds of billions of edges.

3 PRELIMINARIES

3.1 Graph Notation

We denote an unweighted graph by G (V ,E), where V is the set of vertices and E is the set of
edges in the graph. A weighted graph is denoted by G = (V ,E,w), where w is a function which
maps an edge to a real value (its weight). The number of vertices in a graph is n = |V |, and the
number of edges is m = |E |. Vertices are assumed to be indexed from 0 to n − 1. We call these
unique integer identifiers for vertices vertex IDs. For undirected graphs we use N (v) to denote
the neighbors of vertex v and d (v) to denote its degree. For directed graphs, we use N − (v) and
N + (v) to denote the in and out-neighbors of a vertex v , and d− (v) and d+ (v) to denote its in and
out-degree, respectively. We use distG (u,v) to refer to the shortest path distance between u and v
in G. We use diam(G) to refer to the diameter of the graph, or the longest shortest path distance
between any vertex s and any vertexv reachable from s . Given an undirected graphG = (V ,E) the

density of a set S ⊆ V , orD (S), is equal to |E (S) |
|S | where E (S) are the edges in the induced subgraph

on S . Δ is used to denote the maximum degree of the graph. We assume that there are no self-edges
or duplicate edges in the graph. We refer to graphs stored as a list of edges as being stored in the
edgelist format and the compressed-sparse column and compressed-sparse row formats as CSC

and CSR respectively.

3.2 Atomic Primitives

We use three common atomic primitives in our algorithms and implementations: testAnd-

Set(TS), fetchAndAdd(FA), and priorityWrite(PW). A testAndSet(&x) checks if x
is false, and if so atomically sets it to true and returns true; otherwise it returns false. A
fetchAndAdd (&x) atomically returns the current value of x and then increments x . A
priorityWrite(&x ,v,p) atomically compares v with the current value of x using the priority
function p, and if v has higher priority than the value of x according to p it sets x to v and returns
true; otherwise it returns false.

3.3 Parallel Model and Cost

In the analysis of algorithms in this paper we use a work-depth model which is closely related to
the PRAM but better models currentmachines and programming paradigms that are asynchronous
and allow dynamic forking. We can simulate this model on the CRCW PRAM equipped with the
same operations with an additional O (log∗ n) factor in the depth whp due to load-balancing [31].
Furthermore, a PRAM algorithm using P processors and T time can be simulated in our model
with PT work and T depth.
The Binary-Forking Model [28, 31] consists of a set of threads that share an unbounded mem-

ory. Each thread is basically equivalent to a RandomAccessMachine—it works on a program stored
in memory, has a constant number of registers, and has standard RAM instructions (including an
end to finish the computation). The binary-forking model extends the RAM with a fork instruc-
tion that forks 2 new child threads. Each child thread receives a unique integer in the range [1, 2]
in its first register and otherwise has the identical state as the parent, which has a 0 in that register.
They all start by running the next instruction. When a thread performs a fork, it is suspended un-

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:6 L. Dhulipala et al.

til both of its children terminate (execute an end instruction). A computation starts with a single
root thread and finishes when that root thread ends. Processes can perform reads and writes to
the shared memory, as well as the testAndSet instruction. This model supports what is often
referred to as nested parallelism. If the root thread never does a fork, it is a standard sequential
program.
A computation can be viewed as a series-parallel DAG in which each instruction is a vertex,

sequential instructions are composed in series, and the forked threads are composed in parallel.
The work of a computation is the number of vertices and the depth is the length of the longest
path in the DAG. As is standard with the RAM model, we assume that the memory locations and
registers have at most O (logM) bits, whereM is the total size of the memory used.

Model Variants.We augment the binary-forking model described above with two atomic instruc-
tions that are used by our algorithms: fetchAndAdd and priorityWrite and discuss the model
with these instruction as the FA-BF, and PW-BF variants of the binary-forking model, respec-
tively. We abbreviate the basic binary-forking model with only the testAndSet instruction as the
BF model. Note that the basic binary-forking model includes a testAndSet, as this instruction is
necessary to implement joining tasks in a parallel schedulers (see for example [9, 38]), and since
all modern multicore architectures include the testAndSet instruction.

3.4 Parallel Primitives

The following parallel procedures are used throughout the paper. A monoid over a type E is an
object consisting of an associative function ⊕ : E × E→ E, and an identity element⊥ : E. Amonoid
is specified as a pair, (⊥, ⊕). Scan takes as input an array A of length n, and a monoid (⊥, ⊕)
and returns the array (⊥,⊥ ⊕ A[0],⊥ ⊕ A[0] ⊕ A[1], . . . ,⊥ ⊕n−2

i=0 A[i]) as well as the overall sum,
⊥ ⊕n−1

i=0 A[i]. Scan can be done inO (n) work andO (logn) depth (assuming ⊕ takesO (1) work) [84].
Reduce takes an array A and a monoid (⊥, ⊕) and returns the sum of the elements in A with
respect to the monoid, ⊥ ⊕n−1

i=0 A[i]. Filter takes an array A and a predicate f and returns a new
array containing a ∈ A for which f (a) is true, in the same order as in A. Reduce and filter can
both be done in O (n) work and O (logn) depth (assuming ⊕ and f take O (1) work). Finally, the
PointerJump primitive takes an array P of parent pointers which represent a directed rooted
forest (i.e., P[v] is the parent of vertex v) and returns an array R where R[v] is the root of the
directed tree containing v . This primitive can be implemented in O (n) work, and O (logn) depth
whp in the BF model [31].

4 INTERFACE

In this section we describe the high-level graph processing interface used by our algorithm imple-
mentations in GBBS, and explain how the interface is integrated into our overall system architec-
ture. The interface is written in C++ and extends the Ligra, Ligra+, and Julienne frameworks [52,
136, 141] with additional functional primitives over graphs and vertices that are parallel by default.
In what follows, we provide descriptions of these functional primitives, as well as the parallel cost
bounds obtained by our implementations.

System Overview. The GBBS library, which underlies our benchmark algorithm implementations
is built as a number of layers, which we illustrate in Figure 1.3 We use a shared-memory approach
to parallel graph processing in which the entire graph is stored in the main memory of a single
multicore machine. Our codes exploit nested parallelism using scheduler-agnostic parallel prim-
itives, such as fork-join and parallel-for loops. Thus, they can easily be compiled to use different

3A brief version of this interface was presented by the authors and their collaborators in [59].

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:7

Fig. 1. System architecture of GBBS. The core interfaces are the vertexSubset (Section 4.2), bucketing (Sec-

tion 4.3), vertex (Section 4.4), and graph interfaces (Section 4.5). These interfaces utilize parallel primitives and

routines from ParlayLib [27]. Parallelism is implemented using a parallel runtime system—Cilk, OpenMP,

TBB, or a homegrown scheduler based on the Arora-Blumofe-Plaxton deque [10] that we implemented

ourselves—and can be swapped using a command line argument. The vertex and graph interfaces use a

compression library that mediates access to the underlying graph, which can either be compressed or un-

compressed (see Section 4.1).

Table 2. Type Names Used in the Interface, and Their Definitions

Type Name Definition Found In

unit An empty tuple indicating a trivial value (similar to void in languages like C) —

E option Either a value of type E (Some(e : E)) or no value (None) —

E monoid A pair of an identity element, ⊥ : E, and an associative function, ⊕ : E × E→ E Section 3.4

E sequence A parallel sequence containing values of type E Section 3.4

A→ B A function with arguments of type A with results of type B —

vtxid A vertex ID (unique integer identifiers for vertices) Section 3.1

vertexSubset Data type representing a subset of vertex IDs Section 4.2

E vertexSubset An augmented vertexSubset (each vertex ID has an associated value of type E) Section 4.2

vset Abbreviation for a vertexSubset Section 4.2

identifier A unique integer representing a bucketed object Section 4.3

bktid A unique integer for each bucket Section 4.3

bktorder The order to traverse buckets in (increasing or decreasing) Section 4.3

bktdest Type representing which bucket an identifier is moving to Section 4.3

edge A tuple representing an edge in the graph —

nghlist Data type representing the neighbors of a vertex Section 4.4

graph Data type representing a collection of vertices and edges Section 4.5

The third column provides a reference to where the type is defined in the text (if applicable).

parallel runtimes such as Cilk, OpenMP, TBB, and also a custom work-stealing scheduler imple-
mented by the authors [27]. Theoretically, our algorithms are implemented and analyzed in the
binary-forking model [31] (see Section 3.3). Our interface makes use of several new types which
are defined in Table 2. We also define these types when they are first used in the text.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:8 L. Dhulipala et al.

4.1 Graph Representations

We first cover the different types of graph representations used in the library. The basic graph rep-
resentation stores graphs in the compressed sparse row format (described below). To efficiently
store very large graphs, we also utilize a compressed graph format which encodes sorted neighbor
lists using difference encoding, which we describe below. Finally, our library also supports arbi-
trary edge weights, and provides functionality for compressing integer edge weights. As described
in Section 3, in this paper, we deal with graphs where vertices are identified by unique integers
between 0 to n − 1. We use the vtxid type to refer to these integer vertex IDs.

Compressed Graphs. Graphs in GBBS are stored in the compressed sparse row (CSR) format.
CSR stores two arrays, I and A, where the vertices are in the range [0,n − 1] and incident edges
of a vertex v are stored in {A[I [v]], . . . ,A[I [v + 1] − 1]} (with a special case for vertex n − 1). The
uncompressed format in GBBS is equivalent to the CSR format. The format assumes that the edges
incident to a vertex are sorted by the neighboring vertex ID. GBBS also supports the compressed

graph formats from the Ligra+ framework [141]. Specifically, we provide support for graphs where
neighbor lists are encoded using byte codes and a parallel generalization of byte codes, which we
describe next.
In the byte format, we store a vertex’s neighbor list by difference encoding consecutive vertex

IDs, with the first difference encoded with respect to the source vertex ID. Decoding is done by se-
quentially uncompressing each difference, and summing the differences into a running sumwhich
gives the vertex ID of the next neighbor. As this process is sequential, graph algorithms using the
byte format that map over the neighbors of a vertex will have poor depth bounds.
We enable parallelism using the parallel-byte format from Ligra+ [141]. This format breaks

the neighbors of a high-degree vertex into blocks, where each block contains a constant number
of neighbors. Each block is difference encoded with respect to the source, and the format stores
the blocks in a neighbor list in sorted order. As each block can have a different size, it also stores
offsets that point to the start of each block. Using the parallel-byte format, the neighbor vertex
IDs of a high-degree vertex can then be decoded in parallel over the blocks. We refer the reader
to Ligra+ [141] for a detailed discussion of the idea. We provide many parallel primitives for pro-
cessing neighbor lists compressed in the parallel-byte format in Section 7.4.

Weighted Graphs. The graph and vertex data types used in GBBS are generic over the weight
type of the graph. Graphs with arbitrary edge weights can be represented by simply changing
a template argument to the vertex and graph data types. We treat unweighted graphs as graphs
weighted by an implicit null (0-byte) weight.
Both the byte and parallel-byte schemes above provide support for weighted graphs. If the graph

weight type is E, the encoder simply interleaves the weighted elements of type E with the differ-
ences generated by the byte or parallel byte code. Additionally, GBBS supports compressing integer
weights using variable-length coding, similar to Ligra+ [141].

4.2 VertexSubset Interface

Data Types. One of the primary data types used in GBBS is the vertexSubset data type, which
represents a subset of vertices in the graph. Conceptually, a vertexSubset can either be sparse

(represented as a collection of vertex IDs) or dense (represented as a boolean array or bit-vector
of length n). A T vertexSubset is a generic vertexSubset, where each vertex is augmented with a
value of type T.

Primitives. We use four primitives defined on vertexSubset, which we illustrate in Figure 2.
vertexMap takes a vertexSubset and applies a user-defined function f over each vertex. This

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:9

Fig. 2. The core primitives in the vertexSubset interface used by GBBS, including the type definition of each

primitive and the cost bounds. We use vset as an abbreviation for vertexSubset in the figure. A vertexSubset

is a representation of a set of vertex IDs, which are unique integer identifiers for vertices. If the input

vertexSubset is augmented, the user-defined functions supplied to vertexMap and vertexFilter take a pair

of the vertex ID and augmented value as input, and the addToSubset primitive takes a sequence ofvertexID
and augmented value pairs.

primitive makes it easy to apply user-defined logic over vertices in a subset in parallel without
worrying about the state of the underlying vertexSubset (i.e., whether it is sparse or dense). We
also provide a specialized version of the vertexMap primitive, vertexMapVal through which the
user can create an augmented vertexSubset. vertexFilter takes a vertexSubset and a user-defined
predicate P and keeps only vertices satisfying P in the output vertexSubset. Finally, addToSubset
takes a vertexSubset and a sequence of unique vertex identifiers not already contained in the sub-
set, and adds these vertices to the subset. Note that this functionmutates the supplied vertexSubset.
This primitive is implemented in O (1) amortized work by representing a sparse vertexSubset us-
ing a resizable array. The worst case depth of the primitive isO (logn) since the primitive scans at
most O (n) vertex IDs in parallel.

4.3 Bucketing Interface

We use the bucketing interface and data structure from Julienne [52], which represents a dynamic
mapping from identifiers to buckets. Each bucket is represented as a vertexSubset, and the in-
terface allows vertices to dynamically be moved through different buckets as priorities change.
The interface enables priority-based graph algorithms, including integral-weight shortest paths,
k-core decomposition, and others [52]. Algorithms using the interface iteratively extract the high-
est priority bucket, potentially update incident vertex priorities, and repeat until all buckets are
empty.
The interface is shown in Figure 3. The interface uses several types that we now define. An

identifier is a unique integer representing a bucketed object. An identifier is mapped to a bktid,
a unique integer for each bucket. The order that buckets are traversed in is given by the bktorder

type. bktdest is an opaque type representing where an identifier is moving inside of the structure.
Once the structure is created, an object of type buckets is returned to the user.
The structure is created by calling makeBuckets and providing n, the number of identifiers, D,

a function which maps identifiers to bktids and O , a bktorder. Initially, some identifiers may not
be mapped to a bucket, so we add nullbkt, a special bktid which lets D indicate this. Buckets in
the structure are accessed monotonically in the order specified byO . After the structure is created,
the nextBucket primitive is used to access the next non-empty bucket in non-decreasing (respec-
tively, non-increasing) order. The getBucket primitive is how users indicate that an identifier is
moving buckets. It requires supplying both the current bktid and next bktid for the identifier that
is moving buckets, and returns an element with the bktdest type. Lastly, the updateBuckets prim-

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:10 L. Dhulipala et al.

Fig. 3. The bucketing interface used by GBBS, including the type definition of each primitive and the cost

bounds. The bucketing structure represents a dynamic mapping between a set of identifiers to a set of buck-

ets. The total number of identifiers is denoted by n. † denotes that a bound holds in expectation, and ‡

denotes that a bound holds whp. We define the semantics of each operation in the text below.

itive updates the bktids for multiple identifiers by supplying the bucket structure and a sequence
of identifier and bktdest pairs.
The costs for using the bucket structure can be summarized by the following theorem from [52]:

Theorem 4.1. When there are n identifiers, T total buckets, K calls to updateBuckets, each of

which updates a set Si of identifiers, and L calls to nextBucket, parallel bucketing takes O (n +T +∑K
i=0 |Si |) expected work and O ((K + L) logn) depth whp.

We refer to the Julienne paper [52] for more details about the bucketing interface and its imple-
mentation. We note that the implementation is optimized for the case where only a small number
of buckets are processed, which is typically the case in practice.

4.4 Vertex Interface

GBBS provides vertex data types for both symmetric and asymmetric vertices, used for undirected
and directed graphs, respectively. The vertex data type interface (see Figure 4) provides functional
primitives over vertex neighborhoods, such as map, reduce, scan, count (a special case of reduce
over the (0,+) monoid where the map function is a boolean function), as well as primitives to
extract a subset of the neighborhood satisfying a predicate (filter) and an internal primitive to
mutate the vertex neighborhood and delete edges that do not satisfy a given predicate (pack).
Since pack mutates the underlying vertex neighborhood in the graph, which requires updating
the number of edges remaining in the graph, we do not expose it to the user, and instead provide
APIs to pack a graph in-place using the packGraph and (ngh/src)Pack primitives described later.
The interface also provides a sequential iterator that takes as input a function f from edges to
booleans, and applies f to each successive neighbor, terminating once f returns false. Note that
for directed graphs, each of the neighborhood operators has two versions, one for the in-neighbors
and one for the out-neighbors of the vertex.
Finally, the interface provides vertex-vertex operators for computing the intersection, union,

or difference between the set of neighbors of two vertices. We also include natural generaliza-
tions of each vertex-vertex operator that take a user-defined function f and apply it to neighbor
found in the intersection (union or difference). Note that the vertex-vertex operators take the ab-
stract nghlist type, which makes it easy to perform more complex tasks such as intersecting the
in-neighbors of one vertex and the out-neighbors of a different vertex.
The cost bounds for the interface are derived by applying known bounds for efficient sequence

primitives (see Section 3). We provide additional details about the implementations of our com-
pressed implementations in Section 7.4.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:11

Fig. 4. The core vertex interface used by GBBS, including the type definition of each primitive and the cost

bounds for our implementations on uncompressed graphs. Note that for directed graphs, each of the neigh-

borhood operators has two versions, one for the in-neighbors and one for the out-neighbors of the vertex.

The cost bounds for the primitives on compressed graphs are identical assuming the compression block size

isO (logn) (note that for compressed graphs, i-th has work and depth proportional to the compression block

size of the graph in the worst case). The cost bounds shown here assume that the user-defined functions

supplied to map, reduce, scan, count, filter, pack, and iterate all cost O (1) work to evaluate. dit is the

number of times the function supplied to iterate returns true. nghlist is an abstract type for the neighbors

of a vertex, and is used by the vertex-vertex operators. The edge type is a triple (u,v,wuv) where the first

two entries are the ids of the endpoints, and the last entry is the weight of the edge. l and h are the degrees

of the smaller and larger degree vertices supplied to a vertex-vertex operator, respectively.

4.5 Graph Interface

GBBS provides graph data types for both symmetric and asymmetric graphs. Distinguishing be-
tween these graph types is important for statically enforcing arguments to problems and routines
that require a symmetric input (for example, it does not make sense to call connectivity, maximal
independent set, or biconnectivity on a directed input). Aside from standard functions to query the
number of vertices and edges, the core graph interface consists of two types of operators: (i) graph

operators, which provide information about a graph and enable users to perform graph-parallel
operations, and (ii) vertexSubset operators, which take as input a vertexSubset, apply user-defined
functions on edges incident to the vertexSubset in the graph in parallel and return vertexSubsets
as outputs.

4.5.1 Graph Operators. The graph operators, their types, and the cost bounds provided by our
implementation are shown in the top half of Figure 5. The interface provides primitives for query-
ing the number of vertices and edges in the graph (numVertices and numEdges), and for fetching
the vertex object for the i-th vertex (getVertex).

filterGraph.The filterGraph primitive takes as input a graphG (V ,E), and a boolean function
P over edges specifying edges to preserve. filterGraph removes all edges in the graph where
P (u,v,wuv) = false, and returns a new graph containing only edges where P (u,v,wuv) = true.
The filterGraph primitive is useful for our triangle counting algorithm, which requires directing
the edges of an undirected graph to reduce overall work.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:12 L. Dhulipala et al.

Fig. 5. The core graph interface used by GBBS, including the type definition of each primitive and the

cost bounds for our implementations on uncompressed graphs. vset is an abbreviation for vertexSubset

when providing a type definition. Note that for directed graphs, the interface provides two versions of each

vertexSubset operator, one for the in-neighbors and one for the out-neighbors of the vertex. The edge type is

a triple (u,v,wuv) where the first two entries are the ids of the endpoints, and the last entry is the weight of

the edge. The vertexSubset operators can take both unaugmented and augmented vertexSubsets as input, but

ignore the augmented values in the input.U is the vertexSubset supplied as input to a vertexSubset operator.

For the src-based primitives, U ′ ⊆ U is the set of vertices that are matched by the condition function (see

the text below). The cost bounds for the primitives on compressed graphs are identical assuming the com-

pression block size isO (logn). The cost bounds shown here assume that the user-defined functions supplied

to the vertexSubset operators all cost O (1) work to evaluate. † denotes that a bound holds in expectation,

and ‡ denotes that a bound holds whp.

packGraph. The interface also provides a primitive over edges called packGraph which oper-
ates similarly to filterGraph, but works in-place and mutates the underlying graph. packGraph
takes as input a graph G (V ,E), and a boolean function P over the edges specifying edges to pre-
serve. packGraph mutates the input graph to remove all edges that do not satisfy the predicate.
This primitive is used by the biconnectivity (Algorithm 9), strongly connected components (Algo-
rithm 11), maximal matching (Algorithm 13), and minimum spanning forest (Algorithm 10) algo-
rithms studied in this paper.

extractEdges. The extractEdges primitive takes as input a graph G (V ,E), and a boolean
function P over edges which specifies edges to extract, and returns an array containing all edges
where P (u,v,wuv) = true. This primitive is useful in algorithms studied in this paper such as

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:13

Fig. 6. Illustration of srcCount and nghCount primitives. The input is illustrated in Panel (1), and consists of

a graph and a vertexSubset, with vertices in the vertexSubset illustrated in green. The green edges are edges

for which the user-defined predicate, P , returns true. Panel (2) and Panel (3) show the results of applying

srcCount and nghCount, respectively. In Panel (2), the cond function C returns true for both vertices in

the input vertexSubset. In Panel (3), the condition function C only returns true for v2,v4, and v5, and false

for v0,v1,v3, and v6. The output is an augmented int vertexSubset, illustrated in red, where each source

(neighbor) vertex v s.t.C (v) = true has an augmented value containing the number of incident edges where

P returns true.

maximal matching (Algorithm 13) and minimum spanning forest (Algorithm 10) where it is used
to extract subsets of edges from a CSR representation of the graph, which are then processed using
an algorithm operating over edgelists (edges tuples stored in an array).

contractGraph. Lastly, the contractGraph primitive takes a graph and an integer cluster
labeling L, i.e., a mapping from vertices to cluster ids, and returns the graph G ′ = (V ′,E ′) where
E ′ = {(L(u),L(v) | (u,v) ∈ E}, with any duplicate edges or self-loops removed.V ′ isV with all ver-
tices with no incident edges in E ′ removed. This primitive is used by the connectivity (Algorithm 7)
and spanning forest (Algorithm 8) algorithms studied in this paper. The primitive can naturally be
generalized to weighted graphs by specifying how to reweight parallel edges (e.g., by averaging, or
taking a minimum or maximum), although this generalization is not necessary for the algorithms
studied in this paper.

Implementations and Cost Bounds. filterGraph, packGraph, and extractEdges are imple-
mented by invoking filter and pack on each vertex in the graph in parallel. The overall work and
depth comes from the fact that every edge is processed once by each endpoint, and since all vertices
are filtered (packed) in parallel. contractGraph can be implemented inO (n +m) expected work
andO (logn) depthwhp in the BFmodel using semisorting [31, 74]. In practice, contractGraph is
implemented using parallel hashing [137], and we refer the reader to [140] for the implementation
details.

4.5.2 VertexSubset Operators. The second part of the graph interface consists of a set of oper-
ators over vertexSubsets. At a high level, each of these primitives take as input a vertexSubset,
apply a given user-defined function over the edges neighboring the vertexSubset, and output a
vertexSubset. The primitives include the edgeMap primitive from Ligra, as well as several exten-
sions and generalizations of the edgeMap primitive.

edgeMap. The edgeMap primitive takes as input a graph G (V ,E), a vertexSubset U , and two
boolean functions F andC . edgeMap applies F to (u,v) ∈ E such that u ∈ U andC (v) = true (call
this subset of edges Ea), and returns a vertexSubsetU ′ where u ∈ U ′ if and only if (u,v) ∈ Ea and
F (u,v) = true. Our interface defines the edgeMap primitive identically to Ligra. This primitive is
used in many of the algorithms studied in this paper.

edgeMapData. The edgeMapData primitive works similarly to edgeMap, but returns an aug-
mented vertexSubset. Like edgeMap, it takes as input a graph G (V ,E), a vertexSubset U , a

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:14 L. Dhulipala et al.

function F returning a value of type R option, and a boolean function C . edgeMapData ap-
plies F to (u,v) ∈ E such that u ∈ U and C (v) = true (call this subset of edges Ea), and returns
a R vertexSubsetU ′ where (u, r) ∈ U ′ (r is the augmented value associated with u) if and only if
(u,v) ∈ Ea and F (u,v) = Some(r). The primitive is only used in the weighted breadth-first search
algorithm in this paper, where the augmented value is used to store the distance to a vertex at the
start of a computation round (Algorithm 2).

srcReduce and srcCount. The srcReduce primitive takes as input a graph G (V ,E) and a
vertexSubset U , a map function M over edges returning values of type R, a boolean function C ,
and a monoidA over values of type R, and returns a R vertexSubset. srcReduce appliesM to each
(u,v) ∈ E s.t.u ∈ U andC (u) = true (letMu be the set of values of type R from applyingM to edges
incident to u), and returns a R vertexSubset U ′ containing (u, r) where r is the result of reducing
all values inMu using the monoid A.
The srcCount primitive is a specialization of srcReduce, where R = int, the monoidA is (0,+),

and the map function is specialized to a boolean (predicate) function P over edges. This primitive
is useful for building a vertexSubset where the augmented value for each vertex is the number of
incident edges satisfying some condition. srcCount is used in our parallel approximate set cover
algorithm (Algorithm 15).

srcPack. The srcPack primitive is defined similarly to srcCount, but also removes edges that
do not satsify the given predicate. Specifically, it takes as input a graph G (V ,E), a vertexSubset

U , and two boolean functions, P , and C . For each u ∈ U where C (u) = true, the function applies
P to all (u,v) ∈ E and removes edges that do not satisfy P . The function returns an augmented
vertexSubset containing all sources (neighbors), v , where C (v) = true. Each of these vertices is
augmented with an integer value storing the new degree of the vertex after applying the pack.

nghReduce and nghCount. The nghReduce primitive is defined similarly to srcReduce
above, but aggregates the results for neighbors of the input vertexSubset. It takes as input a graph
G (V ,E), a vertexSubset U , a map function M over edges returning values of type R, a boolean
functionC , a monoid A over values of type R, and lastly an update functionT from values of type
R to O option. It returns a O vertexSubset. This function performs the following logic:M is applied
to each edge (u,v) where u ∈ U and C (v) = true in parallel (let the resulting values of type R be
Mv). Next, the mapped values for each suchv are reduced in parallel using the monoidA to obtain
a single value, Rv . Finally, T is called on the pair (v,Rv) and the vertex and augmented value pair
(v,o) is emitted to the output vertexSubset if and only if T returns Some(o). nghReduce is used
in our PageRank algorithm (Algorithm 19).
The nghCount primitive is a specialization of nghReduce, where R = int, the monoid A is

(0,+), and the map function is specialized to a boolean (predicate) function P over edges. ngh-
Count is used in our k-core (Algorithm 16) and approximate densest subgraph (Algorithm 17)
algorithms.

Implementations and Cost Bounds. Our implementation of edgeMap in this paper is based on
the edgeMapBlocked primitive introduced in Section 7.2. The same primitive is used to implement
edgeMapData.
The src- primitives (srcReduce, srcCount, and srcPack) are relatively easy to implement.

These implementations work by iterating over the vertices in the input vertexSubset in parallel,
applying the condition function C , and then applying a corresponding vertex primitive on the
incident edges. The work for source operators is O (|U | +∑u ∈U ′ d (u)), where U ′ ⊆ U consists of
all verticesu ∈ U whereC (u) = true, and the depth isO (logn) assuming that the boolean functions
and monoid cost O (1) work to apply.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:15

The ngh- primitives require are somewhat trickier to implement compared to the src- primi-
tives, since these primitives require performing non-local reductions at the neighboring endpoints
of edges. Both nghReduce and nghCount can be implemented by first writing out all neighbors
of the input vertexSubset satisfying C to an array, A (along with their augmented values). A has
size at most O (

∑
u ∈U d (u)). The next step applies a work-efficient semisort (e.g., [74]) to store all

pairs of neighbor and value keyed by the same neighbor contiguously. The final step is to apply a
prefix sum over the array, combining values keyed by the same neighbor using the reduction op-
eration defined by the monoid, and to use a prefix sum and map to build the output vertexSubset,
augmented with the final value in the array for each neighbor. The overall work is proportional to
semisorting and applying prefix-sums on arrays of |A|, which is O (

∑
u ∈U d (u)) work in expecta-

tion, and the depth isO (logn) whp [31, 74]. In practice, our implementations use the work-efficient
histogram technique described in Section 7.1 for both nghReduce and nghCount.

Optimizations. We observe that for ngh- operators there is a potential to achieve speedups by
applying the direction-optimization technique proposed by Beamer for the BFS problem [21] and
applied to other problems by Shun and Blelloch [136]. Recall that this technique maps over all
vertices v ∈ V , and for those whereC (v) = true, scans over the in-edges (v,u,wvu) applying F to
edges where u is in the input vertexSubset until C (v) is no longer true. We can apply the same
technique for nghReduce and nghCount by performing a reduction over the in-neighbors of all
vertices satisfying C (v). This optimization can be applied without an increase in the theoretical
cost of the algorithm whenever the number edges incident to the input vertexSubset is a constant
fraction ofm. The advantage is that the direction-optimized version runs in O (n) space and per-
forms inexpensive reads over the in-neighbors, whereas the more costly semisort or histogram
based approach runs inO (

∑
u ∈U d (u)) space and requires performing multiple writes per incident

edge.

5 BENCHMARK

In this section we describe I/O specifications of our benchmark. We discuss related work and
present the theoretically-efficient algorithm implemented for each problem in Section 6. We mark
implementations based on prior work with a †, although in many of these cases, the implementa-
tions were still significantly modified to improve scalability on large compressed graphs.

5.1 Shortest Path Problems

Breadth-First Search (BFS)†

Input: G = (V ,E), an unweighted graph, src ∈ V .
Output: D, a mapping containing the distance between src and vertex in V . Specifically,

• D[src] = 0,
• D[v] = ∞ if v is unreachable from src, and
• D[v] = distG (src,v), i.e., the shortest path distance in G between src and v .

Integral-Weight SSSP (weighted BFS)†

Input: G = (V ,E,w), a weighted graph with integral edge weights, src ∈ V .
Output: D, a mapping where D[v] is the shortest path distance from src to v inG. D[v] = ∞ if v
is unreachable.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:16 L. Dhulipala et al.

General-Weight SSSP (Bellman-Ford)†

Input: G = (V ,E,w), a weighted graph, src ∈ V .
Output: D, a mapping where D[v] is the shortest path distance from src to v inG. D[v] = ∞ if v
is unreachable. If the graph contains any negative-weight cycles reachable from src, the vertices
of these negative-weight cycles and vertices reachable from them must have a distance of −∞.

Single-Source Betweenness Centrality (BC)

Input: G = (V ,E), an unweighted graph, src ∈ V .
Output: D, a mapping from each vertex v to the dependency value of this vertex with respect to
src. Section 6.1 provides the definition of dependency values. D[v] = ∞ if v is unreachable.

Widest Path (Bottleneck Path)

Input: G = (V ,E,w), a weighted graph with integral edge weights, src ∈ V .
Output: D, a mapping where D[v] is the maximum over all paths between src and v in G of the
minimum weight edge (bottleneck edge) on the path. D[v] = ∞ if v is unreachable.

O (k)-Spanner

Input: G = (V ,E), an undirected, unweighted graph, and an integer stretch factor, k .
Output: H ⊆ E, a set of edges such that for every u,v ∈ V connected in G, distH (u,v) ≤ O (k) ·
distG (u,v).

5.2 Connectivity Problems

Low-Diameter Decomposition†

Input: G = (V ,E), an undirected graph, 0 < β < 1.
Output: L, a mapping from each vertex to a cluster ID representing a (O (β),O ((logn)/β)) de-
composition. A (β,d)-decomposition partitions V into C1, . . . ,Ck such that:

• The shortest path between two vertices in Ci using only vertices in Ci is at most d .
• The number of edges (u,v) where u ∈ Ci ,v ∈ Cj , j � i is at most βm.

Connectivity†

Input: G = (V ,E), an undirected graph.
Output: L, a mapping from each vertex to a unique label for its connected component.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:17

Spanning Forest†

Input: G = (V ,E), an undirected graph.
Output: T , a set of edges representing a spanning forest of G.

Biconnectivity

Input: G = (V ,E), an undirected graph.
Output: L, a mapping from each edge to the label of its biconnected component.

Minimum Spanning Forest

Input: G = (V ,E,w), a weighted graph.
Output: T , a set of edges representing a minimum spanning forest of G.

Strongly Connected Components

Input: G (V ,E), a directed graph.
Output: L, a mapping from each vertex to the label of its strongly connected component.

5.3 Covering Problems

Maximal Independent Set†

Input: G = (V ,E), an undirected graph.
Output: U ⊆ V , a set of vertices such that no two vertices in U are neighbors and all vertices in
V \U have a neighbor inU .

Maximal Matching†

Input: G = (V ,E), an undirected graph.
Output: E ′ ⊆ E, a set of edges such that no two edges in E ′ share an endpoint and all edges in
E \ E ′ share an endpoint with some edge in E ′.

Graph Coloring†

Input: G = (V ,E), an undirected graph.
Output:C , a mapping from each vertex to a color such that for each edge (u,v) ∈ E,C (u) � C (v),
using at most Δ + 1 colors.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:18 L. Dhulipala et al.

Approximate Set Cover†

Input: G = (V = (S,E),A), an undirected bipartite graph representing an unweighted set cover
instance.
Output: S ′ ⊆ S , a set of sets such that ∪s ∈S ′N (s) = E, and |S ′ | is anO (logn)-approximation to the
optimal cover.

5.4 Substructure Problems

k-core†

Input: G = (V ,E), an undirected graph.
Output: D, a mapping from each vertex to its coreness value. Section 6.4 provides the definition
of k-cores and coreness values.

Approximate Densest Subgraph

Input: G = (V ,E), an undirected graph, and a parameter ϵ .
Output: U ⊆ V , a set of vertices such that the density of GU is a 2(1 + ϵ) approximation of the
density of the densest subgraph ofG.

Triangle Counting†

Input: G = (V ,E), an undirected graph.
Output:TG , the total number of triangles inG. Each unordered (u,v,w) triangle is counted once.

5.5 Eigenvector Problems

PageRank†

Input: G = (V ,E), an undirected graph.
Output:P, a mapping from each vertex to its PageRank value after a single iteration of PageRank.

6 ALGORITHMS

In this section, we give self-contained descriptions of all of the theoretically efficient algorithms
implemented in our benchmark and discuss related work. We cite the original papers that our
algorithms are based on in Table 1. We assumem = Ω(n) when stating cost bounds in this section.

Pseudocode Conventions. The pseudocode for many of the algorithms make use of our graph
processing interface, as well as the atomic primitives testAndSet, fetchAndAdd, and prior-
ityWrite. Our graph processing interface is defined in Section 4 and the atomic primitives are
defined in Section 3. We use _ as a wildcard to bind values that are not used. We use anonymous
functions in the pseudocode for consciseness, and adopt a syntax similar to how anonymous func-
tions are defined in the ML language. An anonymous function is introduced using the fn keyword.
For example,

fn(u,v,wuv) : edge→ return Rank[v]

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:19

is an anonymous function taking a triple representing an edge, and returning the Rank of the vertex
v . We drop type annotations when the argument types are clear from context. The option type,
E option, provides a distinction between some value of type E (Some(e)) and no value (None).
Types used by our algorithms are also summarized in Table 2. We use the array initializer notation
A[0, . . . , e) = value to denote an array consisting of e elements all initialized to value in parallel.
We use standard functional sequence primitives, such as map and filter on arrays. Assuming that
the user-defined map and filter functions costO (1) work to apply, these primitives costO (n) work
and O (logn) depth on a sequence of length n. We use the syntax ∀i ∈ [s, e) as shorthand for a
parallel loop over the indices [s, . . . , e). For example, ∀i ∈ [0, e),A[i] = i · A[i] updates the i-th
value of A[i] to i · A[i] in parallel for 0 ≤ i < e .

6.1 Shortest Path Problems

Although work-efficient polylogarithmic-depth algorithms for single-source shortest paths (SSSP)
type problems are not known due to the transitive-closure bottleneck [88], work-efficient algo-
rithms that run in depth proportional to the diameter of the graph are known for the special
cases considered in our benchmark. Several work-efficient parallel breadth-first search algorithms
are known [16, 30, 94]. On weighted graphs with integral edge weights, SSSP can be solved in
O (m) work and O (diam(G) logn) depth [52]. Parallel algorithms also exist for weighted graphs
with positive edge weights [108, 109]. SSSP on graphs with negative integer edge weights can
be solved using Bellman-Ford [49], where the number of iterations depends on the diameter of
the graph. Betweenness centrality from a single source can be computed using two breadth-first
searches [41, 136]. We note that very recently, a breakthrough result of Andoni et al. and Li [8,
95] show that computing (1 + ϵ)-approximate SSSP can be done nearly work-efficiently (up to
poly-logarithmic factors) in poly-logarithmic depth. An interesting question for future work is to
understand whether ideas from this line of work can result in practical parallel approximation
algorithms for SSSP.
In this paper, we present implementations of five SSSP problems that are based on graph search.

We also include an algorithm to construct an O (k)-spanner which is based on computing low-
diameter decompositions. Our implementations of BFS and Bellman-Ford are based on the im-
plementations in Ligra [136]. Our betweenness centrality implementation applies the same broad
implementation strategy as the Ligra implementation, but differs significantly in the details, which
we describe below. Our wBFS implementation is based on our earlier work on Julienne [52].

Breadth-First Search (BFS)

The BFS problem is to compute a mapping representing distances between the source vertex, src

and every other vertex. The distances to unreachable vertices should be set to ∞. Algorithm 1
shows pseudocode for our BFS implementation. The BFS procedure takes as input a graph and
a source vertex src, and calls GeneralizedBFS with an initial vertexSubset containing just the
source vertex, src. The GeneralizedBFS procedure is used later in our Bellman-Ford algorithm
(Algorithm 3).
The GeneralizedBFS algorithm (Lines 13–18) computes the distances between vertices in an

input vertexSubset, F , and all vertices reachable from vertices in F . It first initializes the Distance

and Visited values for each vertex in F using a vertexMap (Line 14). Next, while the frontier is not
yet empty, the algorithm repeatedly applies the edgeMap operator to generate the next frontier
(Line 16). The condition function supplied to edgeMap checks whether the neighbor has been
visited (Line 9). The map function (Lines 4–8) applies a testAndSet to try and visit the neighbor.
If the testAndSet is successful, the map function returns true, indicating that the neighbor should

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:20 L. Dhulipala et al.

ALGORITHM 1: Breadth-First Search

1: Visited[0, . . . ,n) � false

2: Distance[0, . . . ,n) � ∞
3: curDistance � 0

4: procedure Update(s , d)
5: if testAndSet(&Visited[d]) then � to ensure d is only added once to the next frontier

6: Distance[d] � curDistance

7: return true

8: return false

9: procedure Cond(v) return !Visited[v]

10: procedure Init(v)
11: Distance[v] � 0

12: Visited[v] � true

13: procedure GeneralizedBFS(G (V ,E), F) � F is a vertexSubset of seed vertices

14: vertexMap(F , Init) � set distances to the seed vertices to 0

15: while |F | > 0 do

16: F � edgeMap(G, F ,Update,Cond) � update F to contain all unvisited neighbors

17: curDistance � curDistance + 1

18: return Distance

19: procedure BFS(G (V ,E), src)
20: return GeneralizedBFS(G, vertexSubset({src}))

be emitted in the output vertexSubset (Line 7), and otherwise returns false (Line 8). Finally, at the
end of a round the algorithm increments the value of the current distance on Line 17.
Both the GeneralizedBFS and BFS algorithms run in O (m) work and O (diam(G) logn) depth

on the BFmodel. We note that emitting a shortest-path tree from a subset of vertices instead of dis-
tances can be done using nearly identical code, with the only differences being that (i) the algorithm
will store a Parents array instead of a Distances array, and (ii) the Update function will set the par-
ent of a vertex d to s upon a successful testAndSet. The main change we made to this algorithm
compared to the Ligra implementation was to improve the cache-efficiency of the edgeMap imple-
mentation using edgeMapBlocked, the block-based version of edgeMap described in Section 7.

Integral-Weight SSSP (wBFS)

The integral-weight SSSP problem is to compute the shortest path distances between a source ver-
tex and all other vertices in a graph with positive integer edge weights. Our implementation imple-
ments the weighted breadth-first search (wBFS) algorithm, a version of Dijkstra’s algorithm that is
well suited for low-diameter graphs with small positive integer edge weights. Our implementation
uses the bucketing interface from Julienne described in Section 4. The idea of our algorithm is to
maintain a bucket for each possible distance, and to process them in order of increasing distance.
Each bucket is like a frontier in BFS, but unlike BFS, when we process a neighbor u of a vertex v
in the current bucket i , we place u in bucket i +wuv .
Algorithm 2 shows pseudocode for our weighted BFS implementation from Julienne [52]. Ini-

tially, the distances to all vertices are ∞ (Line 1), and the distance to the source vertex, src, is 0
(Line 19). Next, the algorithm buckets the vertices based on their current distance (Line 20). We
note that a distance of ∞ places a vertex in a special “unknown” bucket. While the bucketing
structure contains vertices, the algorithm extracts the next bucket (Lines 21 and 22) and applies
the edgeMapData primitive (see Section 4) on all edges incident to the bucket (Line 23). The map
function computes the distance along an edge (s,d,wsd), updating the distance to d using a prior-
ityWrite ifD[s] +wsd < D[d] (Lines 5–13). The function also checks if the source vertex relaxing

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:21

ALGORITHM 2: wBFS

1: Distance[0, . . . ,n) � ∞
2: Relaxed[0, . . . ,n) � false

3: procedure GetBucketNum(v) return Distance[v]

4: procedure Cond(v) return true

5: procedure Update(s , d ,wsd)

6: newDist � Distance[s] +wsd

7: oldDist � Distance[d]
8: res � None

9: if newDist < oldDist then

10: if testAndSet(&Relaxed[d]) then � first writer this round

11: res � Some(oldDist) � store and return the original distance

12: priorityWrite(&Distance[d], newDist, <)

13: return res

14: procedure Reset(v, oldDist)

15: Relaxed[v] � 0

16: newDist � Distance[d]
17: return B.getBucket(oldDist, newDist)

18: procedure wBFS(G (V ,E,w), src)
19: Distance[src] � 0

20: B � makeBuckets(|V |,GetBucketNum, increasing)
21: (bktId, bktContents) � B.nextBucket()
22: while bktId � nullbkt do

23: Moved � edgeMapData(G, bktContents,Update,Cond)
24: NewBuckets � vertexMapVal(Moved,Reset)
25: B.updateBuckets(NewBuckets)

26: (bktId, bktContents) � B.nextBucket()

27: return Distance

this edge is the first visitor to d during this round by performing a testAndSet on the Relaxed

array, emitting d , and the old distance to d in the output vertexSubset if so.
The next step in the round applies a vertexMapVal on the augmented vertexSubset Moved.

The map function first resets the Relaxed flag for each vertex (Line 15), and then computes the
new bucket each relaxed vertex should move to using the getBucket primitive (Line 17). The out-
put is an augmented vertexSubset NewBuckets, containing vertices and their destination buckets
(Line 24). The last step updates the buckets for all vertices in NewBuckets (Line 25). The algorithm
runs in O (m) work in expectation and O (diam(G) logn) depth whp on the PW-BF model, as ver-
tices use priorityWrite to write the minimum distance to a neighboring vertex in each round.
The main change wemade to this algorithmwas to improve the cache-efficiency of edgeMapData
using the block-based edgeMapBlocked algorithm described in Section 7.

General-Weight SSSP

The General-Weight SSSP problem is to compute a mapping with the shortest path distance be-
tween the source vertex and every reachable vertex on a graphwith general (positive and negative)
edge weights. The mapping should return a distance of ∞ for unreachable vertices. Furthermore,
if the graph contains a negative weight cycle reachable from the source, the mapping should set
the distance to all vertices in the cycle and vertices reachable from it to −∞.
Our implementation for this problem is the classic Bellman-Ford algorithm [49]. Algorithm 3

shows pseudocode for our frontier-based version of Bellman-Ford. The algorithm runs over a

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:22 L. Dhulipala et al.

ALGORITHM 3: Bellman-Ford

1: Relaxed[0, . . . ,n) � false

2: Distance[0, . . . ,n) � ∞
3: procedure Cond(v)
4: return true

5: procedure ResetFlags(v)
6: Relaxed[v] � false

7: procedure Update(s , d ,wsd)

8: newDist � Distance[s] +wsd

9: if newDist < Distance[d] then

10: priorityWrite(&Distance[d], newDist, <)
11: if !Relaxed[d] then

12: return testAndSet(&Relaxed[d]) � to ensure d is only added once to the next frontier

13: return false

14: procedure BellmanFord(G (V ,E,w), src)
15: F � vertexSubset({src})
16: Distance[src] � 0

17: round � 0

18: while |F | > 0 do

19: if round = n then � only applied if a negative weight cycle is reachable from src

20: R � GeneralizedBFS(G, F) � defined in Algorithm 1

21: In parallel, set Distance[u] � −∞ for u ∈ R s.t. R[u] � ∞
22: return Distance

23: F � edgeMap(G, F ,Update,Cond)
24: vertexMap(F ,ResetFlags)
25: round � round + 1

26: return Distance

number of rounds. The initial frontier, F , consists of just the source vertex, src (Line 17). In each
round, the algorithm applies edgeMap over F to produce a new frontier of vertices that had their
shortest path distance decrease, and updates F to be this new frontier. The map function supplied
to edgeMap (Line 7–13) tests whether the distance to a neighbor can be decrased, and uses a pri-
orityWrite to atomically lower the distance (Line 10). Emitting a neighbor to the next frontier
is done using a testAndSet on Relaxed, an array of flags indicating whether the vertex had its
current shortest path distance decrease (Line 12). Finally, at the end of a round the algorithm resets
the flags for all vertices in F (Line 24). After k rounds, the algorithm has correctly computed the
distances to vertices that are within k hops from the source. Since any vertex is at most n − 1 hops
away from the source, if the number of rounds in the algorithm reaches n, we know that the in-
put graph contains a negative weight cycle. The algorithm identifies vertices reachable from these
cycles using the GeneralizedBFS algorithm (Algorithm 1) to compute all vertices reachable from
the current frontier (Line 20). It sets the distance to the vertices with distances that are not∞ (i.e.,
reachable from a negative weight cycle) to −∞ (Line 21).
For inputs without negative-weight cycles, the algorithm runs in O (diam(G)m) work and

O (diam(G) logn) depth on the PW-BF model. If the graph contains a negative-weight cycle, the
algorithm runs in O (nm) work and O (n logn) depth on the PW-BF model. The main change we
made to this algorithm compared to the Ligra implementation was to add a GeneralizedBFS im-
plementation and invoke it in the case where the algorithm detects a negative weight cycle. We
also improve its cache-efficiency by using the block-based version of edgeMap, edgeMapBlocked,
which we describe in Section 7.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:23

Single-Source Betweenness Centrality

Betweenness centrality is a classic tool in social network analysis for measuring the importance of
vertices in a network [114]. Before describing the benchmark and our implementation, we intro-
duce several definitions. Define σst to be the total number of s–t shortest paths, σst (v) to be the

number of s–t shortest paths that pass through v , and δst (v) = σst (v)
σst

to be the pair-dependency

of s and t onv .4 The betweenness centrality of a vertexv is equal to
∑

s�v�t ∈V δst (v), i.e. the sum
of pair-dependencies of shortest-paths passing through v . Brandes [41] proposes an algorithm to
compute the betweenness centrality values based on the following notion of ‘dependencies’: the
dependency of a vertex r on a vertexv is δr (v) =

∑
t ∈V δr t (v). The single-source betweenness cen-

trality problem in this paper is to compute the dependency values for each vertex given a source
vertex, r . The dependency values for unreachable vertices should be set to∞.
Our implementation is based on Brandes’ algorithm, and follows the approach from Ligra [136].

We note that our implementation achieves speedups over the Ligra implementation by using
contention-avoiding primitives from the GBBS interface. Our algorithm runs in O (m) work and
O (diam(G) logn) depth on theBFmodel (it does not require the fetchAndAdd primitive, as in the
Ligra implementation, as we explain shortly). The algorithm works in two phases, which both rely
on the structure of a BFS tree rooted at r . The first phase computes σrv , i.e., the number of shortest
paths from the source, r , to each vertex v . In more detail, let Pr (v) be the parents of a vertex v
on the previous level of the BFS tree. The first phase computes σrv =

∑
u ∈Pr (v) σru by processing

the BFS tree in level order and summing the σru values for all parents of v in the previous level.
The second phase then applies the equation δr (v) =

∑
w :v ∈Pr (w)

σrv

σr w
· (1 + δr (w)) to compute the

dependencies for each vertex by processing the levels of the BFS tree in reverse order.
Instead of directly applying the update rule for the second phase above, which requires per-

neighbor random accesses to both the array storing the σr∗ values, and the array storing δr (∗)
values, the Ligra implementation performs an optimization which allows accessing a single array
(we note that this optimization was not described in the Ligra paper, and thus we describe it here).
The idea of the optimization is as follows. The second phase computes an inverted dependency

score, ζr (v), for each vertex. These scores are updated level-by-level using the update rule ζr (v) =
1

σrv
+
∑

w :v ∈Pr (w) ζr (w). At the end of the second phase, a simple proof by induction shows that

ζr (v) =
1

σrv
+
∑

w ∈Dr (v)

σvw ·
1

σrw

where Dr (v) is the set of all descendent vertices through v , i.e.,w ∈ V where a shortest path from
r to w passes through v . These final scores can be converted to the dependency scores by first
subtracting 1

σrv
and then multiplying by σrv , since

∑

w ∈Dr (v)

σrv ·
σvw

σrw
=
∑

w ∈Dr (v)

σrw (v)

σrw

Next, we discuss the main difference between our implementation and that of Ligra. The Ligra
implementation is based on using edgeMap with an map function that uses the fetchAndAdd
primitive to update the number of shortest paths (σrv) in the forward phase, and to update the
inverted dependencies (ζr (v)) in the reverse phase. The Ligra implementation thus combines the
generation of the next BFS frontier with aggregating the number of shortest paths passing through
a vertex in the first phase, or the inverted dependency contribution of the vertex in the second
phase by using the fetchAndAdd primitive. In our implementation, we observed that for certain

4Note that σst (v) = 0 if v ∈ {s, t }.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:24 L. Dhulipala et al.

graphs, especially those with skewed degree distribution, using a fetchAndAdd to sum up the
contributions incurs a large amount of contention, and significant speedups (in our experiments,
up to 2x on the Hyperlink2012 graph) can be obtained by (i) separating the computation of the next
frontier from the computation of the σrv and δr (v) values in the two phases and (ii) computing
the computation of σrv and δr (v) using the pull-based approach described below.
The pseudocode for our betweenness centrality implementation is shown in Algorithm 4. The

algorithm runs in two phases. The first phase (Lines 26–31) computes a BFS tree rooted at the
source vertex r using a nghMap using Update, and Cond defined identically to the BFS algorithm
in Algorithm 1. After computing the new BFS frontier, F , the algorithm maps over the vertices
in it using a vertexMap (Line 28), and applies the AggregatePathContributions procedure
for each vertex. This procedure (Lines 9–11) performs a reduction over all in-neighbors of the
vertex to pull path-scores from vertices that are completed, i.e. Completed[v] = true (Line 11). The
algorithm then applies a second vertexMap over F to mark these vertices as completed (Line 29).
The frontier is then saved for use in the second phase (Line 30). At the end of the second phase we
reset the Status values (Line 32).
The second phase (Lines 33–37) processes the saved frontiers level by level in reverse order. It

first extracts a saved frontier (Line 37). It then applies a vertexMap over the frontier applying
the AggregateDependencies procedure for each vertex (Line 35. This procedure (Lines 14–16)
performs a reduction over all out-neighbors of the vertex to pull the inverted dependency scores
over completed neighbors. Finally, the algorithm applies a second vertexMap to mark the vertices
in it as completed (Line 36). After all frontiers have been processed, the algorithm finalizes the
dependency scores by first subtracting the inverted NumPaths value, and then multiplying by the
NumPaths value (Line 38).

Widest Path (Bottleneck Path)

The Widest Path, or Bottleneck Path benchmark in GBBS is to compute ∀v ∈ V the maximum
over all paths of the minimum weight edge on the path between a source vertex, src, and v . The
algorithm is an important primitive, used for example in the Ford-Fulkerson maximum flow al-
gorithm [49, 66], as well as other flow algorithms [19]. Sequentially, the algorithm can be solved
as quickly as SSSP by using a modified version of Dijkstra’s algorithm. We note that faster algo-
rithms are known sequentially for sparse graphs [60]. For positive integer-weighted graphs, the
problem can also be solved using the work-efficient bucketing data structure from Julienne [52].
The buckets, which represent thewidth classes, are initializedwith the out-neighbors of the source,
u, and the buckets are traversed using the decreasing order (from the largest bucket to the small-
est bucket). Unlike the other applications in Julienne, using widest path is interesting since the
bucket containing a vertex (the vertex priorities) only increase (in other applications in Julienne,
the priorities can only decrease). The problem can also be solved using the Bellman-Ford approach
described above by performing computations over the (max,min) semi-ring instead of the (min,+)
semi-ring. Other than these changes, the pseudocode for the problem is identical to that of Algo-
rithms 2 and 3.

O (k)-Spanner

Computing graph spanners is a fundamental problem in combinatorial graph algorithms and graph
theory [120]. A graphH is a k-spanner of a graphG if∀u,v ∈ V connected by a path, distG (u,v) ≤
distH (u,v) ≤ k · distG (u,v) (equivalently, such a subgraph is called a spanner with stretch k). The
spanner problem studied in this paper is to compute an O (k) spanner for a given k .
Sequentially, classic results give elegant constructions of (2k − 1)-spanners using O (n1+1/k)

edges, which are essentially the best possible assuming the girth conjecture [149]. In this paper, we

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:25

ALGORITHM 4: Betweenness Centrality

1: Completed[0, . . . ,n) � false

2: NumPaths[0, . . . ,n) � 0 � stores the number of shortest paths from r to each vertex, initially all 0
3: Dependencies[0, . . . ,n) � 0 � stores the dependency scores of each vertex

4: Visited[0, . . . ,n) � false

5: procedure Update(s , d)
6: if (!Visited[d] and testAndSet(&Visited[d])) then return true

7: return false

8: procedure Cond(v) return !Visited[v]

9: procedure AggregatePathContributions(G,v)
10: mapfn � fn (s,d) → return if Completed[d] then NumPaths[d] else 0

11: NumPaths[v] � G .getVertex(v).reduceInNgh(mapfn, (0,+))

12: procedure MarkFinishedForwards(v)
13: Completed[v] � true

14: procedure AggregateDependencies(G,v)
15: mapfn � fn (s,d) → return if Completed[d] then Dependencies[d] else 0

16: Dependencies[v] � G .getVertex(v).reduceOutNgh(mapfn, (0,+))

17: procedure MarkFinishedBackwards(v)
18: Completed[v] � true

19: Dependencies[v] � Dependencies[v] + (1/NumPaths[v])

20: procedure UpdateDependencies(v)
21: Dependencies[v] � (Dependencies[v] − (1/NumPaths[v])) · NumPaths[v]

22: procedure BC(G (V ,E), r)
23: F � vertexSubset({r })
24: round � 0

25: Levels[1, . . . ,n) � null

26: while |F | > 0 do

27: F � edgeMap(G, F ,Update,Cond) � generate the next frontier of unvisited neighbors

28: vertexMap(G, F ,AggregatePathContributions) � reduce in-neighbor path contributions

29: vertexMap(F ,MarkFinishedForwards)
30: Levels[round] � F � save frontier for the backwards pass

31: round � round + 1

32: In parallel ∀v ∈ V , set Completed[v] � false � reset Completed

33: while round > 0 do

34: F � Levels[round − 1] � use saved frontier

35: vertexMap(G, F ,AggregateDependencies) � reduce out-neighbor dependency contributions

36: vertexMap(F ,MarkFinishedBackwards)
37: round � round − 1
38: vertexMap(V ,UpdateDependencies) � compute the final Dependencies scores

39: return Dependencies

implement the spanner algorithm recently proposed by Miller, Peng, Xu, and Vladu (MPXV) [110].
The construction results in anO (k)-spanner with expected sizeO (n1+1/k), and runs inO (m) work
and O (k logn) depth on the BF model.
The MPXV spanner algorithm (Algorithm 5) uses the low-diameter decomposition (LDD) al-

gorithm, which will be described in Section 6.2. It takes as input a parameter k which controls
the stretch of the spanner. The algorithm first computes an LDD with β = logn/(2k) (Line 3). The
stretch of each LDD cluster is O (k) whp, and so the algorithm includes all tree edges generated
by the LDD in the spanner (Line 4). The algorithm handles inter-cluster edges by taking a single

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:26 L. Dhulipala et al.

ALGORITHM 5: O (k)-Spanner

1: procedure Spanner(G (V ,E),k)

2: β � logn
2k

3: (Clusters, Parents) � LDD(G (V ,E), β) � see Algorithm 6

4: ELDD � {(i, Parents[i]) | i ∈ [0,n) and Parents[i] � ∞} � tree edges used in the LDD

5: I � one inter-cluster edge for each pair of adjacent clusters in L
6: return ELDD ∪ I

inter-cluster edge between a boundary vertex and each neighboring cluster (Line 5). Our imple-
mentation uses a parallel hash table to select a single inter-cluster edge between two neighboring
clusters.
We note that this procedure is slightly different than the procedure in the MPXV paper, which

adds a single edge between every boundary vertex of a cluster and each adjacent cluster. Our
algorithm only adds a single edge between two clusters, while the MPXV algorithm may add
multiple parallel edges between two clusters. Their argument bounding the stretch toO (k) for an
edge spanning two clusters is still valid for our modified algorithm, since the endpoints can be
first routed to the cluster centers, and then to the single edge that was selected between the two
clusters.

6.2 Connectivity Problems

Low-Diameter Decomposition

A (β,d) decomposition of a graph is a partition of the vertices into clusters C1, . . . ,Ck such that
(i) the shortest path distance between two vertices in Ci using only vertices within Ci is at most
d , and (ii) the number of edges with endpoints belonging to different clusters is at most βm. The
low-diameter decomposition problem studied in this paper is to compute an (O (β),O ((logn)/β))
decomposition.
Low-diameter decompositions (LDD) were first introduced in the context of distributed com-

puting [11], and were later used in metric embedding, linear-system solvers, and parallel algo-
rithms. Awerbuch presents a simple sequential algorithm based on ball growing that computes
an (β,O ((logn)/β) decomposition [11]. Miller, Peng, and Xu (MPX) [111] present a work-efficient
parallel algorithm that computes a (β,O ((logn)/β) decomposition. For each v ∈ V , the algorithm
draws a start time, δv , from an exponential distribution with parameter β . The clustering is done
by assigning each vertexu to the clusterv whichminimizes distG (u,v) − δv . This algorithm can be
implemented by running a set of parallel breadth-first searches as follows. The first breadth-first
search starts at the vertex with the largest start time, δmax, and breadth-first searches start from
otherv ∈ V once δmax − δv steps have elapsed. In this paper, we present an implementation of the
MPX algorithm which computes an (2β,O (logn/β)) decomposition in O (m) work and O (log2 n)
depth whp on the BF model. Our implementation is based on the non-deterministic LDD imple-
mentation from Shun et al. [140] (designed as part of a parallel connectivity implementation).
The main changes in our implementation are to separate the LDD code from the connectivity
implementation.
Algorithm 6 shows pseudocode for the modified version of the Miller-Peng-Xu algorithm

from [140], which computes a (2β,O (logn/β)) decomposition in O (m) work and O (log2 n) depth
whp on the BF model. The algorithm allows ties to be broken arbitrarily when two searches visit
a vertex in the same time-step, and one can show that this only affects the number of cut edges by
a constant factor [140]. The LDD algorithm starts by first permuting the vertices into O (logn/β)
batches, stored in an array B (Line 19). This partitioning simulates sampling from the exponential

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:27

ALGORITHM 6: Low Diameter Decomposition

1: Visited[0, . . . ,n) � false

2: Cluster[0, . . . ,n) � ∞
3: Parents[0, . . . ,n) � ∞
4: procedure Cond(v) return !Visited[v]

5: procedure Update(s , d)
6: if testAndSet(&Visited[d]) then

7: Cluster[d] � Clusters[s] � vertex d joins s’s cluster
8: Parents[d] � s � vertex d’s BFS parent in the LDD ball is s
9: return true

10: return false

11: procedure InitializeClusters(u)
12: Clusters[u] � u
13: Visited[u] � true

14: procedure Partition(V , β)
15: P � random permutation of [0, . . . , |V |)
16: B � array of arrays of consecutive elements in P , where |Bi | =
exp(i · β)�
17: return B � B partitions [0, . . . , |V |)
18: procedure LDD(G (V ,E), β)
19: B � Partition(V , β) � permute vertices, and group into O (logn/β) batches
20: F � vertexSubset({}) � an initially empty vertexSubset

21: for i ∈ [0, |B |) do

22: newClusters � vertexSubset({b ∈ B[i] | Cluster[v] = ∞}) � vertices not yet clustered in B[i]
23: vertexMap(newClusters, InitializeClusters)
24: addToSubset(F , newClusters) � add new cluster centers to the current frontier

25: F � edgeMap(G, F ,Update,Cond)

26: return (Clusters, Parents)

distribution by randomly permuting the vertices in parallel (Line 15) and dividing the vertices in
the permutation into O (logn/β) many batches (Line 16). After partitioning the vertices, the LDD
algorithm performs a sequence of rounds, where in each round all vertices that are not already
clustered in the next batch are added as new cluster centers. Each cluster then tries to acquire
unclustered vertices adjacent to it (thus increasing its radius by 1). This procedure is sometimes
referred to as ball-growing in the literature [12, 35, 111].
The first step in the ball-growing loop extracts newClusters, which is a vertexSubset of vertices

in the i-th batch that are not yet clustered (Line 22). Next, the algorithm applies a vertexMap to
update theClusters and Visited status of the new clusters (Line 23). The new clusters are then added
to the current LDD frontier using the addToSubset primitive (Line 24). On Line 25, the algorithm
uses edgeMap to traverse the out edges of the current frontier and non-deterministically acquire
unvisited neighboring vertices. The condition and map functions supplied to edgeMap are defined
similarly to the ones in BFS.
We note that the pseudocode show in Algorithm 6 returns both the LDD clustering, Clusters, as

well as a Parents array. The Parents array contains for each vertex v that joins a different vertex’s
cluster (Clusters[v] � v) the parent in the BFS tree rooted at Clusters[v]. Specifically, for a vertex
d that is not in its own cluster, Parents[d] stores the vertex s that succeeds at the testAndSet in
Line 6. The Parents array is used by both theO (k)-spanner and spanning forest algorithms in this
paper to extract the tree edges used in the LDD.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:28 L. Dhulipala et al.

Connectivity

The connectivity problem is to compute a connectivity labeling of an undirected graph, i.e., a map-
ping from each vertex to a label such that two vertices have the same label if and only if there is
a path between them in the graph. Connectivity can easily be solved sequentially in linear work
using breadth-first or depth-first search. Parallel algorithms for connectivity have a long history;
we refer readers to [140] for a review of the literature. Early work on parallel connectivity dis-
covered many natural algorithms which performO (m logn) work and poly-logarithmic depth [13,
122, 127, 135]. A number of optimal parallel connectivity algorithms were discovered in subse-
quent years [45, 67, 75, 76, 121, 123, 140], but to the best of our knowledge the recent algorithm by
Shun et al. is the only linear-work polylogarithmic-depth parallel algorithm that is practical and
has been studied experimentally [140].
In this paper, we implement the connectivity algorithm from Shun et al. [140], which runs in

O (m) expected work and O (log3 n) depth whp on the BF model. The implementation uses the
work-efficient algorithm for low-diameter decomposition (LDD) described above. One change we
made to the implementation from [140] was to separate the LDD and contraction steps from the
connectivity algorithm. Refactoring these sub-routines allowed us to express themain connectivity
algorithm in about 50 lines of code.
The connectivity algorithm from Shun et al. [140] (Algorithm 7) takes as input an undirected

graph G and a parameter 0 < β < 1. It first runs the LDD algorithm, Algorithm 6 (Line 2), which
decomposes the graph into clusters each with diameter O (logn/β), and βm inter-cluster edges in
expectation. Next, it buildsG ′ by contracting each cluster to a single vertex and adding inter-cluster
edges while removing duplicate edges, self-loops, and isolated vertices (Line 3). It then checks if the
contracted graph is empty (Line 4); if so, the current clusters are the components, and it returns the
mapping from vertices to clusters (Line 5). Otherwise, it recurses on the contracted graph (Line 6)
and returns the connectivity labeling produced by assigning each vertex to the label assigned to
its cluster in the recursive call (Lines 7 and 8).

ALGORITHM 7: Connectivity

1: procedure Connectivity(G (V ,E), β)
2: (L, P) � LDD(G (V ,E), β) � see Algorithm 6

3: G ′(V ′,E ′) � contractGraph(G,L)
4: if |E ′| = 0 then

5: return L

6: L′ � Connectivity(G ′(V ′,E ′), β)
7: L′′ � {v → L′[L[v]] | v ∈ V } � implemented as a vertexMap over V
8: return L′′

Spanning Forest

The spanning forest problem is to compute a subset of edges in the graph that represent a spanning
forest. Finding spanning forests in parallel has been studied largely in conjunction with connec-
tivity algorithms, since most parallel connectivity algorithms can naturally be modified to output
a spanning forest (see [140] for a review of the literature).
Our spanning forest algorithm (Algorithm 8) is based on the connectivity algorithm from Shun

et al. [140] which we described earlier. Our algorithm runs in runs in O (m) expected work and
O (log3 n) depth whp on the BF model. The main difference in the spanning forest algorithm com-
pared to the connectivity algorithm is to include all LDD edges at each level of the recursion
(Line 4). These LDD edges are extracted using the Parents array returned by the LDD algorithm
given in Algorithm 6. Recall that this array has size proportional to the number of vertices, and all

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:29

ALGORITHM 8: Spanning Forest

1: procedure SpanningForestHelper(G (V ,E),M, β)
2: (Clusters, Parents) � LDD(G (V ,E), β) � see Algorithm 6

3: ELDD � {(i, Parents[i]) | i ∈ [0,n) and Parents[i] � ∞} � tree edges used in the LDD

4: EM � {M (e) | e ∈ ELDD } � original graph edges corresponding to ELDD

5: G ′(V ′,E ′) � contractGraph(G,L)
6: if |E ′| = 0 then

7: return EM

8: M ′ � mapping from e ′ ∈ E ′ toM (e) where e ∈ E issome edge representing e ′

9: E′′ � SpanningForestHelper(G ′(V ′,E ′),M ′, β)
10: return EM ∪ E′′

11: procedure SpanningForest(G (V ,E), β)
12: return SpanningForestHelper(G, {e → e | e ∈ E}, β))

entries initialized to∞. The LDD algorithm uses this array to store the BFS parent of each vertex
v that joins a different vertex’s cluster (Clusters[v] � v). The LDD edges are retrieved by checking
for each index i ∈ [0,n) whether Parents[i] � ∞ and if so taking (i, Parents[i]) as an LDD edge.
Furthermore, observe that the LDD edges after the topmost level of recursion are taken from

a contracted graph, and need to be mapped back to some edge in the original graph realizing the
contracted edge. We decide which edges in G to add by maintaining a mapping from the edges in
the current graph at some level of recursion to the original edge set. Initially this mapping, M , is
an identity map (Line 12). To compute the mapping to pass to the recursive call, we select any edge
e in the input graphG that resulted in e ′ ∈ E ′ and map e ′ toM (e) (Line 8). In our implementation,
we use a parallel hash table to select a single original edge per contracted edge.

Biconnectivity

A biconnected component of an undirected graph is a maximal subgraph such that the subgraph
remains connected under the deletion of any single vertex. Two closely related definitions are
articulation points and bridge. An articulation point is a vertex whose deletion increases the
number of connected components, and a bridge is an edge whose deletion increases the number
of connected components. Note that by definition an articulation point must have degree greater
than one. The biconnectivity problem is to emit a mapping that maps each edge to the label of
its biconnected component.
Sequentially, biconnectivity can be solved using the Hopcroft-Tarjan algorithm [80]. The al-

gorithm uses depth-first search (DFS) to identify articulation points and requires O (m + n) work
to label all edges with their biconnectivity label. It is possible to parallelize the sequential algo-
rithm using a parallel DFS, however, the fastest parallel DFS algorithm is not work-efficient [3].
Tarjan and Vishkin present the first work-efficient algorithm for biconnectivity [148] (as stated
in the paper the algorithm is not work-efficient, but it can be made so by using a work-efficient
connectivity algorithm). The same paper also introduces the Euler-tour technique, which can be
used to compute subtree functions on rooted trees in parallel in O (n) work and O (log2 n) depth
on the BF model. Another approach relies on the fact that biconnected graphs admit open ear
decompositions to solve biconnectivity efficiently [103, 126].
In this paper, we implement the Tarjan-Vishkin algorithm for biconnectivity in O (m) expected

work andO (max(diam(G) logn, log3 n)) depth on the FA-BFmodel. Our implementation first com-
putes connectivity labels using our connectivity algorithm, which runs inO (m) expected work and
O (log3 n) depth whp and picks an arbitrary source vertex from each component. Next, we compute
a spanning forest rooted at these sources using breadth-first search, which runs inO (m) work and

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:30 L. Dhulipala et al.

ALGORITHM 9: Biconnectivity

1: Parents[0, . . . ,n) � the parent of each vertex in a rooted spanning forest

2: Preorder[0, . . . ,n) � the preorder number of each vertex in a rooted spanning forest

3: Low[0, . . . ,n) � minimum preorder number for a non-tree edge in a vertex’s subtree

4: High[0, . . . ,n) � maximum preorder number for a non-tree edge in a vertex’s subtree

5: Size[0, . . . ,n) � the size of a vertex’s subtree

6: procedure IsArticulationPoint(u)
7: pu � Parents[u]
8: return Preorder[pu] ≤ Low (u) and High[u] < Preorder[pu] + Size[pu]

9: procedure IsNonCriticalEdge(u,v)
10: condv � v = Parents[u] and IsArticulationPoint(v)
11: condu � u = Parents[v] and IsArticulationPoint(u)
12: critical � condu or condv � true if this edge is a bridge

13: return !critical

14: procedure Biconnectivity(G (V ,E))
15: F � SpanningForest(G)
16: Parents � root each tree in F at an arbitrary root

17: Preorder � compute a preorder numbering on each rooted tree in F
18: For each v ∈ V , compute Low (v),High(v), and Size(v) � subtree functions defined in the text

19: packGraph(G, IsNonCriticalEdge) � removes all critical edges from the graph

20: Labels � Connectivity(G)
21: return (Labels, Parents) � sufficient to answer biconnectivity queries

O (diam(G) logn) depth. We compute the subtree functions Low, High, and Size for each vertex by
running leaffix and rootfix sums on the spanning forests produced by BFS with fetchAndAdd,
which requiresO (n) work andO (diam(G) logn) depth. Finally, we compute an implicit represen-
tation of the biconnectivity labels for each edge, using an idea from [23]. This step computes per-
vertex labels by removing all critical edges and computing connectivity on the remaining graph.
The resulting vertex labels can be used to assign biconnectivity labels to edges by giving tree edges
the connectivity label of the vertex further from the root in the tree, and assigning non-tree edges
the label of either endpoint. Summing the cost of each step, the total work of this algorithm is
O (m) in expectation and the total depth is O (max(diam(G) logn, log3 n)) whp.
Algorithm 9 shows the Tarjan-Vishkin biconnectivity algorithm. It first computes a spanning

forest of G and roots the trees in this forest arbitrarily (Lines 15 and 16). Next, the algorithm
computes a preorder numbering, Preorder , with respect to the roots (Line 17). It then computes
the subtree functions Low (v) and High(v) for each v ∈ V , which are the minimum and maxi-
mum preorder numbers respectively of all non-tree edges (u,w) where u is a vertex in v’s subtree
(Line 18). It also computes Size(v), the size of each vertex’s subtree. Observe that one can determine
whether the parent of a vertexu,pu is an articulation point by checking Preorder[pu] ≤ Low (u) and
High(u) < Preorder[pu] + Size[pu]. Following [23], we refer to this set of tree edges (u,pu), where
pu is an articulation point, as critical edges (Line 9). The last step of the algorithm is to compute
a connectivity labeling of the graph with all critical edges removed. Our algorithm removes the
critical edges using the packGraph primitive (see Section 4).
Given this final connectivity labeling, the biconnectivity label of an edge (u,v) is the connec-

tivity label of the vertex that is further from the root of the tree. The query data structure can
thus report biconnectivity labels of edges inO (1) time using 2n words of memory; each vertex just
stores its connectivity label, and the vertex ID of its parent in the rooted forest (for an edge (u,v)
either one vertex is the parent of the other, which determines the vertex further from the root, or

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:31

neither is the parent of the other, which implies that both are the same distance from the root).
The same query structure can also report whether an edge is a bridge in O (1) time. We refer the
reader to [23] for more details. The low space usage of this query structure is important for our
implementations as storing a biconnectivity label per-edge explicitly would require a prohibitive
amount of memory for large graphs.
Lastly, we discuss some details about our implemetation of the Tarjan-Vishkin algorithm, and

give the work and depth of our implementation. Note that the Preorder , Low, High, and Size arrays
can be computed either using the Euler tour technique, or by using leaffix and rootfix computations
on the trees. We use the latter approach used in our implementation. The most costly step in the
algorithm is to compute spanning forest and connectivity on the original graph, and so the theo-
retical algorithm (using the Euler tour technique) runs inO (m) work in expectation andO (log3 n)
depth whp. Our implementation runs in the same work but O (max(diam(G) logn, log3 n)) depth
whp as it computes a spanning tree using BFS and performs leaffix and rootfix computations on
this tree.

Minimum Spanning Forest

The minimum spanning forest problem is to compute a spanning forest of the graph with mini-
mum possible total edge weight. Borůvka gave the first known sequential and parallel algorithm
for computing a minimum spanning forest (MSF) [40]. Significant effort has gone into finding
linear-work MSF algorithms both in the sequential and parallel settings [45, 87, 121]. Unfortu-
nately, these linear-work parallel algorithms are highly involved and do not seem to be practical.
Significant effort has also gone into designing practical parallel algorithms for MSF; we discuss
relevant experimental work in Section 8. Due to the simplicity of Borůvka, many parallel imple-
mentations of MSF use variants of it.
In this paper, we present an implementation of Borůvka’s algorithm that runs in O (m logn)

work and O (log2 n) depth whp on the PW-BF model. Our implementation is based on a recent
implementation of Borůvka by Zhou [155] that runs on the edgelist format (graphs represented
as a sequence of edges, see Section 3). We made several changes to the algorithm which improve
performance and allow us to solveMSF on very large graphs stored in the CSR/CSC format (defined
in Section 3). Storing an integer-weighted graph in edgelist format would require well over 1TB
of memory to represent the edges in the Hyperlink2012 graph alone.
Algorithm 10 shows the pseudocode for our implementation of Borůvka’s algorithm designed

for the CSR/CSC format. Our implementation uses an implementation of Borůvka (Lines 2–21)
that works over an edgelist as a subroutine; to make it efficient in practice, we ensure that the size
of the lists passed to it are much smaller thanm. The edgelist-based implementation is based on
shortcutting using pointer-jumping instead of contraction. The main MSF algorithm (Lines 22–
33) maintains a Parents array that represents the connected components that have been found by
the algorithm so far. Initially, each vertex is in its own component (Line 25). The main algorithm
performs a constant number of filtering steps on a small number of the lowest-weight edges that
are extracted from the graph. Each filtering step first solves an approximate k-th smallest problem
in order to determine a weight threshold, which is either the weight of approximately the 3n/2-
th lightest edge, or the max edge weight if the maximum number of filtering rounds are reached
(Line 27). This step can be easily implemented using the vertex primitives in Section 4 and binary
search. Edges lighter than the threshold are extracted using the extractEdges primitive, defined
in Section 4 (Line 29). The algorithm then runs Borůvka on this subset of edges (Line 30), which we
describe next. Borůvka returns edges that are in the minimum spanning forest, and additionally
compresses the Parents array based on the new forest edges. Lastly, the main algorithm removes
edges that are now contained in the same component using the packGraph primitive (Line 31).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:32 L. Dhulipala et al.

ALGORITHM 10: Minimum Spanning Forest

1: Parents[0, . . . ,n) � 0

2: procedure Borůvka(n,E) � E is aprefix of minimum weight inter-component edges

3: Forest � {}
4: while |E | > 0 do

5: P[0, . . . ,n) � (∞,∞) � array of (weight , index) pairs for each vertex

6: for i ∈ [0, |E |) in parallel do

7: (u,v,w) � E[i] � the i-th edge in E
8: priorityWrite(&P[u], (w, i), <) � < lexicographically compares the (weight, index) pairs
9: priorityWrite(&P[v], (w, i), <)

10: for u ∈ [0,n) where P[u] � (∞,∞) in parallel do

11: (w, i) � P[u] � the index and weight of the MSF edge incident to u
12: v � the neighbor of u along the E[i] edge
13: if v > u and P[v] = (w, i) then � v also chose E[i] as its MSF edge; symmetry break

14: Parents[u] � u � make u the root of a component

15: else

16: Parents[u] � v � otherwise v < u; join v’s component

17: Forest � Forest ∪ {edges that won on either endpoint in P } � add new MSF edges

18: PointerJump(Parents) � compress the parents array (see Section 3)

19: E � map(E, fn (u,v,w) → return (Parents[u], Parents[v],w)) � relabel edges

20: E � filter(E, fn (u,v,w) → return u � v) � remove self-loops

21: return Forest

22: procedure MinimumSpanningForest(G (V ,E,w))
23: Forest � {}
24: Rounds � 0

25: vertexMap(V , fn u → Parents[u] = u) � initially each vertex is in its own component

26: while G .numEdges() > 0 do

27: T � select min(3n/2,m)-th smallest edge weight in G
28: if Rounds = 5 then T � largest edge weight in G

29: EF � extractEdges(G, fn (u,v,wuv) → return wuv ≤ T)
30: Forest � Forest ∪ Borůvka(|V |,EF)
31: packGraph(G, fn (u,v,wuv) → return Parents[u] � Parents[v]) � remove self-loops

32: Rounds � Rounds + 1

33: return Forest

The edgelist-based Borůvka implementation (Lines 2–21) takes as input the number of vertices
and a prefix of the lowest weight edges currently in the graph. The forest is initially empty (Line 3).
The algorithm runs over a series of rounds. Within a round, the algorithm first initializes an array
P of (weight, index) pairs for all vertices (Line 5). Next, it loops in parallel over all edges in E and
perform priorityWrites to P based on the weight on both endpoints of the edge (Lines 8 and 9).
This step writes the weight and index-id of a minimum-weight edge incident to a vertex v into
P[v]. Next, for each vertex u that found an MSF edge incident to it, i.e., P[u] � (∞,∞) (Line 10),
the algorithm determinesv , the neighbor of u along this MSF edge (Lines 11–12). Ifv also selected
(u,v,w) as its MSF edge, the algorithm deterministically sets the vertex with lower id to be the root
of the tree (Line 14) and the vertex with higher id to point to lower one (Line 16). Otherwise,u joins
v’s component (Line 16). Lastly, the algorithm performs several clean-up steps. First, it updates
the forest with all newly identified MSF edges (Line 17). Next, it performs pointer-jumping (see
Section 3) to compress trees created in Parents (Line 18). Note that the pointer-jumping step can be
work-efficiently implemented in O (logn) depth whp on the BF model [31]. Finally, it relabels the

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:33

edges array E based on the new ids in Parents (Line 19) and then filters E to remove any self-loops,
i.e., edges within the same component after this round (Line 20).
We note that our implementation uses indirection by maintaining a set of active vertices and a

using a set of integer edge-ids to represent E in the Borůvka procedure. Applying indirection over
the vertices helps in practice as the algorithm can allocate P (Line 5) to have size proportional to the
number of active vertices in each round, which may be much smaller than n. Applying indirection
over the edges allows the algorithm to perform a filter over just the ids of the edges, instead of
triples containing the two endpoints and the weight of each edge.
We point out that the filtering idea used in our main algorithm is similar to the theoretically-

efficient algorithm of Cole et al. [45], except that instead of randomly sampling edges, our filtering
procedure selects a linear number of the lowest weight edges. Each filtering step costsO (m) work
and O (logm) depth, but as we only perform a constant number of steps before processing the
rest of the remaining graph, the filtering steps do not affect the work and depth asymptotically. In
practice, most of the edges are removed after 3–4 filtering steps, and so the remaining edges can
be copied into an edgelist and solved in a single Borůvka step. We also note that as the edges are
initially represented in both directions, we can pack out the edges so that each undirected edge
is only inspected once (we noticed that earlier edgelist-based implementations stored undirected
edges in both directions).

Strongly Connected Components

The strongly connected components problem is to compute a labeling L that maps each vertex
to a unique label for its strongly connected component (i.e., L[u] = L[v] iff there is a directed
path from u to v and from v to u). Tarjan’s algorithm is the textbook sequential algorithm for
computing the strongly connected components (SCCs) of a directed graph [49]. As it uses depth-
first search, we currently do not know how to efficiently parallelize it [3]. The current theoretical
state-of-the-art for parallel SCC algorithms with polylogarithmic depth reduces the problem to

computing the transitive closure of the graph. This requires Õ (n3) work using combinatorial algo-
rithms [68], which is significantly higher than the O (m + n) work done by sequential algorithms.
As the transitive-closure based approach performs a significant amount of work even for moder-
ately sized graphs, subsequent research on parallel SCC algorithms has focused on improving the
work while potentially sacrificing depth [33, 48, 65, 131]. Conceptually, these algorithms first pick
a random pivot and use a reachability-oracle to identify the SCC containing the pivot. They then
remove this SCC, which partitions the remaining graph into several disjoint pieces, and recurse
on the pieces.
In this paper, we present the first implementation of the SCC algorithm from Blelloch et al. [33],

shown in Algorithm 11. We refer the reader to Section 6.2 of [33] for proofs of correctness and its
work and depth bounds. The algorithm is similar in spirit to randomized quicksort. The algorithm
first sets the initial label for all vertices as ∞ and marks all vertices as not done (Lines 3 and 4).
Next, it randomly permutes the vertices and partitions them into logn batches whose sizes increase
geometrically (Line 2). This pseudocode for Partition is given in Algorithm 6. Specifically, Bi

contains all vertices that are part of the i-th batch. The variable d is a counter tracking the number
of vertices that the algorithm has finished processing. It processes the batches one at a time.
For each batch, it first computes Centers, which are the vertices in this batch that are not yet

done (Line 7). The next step calls MarkReachable from the centers on both G and the transposed
graph,GT (Lines 8–9).MarkReachable takes the set of centers and uses a variant of a breadth-first
search to compute the sets OutL (InL), which for the j’th center c j ∈ Bi includes all (v,d + j) pairs
for vertices v that c j can reach through its out-edges (in-edges). We describe this procedure in

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:34 L. Dhulipala et al.

ALGORITHM 11: Strongly Connected Components

1: procedure SCC(G (V ,E))
2: B � Partition(V , 1) � permute and group vertices in O (logn) batches of increasing size (see Alg.

6)

3: L[0, . . . ,n) � ∞
4: Done[0, . . . ,n) � false

5: d � 0 � counter used to assign a uniquelabel to each center based on its position in B
6: for i ∈ [0, |B |) do

7: Centers �{v ∈ Bi | !Done[i]} � vertices starting in the i-th batch that are not yet done
8: OutL � MarkReachable(G,Centers) � pairs (u,d + j) s.t. the j-th center in Bi reaches u in G
9: InL � MarkReachable(GT,Centers) � pairs (u,d + j) s.t. the j-th center in Bi reaches u in GT

10: for (u, l) ∈ InL ∩ OutL in parallel do

11: Done[u] � true � mark this vertex as done

12: priorityWrite(&L[u], l , <) � final value is l ′ = d + j ′ where j ′=argminj {Bi [j] in u’s SCC }

13: packGraph(G, fn (u,v) → return � preserve edges within the same subproblem

14: |InL[u]| = |InL[v]| and |OutL[u]| = |OutL[v]|)
15: d � d + |Bi | � increment d by the number of finished centers in the i-th batch

16: return L

more detail below. Finally, the algorithm computes all (u, l) pairs in the intersection of InL and
OutL in parallel (Line 10). For each pair, the algorithm first marks the vertex as done (Line 11). It
then performs a priorityWrite to atomically try and update the label of the vertex to l (Line 12).
After the parallel loop on Line 10 finishes, the label for a vertex u that had some vertex in its SCC
appear as a center in this batch will be set to l ′ = d + j, where j ′ = argminj {Bi [j] in u’s SCC }, i.e.,
it the unique label for the vertex with minimum rank in the permutation B contained in u’s SCC.
The last step of the algorithm refines the subproblems in the graph by partitioning it, i.e., deleting

all edges which the algorithm identifies as not being in the same SCC. In our implementation, this
step is implemented using the packGraph primitive (Line 13), which considers every directed edge
in the graph and only preserves edges (u,v) where the number of centers reaching u and v in InL

are equal (respectively the number of centers reaching them in OutL). We note that the algorithm
described in Blelloch et al. [33] suggests that to partition the graph, each reachability search can
check whether any edge (u,v) where one endpoint is reachable in the search, and the other is not,
can be cut (possibly cutting some edges multiple times). The benefit of our approach is that we can
perform a single parallel scan over the edges in the graph and pack out a removed edge exactly
once. Our implementation runs in O (m logn) expected work and O (diam(G) logn) depth whp on
the PW-BF model.
One of the challenges in implementing this SCC algorithm is how to compute reachability in-

formation from multiple vertices (the centers) simultaneously. Our implementation explicitly ma-
terializes the forward and backward reachability sets for the set of centers that are active in the
current phase. The sets are represented as hash tables that store tuples of vertices and labels, (u, l),
representing a vertex u in the same subproblem as the vertex c with label l that is visited by a
directed path from c . We explain how to make the hash table technique practical in Section 7.3.
The reachability sets are computed by running simultaneous breadth-first searches from all active
centers. In each round of the BFS, we apply edgeMap to traverse all out-edges (or in-edges) of
the current frontier. When we visit an edge (u,v) we try to add u’s center IDs to v . If u succeeds
in adding any IDs, it testAndSet’s a visited flag for v , and returns it in the next frontier if the
testAndSet succeeded. Each BFS requires at most O (diam(G)) rounds as each search adds the
same labels in each round as it would have had it run in isolation.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:35

We also implement an optimized search for the first phase, which just runs two regular BFSs
over the in-edges and out-edges from a single pivot and stores the reachability information in bit-
vectors instead of hash-tables. It is well known that many directed real-world graphs have a single
massive strongly connected component, and so with reasonable probability the first vertex in the
permutation will find this giant component [43]. Our implementation also supports a trimming

optimization that is used by some papers in the literature [106, 144], which eliminates trivial SCCs
by removing any vertices that have zero in- or out-degree. We implement a procedure that recur-
sively trims until no zero in- or out-degree vertices remain, or until a maximum number of rounds
are reached, although in practice we found that a single trimming step is sufficient to remove the
majority of trivial vertices on our graph inputs.

6.3 Covering Problems

Maximal Independent Set

Themaximal independent set problem is to compute a subset of verticesU such that no two vertices
inU are neighbors, and all vertices inV \U have a neighbor inU . Maximal independent set (MIS)
andmaximal matching (MM) are easily solved in linear work sequentially using greedy algorithms.
Many efficient parallel maximal independent set and matching algorithms have been developed
over the years [5, 25, 32, 82, 89, 98]. Blelloch et al. show that when the vertices (or edges) are
processed in a random order, the sequential greedy algorithms for MIS and MM can be parallelized
efficiently and give practical algorithms [32]. Recently, Fischer and Noever showed an improved
depth bound for these MIS and MM algorithms [64].
In this paper, we implement the rootset-based algorithm for MIS from Blelloch et al. [32] which

runs inO (m) work andO (log2 n) depth whp on the FA-BF model (using the improved depth anal-
ysis of Fischer and Noever [64]). To the best of our knowledge this is the first implementation of
the rootset-based algorithm; the implementations from [32] are based on processing appropriately-
sized prefixes of an order generated by a randompermutation P , and have linear expectedwork and
a larger depth bound. Our implementation of the rootset-based algorithmworks on a priority-DAG
defined by directing edges in the graph from the higher-priority endpoint to the lower-priority
endpoint. In each round, we add all roots of the DAG into the MIS, compute N (Roots), the neigh-
bors of the rootset that are still active, and finally decrement the priorities of N (N (Roots)). As the
vertices whose priorities we decrement are at arbitrary depths in the priority-DAG, we only decre-
ment the priority along an edge (u,v) if P[u] < P[v] (we could also explicitly run the algorithm
on the graph directed according to P , which would avoid this check). The algorithm runs inO (m)
work as we process each vertex and edge once; the depth bound is O (log2 n) as the priority-DAG
has O (logn) depth whp [64], and each round takes O (logn) depth. We were surprised that this
implementation usually outperforms the prefix-based implementation from [32], while also being
simple to implement.
Our implementation of the rootset-based MIS algorithm is shown in Algorithm 12. The algo-

rithm first randomly orders the vertices with a random permutation P (Line 1). It then computes
an array Priority where each vertex is associated with the count of its number of neighbors that
have higher priority than it with respect to the permutation P . This computation is done using the
countNghs primitive from Section 4 (Line 16). Next, on Line 17 we compute the initial rootset,
Roots, which is the set of all vertices that initially have priority 0. In each round, the algorithm
adds the roots to the independent set, I (Line 21), and computes the set of covered (i.e., removed)
vertices, which are neighbors of the rootset that are still active (Priority[v] > 0). This step is done
using edgeMap over Roots, where the map and condition function are defined similarly to BFS,
returning true for a neighboring vertex if and only if it has not been visited before (the testAnd-

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:36 L. Dhulipala et al.

ALGORITHM 12: Maximal Independent Set

1: P � RandomPermutation([0, . . . ,n − 1])
2: Flags[0, . . . ,n) � false

3: Priority[0, . . . ,n) � 0

4: procedure NewlyCovered(s , d)
5: if testAndSet(&Flags[d]) then

6: return true

7: return false

8: procedure NewlyCoveredCond(v) return !Flags[v]

9: procedure DecrementPriority(s , d)
10: if P[s] < P[d] and fetchAndAdd(&Priority[d],−1) = 1 then

11: return true

12: return false

13: procedure DecrementPriorityCond(v) return Priority[v] > 0

14: procedure MIS(G (V ,E))
15: vertexMap(V , fn u → � initialize priority to the number of neighbors appearing before u in P

16: Priority[u] � G .getVertex(u).countNghs(fn (u,v) → return P[v] < P[u]))
17: Roots � vertexSubset({v ∈ V | Priority[v] = 0})
18: numFinished � 0

19: I � {}
20: while numFinished < n do

21: I � I ∪ Roots

22: Covered � edgeMap(G,Roots,NewlyCovered,NewlyCoveredCond)
23: vertexMap(Covered, fn v → Priority[v] = 0) � remove v ∈ Covered from consideration as roots

24: numFinished � numFinished + |Roots | + |Covered |
25: Roots � edgeMap(G,Covered,DecrementPriority,DecrementPriorityCond)

26: return I

Set to Flags succeeds). The algorithm also sets the Priority values of these vertices to 0 (Line 23),
which prevents them from being considered as potential roots in the remainder of the algorithm.
Next, the algorithm updates the number of finished vertices (Line 24). Finally, the algorithm com-
putes the next set of roots using a second edgeMap. The map function (Lines 9–12) decrements
the priority of all neighborsv visited over an edge (u,v) whereu ∈ Covered and P[u] < P[v] using
a fetchAndAdd that returns true for a neighbor v if this edge decrements its priority to 0.

Maximal Matching

The maximal matching problem is to compute a subset of edges E ′ ⊆ E such that no two edges
in E ′ share an endpoint, and all edges in E \ E ′ share an endpoint with some edge in E ′. Our
maximal matching implementation is based on the prefix-based algorithm from [32] that takes
O (m) expected work and O (log2m) depth whp on the PW-BF model (using the improved depth
shown in [64]). We had to make several modifications to run the algorithm on the large graphs
in our experiments. The original code from [32] uses an edgelist representation, but we cannot
directly use this implementation as uncompressing all edges would require a prohibitive amount
of memory for large graphs. Instead, as in our MSF implementation, we simulate the prefix-based
approach by performing a constant number of filtering steps. Each filter step packs out 3n/2 of
the highest priority edges, randomly permutes them, and then runs the edgelist based algorithm
on the prefix. After computing the new set of edges that are added to the matching, we filter the
remaining graph and remove all edges that are incident to matched vertices. In practice, just 3–4
filtering steps are sufficient to remove essentially all edges in the graph. The last step uncompresses

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:37

ALGORITHM 13: Maximal Matching

1: Matched[0, . . . ,n) � false

2: procedure ParallelGreedyMM(P)
3: M � {}
4: P � RandomPermutation(P) � a random permutation of the edges in the prefix

5: while |P | > 0 do

6: W � edges in P with no adjacent edges with higher rank

7: ∀(u,v) ∈W , set Matched[u] � true and Matched[v] � true

8: P ←filter edges incident to newly matched vertices from P

9: return M

10: procedure MaximalMatching(G (V ,E))
11: Matching � {}
12: Rounds � 0

13: while G .numEdges() > 0 do

14: curM � G .numEdges()
15: toExtract � if Rounds ≤ 5 then min(3n/2, curM) else curM

16: P � extractEdges(G, fn (e = (u,v)) →
17: inPrefix � e ∈ top toExtract highest-priority edges

18: return u < v and inPrefix) � u < v to emit an edge in the prefix only once

19: W � ParallelGreedyMM(P)
20: packGraph(G, fn (e = (u,v)) → return !(e ∈W or e incident toW)) � E � E \ (W ∪ N (W))
21: Matching � Matching ∪W
22: Rounds � Rounds + 1

23: return Matching

any remaining edges into an edgelist and runs the prefix-based algorithm. The filtering steps can
be done within the work and depth bounds of the original algorithm.
Our implementation of the prefix-based maximal matching algorithm from Blelloch et al. [32]

is shown in Algorithm 13. The algorithm first creates the array matched, sets all vertices to be
unmatched, and initializes the matching to empty (Line 11). The algorithm runs a constant number
of filtering rounds, as described above, where each round fetches some number of highest priority
edges that are still active (i.e., neither endpoint is incident to a matched edge). First, it calculates
the number of edges to extract (Line 15). It then extracts the highest priority edges using the
packGraph primitive. The function supplied to packGraph checks whether an edge e is one of
the highest priority edges, and if so, emits it in the output edgelist, P and removes this edge from the
graph. Our implementation calculates edge priorities by hashing the edge pair. It selects whether
an edge is in the prefix by comparing each edge’s priority with the priority of approximately the
toExtract-th smallest priority, computed using approximate median.
Next, the algorithm applies the parallel greedy maximal matching algorithm (Lines 2–9) on it.

The parallel greedy algorithm first randomly permutes the edges in the prefix (Line 4). It then
repeatedly finds the set of edges that have the lowest rank in the prefix amongst all other edges
incident to either endpoint (Line 6), adds them to the matching (Line 7), and filters the edges based
on the newly matched edges (Line 8). The edges matched by the greedy algorithm are returned
to the MaximalMatching procedure (Line 9). We refer to [32, 64] for a detailed description of the
prefix-based algorithm that we implement, and a proof of the work and depth of the Parallel-
GreedyMM algorithm.
The last steps within a round are to filter the remaining edges in the graph based on the newly

matched edges using the packGraph primitive (Line 20). The supplied predicate does not return

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:38 L. Dhulipala et al.

any edges in the output edgelist, and packs out any edge incident to the partial matching, W .
Lastly, the algorithm adds the newlymatched edges to thematching Line 21.We note that applying
a constant number of filtering rounds before executing ParallelGreedyMM does not affect the
work and depth bounds.

Graph Coloring

The graph coloring problem is to compute a mapping from each v ∈ V to a color such that for
each edge (u,v) ∈ E, C (u) � C (v), using at most Δ + 1 colors. As graph coloring is NP-hard to
solve optimally, algorithms like greedy coloring, which guarantees a (Δ + 1)-coloring, are used
instead in practice, and often use much fewer than (Δ + 1) colors on real-world graphs [77,
151]. Jones and Plassmann (JP) parallelize the greedy algorithm using linear work, but unfor-
tunately adversarial inputs exist for the heuristics they consider that may force the algorithm
to run in O (n) depth. Hasenplaugh et al. introduce several heuristics that produce high-quality
colorings in practice and also achieve provably low-depth regardless of the input graph. These
include LLF (largest-log-degree-first), which processes vertices ordered by the log of their de-
gree and SLL (smallest-log-degree-last), which processes vertices by removing all lowest log-
degree vertices from the graph, coloring the remaining graph, and finally coloring the removed
vertices. For LLF, they show that it runs in O (m + n) work and O (L logΔ + logn) depth, where
L = min{

√
m,Δ} + log2 Δ logn/ log logn in expectation.

In this paper, we implement a synchronous version of Jones-Plassmann using the LLF heuristic,
which runs in O (m + n) work and O (L logΔ + logn) depth on the FA-BF model. The algorithm is
implemented similarly to our rootset-based algorithm for MIS. In each round, after coloring the
roots we use a fetchAndAdd to decrement a count on our neighbors, and add the neighbor as a
root on the next round if the count is decremented to 0.
Algorithm 14 shows our synchronous implementation of the parallel LLF-Coloring algorithm

from [77]. The algorithm first computes priorities for each vertex in parallel using the countNghs
primitive (Line 14). This step computes the number of neighbors of a vertex that must run before
it by applying the countFn predicate (Line 13). This predicate function returns true for a (u,v) edge
to a neighbor v if the log-degree of v is greater than u, or, if the log-degrees are equal whether v
has a lower-rank in a permutation on the vertices (Line 1) than v . Next, the algorithm computes
the vertexSubset Roots (Line 15) which consists of all vertices that have no neighbors that are still
uncolored that must be run before them based on countFn. Note that Roots is an independent set.
The algorithm then loops while some vertex remains uncolored. Within the loop, it first assigns
colors to the roots in parallel (Line 18) by setting each root to the first unused color in its neigh-
borhood (Lines 5–6). Finally, it updates the number of finished vertices by the number of roots
(Line 19) and computes the next rootset by applying edgeMap on the rootset with a map func-
tion that decrements the priority over all (u,v) edges incident to Roots where Priority[v] > 0. The
map function returns true only if the priority decrement decreases the priority of the neighboring
vertex to 0 (Line 8).

Approximate Set Cover

The set cover problem can be modeled by a bipartite graph where sets and elements are vertices,
with an edge between a set and an element if and only if the set covers that element. The ap-
proximate set cover problem is as follows: given a bipartite graphG = (V = (S,E),A) representing
an unweighted set cover instance, compute a subset S ′ ⊆ S such that ∪s ∈S ′N (s) = E and |S ′ | is
anO (logn)-approximation to the optimal cover. Like graph coloring, the set cover problem is NP-
hard to solve optimally, and a sequential greedy algorithm computes anHn-approximation inO (m)
time for unweighted sets, and O (m logm) time for weighted sets, where Hn =

∑n
k=1 1/k andm is

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:39

ALGORITHM 14: LLF Graph Coloring

1: P � RandomPermutation([0, . . . ,n − 1])
2: Color[0, . . . ,n) � ∞
3: D[0, . . . ,n) � 0

4: Priority[0, . . . ,n) � 0

5: procedure AssignColors(u)
6: Color[u] � c , where c is the first unused color in N (u)

7: procedure DecrementPriority(s , d)
8: if fetchAndAdd(&Priority[d],−1) = 1 then return true

9: return false

10: procedure DecrementPriorityCond(v) return Priority[v] > 0

11: procedure LLF(G (V ,E))
12: vertexMap(V , fn u → D[u] � �log(d (u))�)
13: countFn � fn (u,v) → return D[v] > D[u] or (D[v] = D[u] and P[v] < P[u])
14: vertexMap(V , fn u → Priority[u] � G .getVertex(u).countNghs(countFn))
15: Roots � vertexSubset({v ∈ V | Priority[v] = 0})
16: Finished � 0

17: while Finished < n do

18: vertexMap(Roots,AssignColors)
19: Finished � Finished + |Roots |
20: Roots � edgeMap(G,Roots,DecrementPriority,DecrementPriorityCond)

21: return Color

the sum of the sizes of the sets (or the number of edges in the graph). There has been significant
work on finding work-efficient parallel algorithms that achieves an Hn-approximation [24, 36, 37,
91, 124].
Algorithm 15 shows pseudocode for the Blelloch et al. algorithm [36] which runs inO (m) work

andO (log3 n) depth on the PW-BF model. Our presentation here is based on the bucketing-based
implementation from Julienne [52], with one significant change regarding how sets acquire ele-
ments which we discuss below. The algorithm first buckets the sets based on their degree, placing
a set covering D elements into
log1+ϵ D�-th bucket (Line 24). It then processes the buckets in
decreasing order (Lines 26–38). In each round, the algorithm extracts the highest bucket (Sets)
(Line 26) and packs out the adjacency lists of vertices in this bucket to remove edges to neigh-
bors that are covered in prior rounds (Line 27). The output is an augmented vertexSubset, SetsD,
containing each set along with its new degree after packing out all dead edges. It then maps over
SetsD, updating the degree in D for each set with the new degree (Line 28). The algorithm then
filters SetsD to build a vertexSubsetActive, which contains sets that have sufficiently high degree
to continue in this round (Line 29).
The next few steps of the algorithm implement one step ofMaNIS (Maximal Nearly-Independent

Set) [36], to compute a set of sets from Active that have little overlap. First, the algorithm assigns
a random priority to each currently active set using a random permutation, storing the priorities
in the array π (Lines 30–31). Next, it applies edgeMap (Line 32) where the map function (Line 12)
uses a priority-write on each (s, e) edge to try and acquire an element e using the priority of the
visiting set, π [s]. It then computes the number of elements each set successfully acquired using
the srcCount primitive (Line 33) with the predicate WonElm (Line 10) that checks whether the
minimum value stored at an element is the unique priority for the set. The final MaNIS step maps
over the vertices and the number of elements they successfully acquired (Line 34) with the map
function WonEnough (Lines 13–16) which adds sets that covered enough elements to the cover.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:40 L. Dhulipala et al.

ALGORITHM 15: Approximate Set Cover

1: Elm[0, . . . , |E |) � ∞
2: Flags[0, . . . , |E |) � uncovered

3: D[0, . . . , |S |) � {d (s0), . . . ,d (sn−1)} � initialized to the initial degree of s ∈ S
4: π [0, . . . , |S |) � 0 � map from sets to priorities; entries are updated on each round for active sets

5: b � current bucket number

6: procedure BucketNum(s) return
log1+ϵ D[s]�
7: procedure ElmUncovered(s, e) return Flags[e] = uncovered

8: procedure UpdateD(s, deg) D[s] � deg

9: procedure AboveThreshold(s, deg) return deg ≥ �(1 + ϵ)max(b,0)�
10: procedure WonElm(s , e) return π [s] = Elm[e]

11: procedure InCover(s) return D[s] = ∞
12: procedure VisitElms(s , e) priorityWrite(&Elm[e],π [s], <)

13: procedure WonEnough(s , elmsWon)

14: threshold � �(1 + ϵ)max(b−1,0)�
15: if (elmsWon > threshold) then

16: D[s] � ∞ � places s in the set cover

17: procedure ResetElms(s , e)
18: if (Elm[e] = s) then

19: if (InCover(s)) then

20: Flags[e] � covered � e is covered by s
21: else

22: Elm[e] � ∞ � reset e

23: procedure SetCover(G � (S ∪ E,A))
24: B � makeBuckets(|S |,BucketNum,decreasing) � process from largest to smallest log-degree

25: (b, Sets) � B.nextBucket()
26: while (b � nullbkt) do

27: SetsD � srcPack(G, Sets,ElmUncovered) � pack out edges to covered elements

28: vertexMap(SetsD,UpdateD) � update set degrees in D
29: Active � vertexFilter(SetsD,AboveThreshold) � extract sets with sufficiently high degree

30: πA � RandomPermutation(|Active |)
31: ∀i ∈ [0, |Active |), set π [Active[i]] � πA[i] � assign each active set a random priority

32: edgeMap(G,Active,VisitElms,ElmUncovered) � active sets try to acquire incident elements

33: ActiveCts � srcCount(G,Active,WonElm) � count number of neighbors won by each set

34: vertexMap(ActiveCts,WonEnough) � place sets that won enough into the cover

35: edgeMap(G,Active,ResetElms) � update neighboring elements state based on set status

36: Rebucket �{(s,B.getBucket(b,BucketNum(s)) | s ∈ Sets and !InCover(s)}
37: B.updateBuckets(Rebucket) � update buckets of sets that failed to join the cover

38: (b, Sets) � B.nextBucket()

39: return {s ∈ S | InCover(s) = true}

The final step in a round is to rebucket all sets which were not added to the cover to be processed
in a subsequent round (Lines 36–37). The rebucketed sets are those in Sets that were not added to
the cover, and the new bucket they are assigned to is calculated by using the getBucket primitive
with the current bucket, b, and a new bucket calculated based on their updated degree (Line 6).
Our implementation of approximate set cover in this paper is based on the implementation from

Julienne [52], and we refer to this paper for more details about the bucketing-based implementa-
tion. The main change we made in this paper is to ensure that we correctly set random priorities

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:41

for active sets in each round of the algorithm. Both the implementation in Julienne as well as an
earlier implementation of the algorithm [37] use the original IDs of sets instead of picking random
priorities for all sets that are active on a given round. This approach can cause very few vertices
to be added in each round on meshes and other graphs with a large amount of symmetry. Instead,
in our implementation, for AS , the active sets on a round, we generate a random permutation of
[0, . . . , |AS | − 1] and write these values into a pre-allocated dense array with size proportional to
the number of sets (Lines 30—31). We give experimental details regarding this change in Section 8.

6.4 Substructure Problems

k-core

A k-core of a graph is a maximal subgraph H where the degree of every vertex in H is ≥ k . The
coreness of a vertex is the maximum k-core a vertex participates in. The k-core problem in this
paper is to compute a mapping from each vertex to its coreness value. k-cores were defined inde-
pendently by Seidman [132], and by Matula and Beck [104] who also gave a linear-time algorithm
for computing the coreness value of all vertices. Anderson andMayr showed thatk-core (and there-
fore coreness) is in NC for k ≤ 2, but is P-complete for k ≥ 3 [7]. The Matula and Beck algorithm
is simple and practical—it first bucket-sorts vertices by their degree, and then repeatedly deletes
the minimum-degree vertex. The affected neighbors are moved to a new bucket corresponding to
their induced degree. As each edge in each direction and vertex is processed exactly once, the al-
gorithm runs inO (m + n) work. In [52], the authors gave a parallel algorithm based on bucketing
that runs in O (m + n) expected work, and ρ logn depth whp. ρ is the peeling-complexity of the
graph, defined as the number of rounds to peel the graph to an empty graph where each peeling
step removes all minimum degree vertices.
Algorithm 16 shows pseudocode for the work-efficient k-core algorithm from Julienne [52]

which computes the coreness values of all vertices. The algorithm initializes the initial coreness
value of each vertex to its degree (Line 36), and inserts the vertices into a bucketing data-structure
based on their degree (Line 4). In each round, while all of the vertices have not yet been processed
the algorithm performs the following steps. It first removes (or peels) the vertices in the minimum
bucket, k (Line 7). Next, it computes the number of edges removed from each neighbor using the
nghCount primitive. The apply function supplied to the primitive (Lines 10–18) takes a pair of a
vertex, and the number of incident edges removed (v, edgesRemoved), updates the current coreness
of the vertex v and emits a vertex and bucket identifier into the output vertexSubset if and only
if the vertex needs to move to a new bucket (the return value of the getBucket primitive). The
output is an augmented vertexSubset where each vertex is augmented with the bucket (a value of
type bktdest) that it moves to. The last step is to update the buckets of affected neighbors (Line 20).
Once all buckets have been processed (all cores have been peeled), the algorithm returns the array
Coreness, which contains the final coreness values of each vertex at the end of the algorithm.

Approximate Densest Subgraph

The densest subgraph problem is to find a subset of vertices in an undirected graphwith the highest
density. The density of a subset of vertices S is the number of edges in the subgraph S divided by
the number of vertices. The approximate densest problem is to compute a subsetU ⊆ V where the
density of U is a 2(1 + ϵ) approximation of the density of the densest subgraph ofG.
The problem is a classic graph optimization problem that admits exact polynomial-time solu-

tions using either a reduction to flow [70] or LP-rounding [44]. In his paper, Charikar also gives a
simple O (m + n) work 2-approximation algorithm based on computing a degeneracy ordering of

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:42 L. Dhulipala et al.

ALGORITHM 16: k-core (Coreness)

1: Coreness[0, . . . ,n) � 0

2: procedure Coreness(G (V ,E))
3: vertexMap(V , fn v → Coreness[v] � d (vi)) � coreness values initialized to initial degrees

4: B � makeBuckets(|V |,Coreness, increasing) � buckets processed in increasing order

5: Finished � 0

6: while (Finished < |V |) do

7: (k , ids) � B.nextBucket() � k is the current core number, ids is vertices peeled in this core

8: Finished � Finished + |ids |
9: condFn � fn v → return true

10: applyFn � fn (v, edgesRemoved) →
11: inducedD � D[v]
12: if (inducedD > k) then

13: newD � max(inducedD − edgesRemoved,k)
14: Coreness[v] � newD

15: bkt � B.get_bucket(inducedD, newD)
16: if (bkt � nullbkt) then

17: return Some(bkt)
18: return None

19: Moved � nghCount(G, ids, condFn, applyFn) � Moved is an bktdest vertexSubset

20: B.updateBuckets(Moved) � update the buckets of vertices in Moved

21: return Coreness

the graph, and taking the maximum density subgraph over all suffixes of the degeneracy order.5

The problem has also received attention in parallel models of computation [17, 18]. Bahmani et al.
give a (2 + ϵ)-approximation running in O (log1+ϵ n) rounds of MapReduce [18]. Subsequently,
Bahmani et al. [17] showed that a (1 + ϵ)-approximation can be found in O (logn/ϵ2) rounds of
MapReduce by using the multiplicative-weights approach on the dual of the natural LP for dens-
est subgraph. To the best of our knowledge, it is open whether the densest subgraph problem can
be exactly solved in NC.
In this paper, we implement the elegant (2 + ϵ)-approximation algorithm of Bahmani et al. (Al-

gorithm 17). Our implementation of the algorithm runs in O (m + n) work and O (log1+ϵ n logn)
depth. The algorithm starts with a candidate subgraph, S , consisting of all vertices, and an empty
approximate densest subgraph Smax (Lines 4–5). It also maintains an array with the induced degree
of each vertex in the arrayD, which is initially just its degree inG (Line 3). Themain loop iteratively
peels vertices with degree below the density threshold in the current candidate subgraph (Lines 6–
16). Specifically, it first finds all vertices with induced degree less than 2(1 + ϵ)D (S) (Line 7). Next,
it calls nghCount (see Section 4), which computes for each neighbor of R the number of incident
edges removed by deleting vertices in R from the graph, and updates the neighbor’s degree in D
(Line 17). Finally, it removes vertices in R from S (Line 14). If the density of the updated subgraph
S is greater than the density of Smax, the algorithm updates Smax to be S .
Bahmani et al. show that this algorithm removes a constant factor of the vertices in each round,

but do not consider the work or total number of operations performed by their algorithm. We
briefly sketch how the algorithm can be implemented in O (m + n) work and O (log1+ϵ n logn)
depth. Instead of computing the density of the current subgraph by scanning all edges, wemaintain

5We note that the 2-approximation can be work-efficiently solved in the same depth as our k-core algorithm by augmenting

the k-core algorithm to return the order in which vertices are peeled. Computing the maximum density subgraph over

suffixes of the degeneracy order can be done using scan.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:43

ALGORITHM 17: Approximate Densest Subgraph

1: D[0, . . . ,n) � 0

2: procedure ApproximateDensestSubgraph(G (V ,E))
3: vertexMap(V , fn v → D[v] � d (v)) � induced degrees are initially original degrees

4: S � V
5: Smax � ∅
6: while S � ∅ do

7: R � vertexSubset({v ∈ S | D[v] < 2(1 + ϵ)D (S)}) � D (S) � |E (G[S]) |
|S |

8: vertexMap(R, fn v → return D[v] � 0)
9: condFn � fn v → return true

10: applyFn � fn (v, edgesRemoved) →
11: D[v] � max(0,D[v] − edgesRemoved)
12: return None

13: nghCount(G,R, condFn, applyFn)
14: S � S \ R
15: if D (S) > D (Smax) then

16: Smax � S

17: return Smax

it explicitly using an array, D (Line 3) which tracks the degrees of vertices still in S , and update D
as vertices are removed from S . Each round of the algorithm does work proportional to vertices in
S to compute R (Line 7) but since S decreases by a constant factor in each round the work of these
steps to obtain R is O (n) over all rounds. Updating D can be done by computing the number of
edges going between R and S which are removed, which only requires scanning edges incident to
vertices in R using nghCount (Line 13). Therefore, the edges incident to each vertex are scanned
exactly once (in the round when it is included in R) and so the algorithm performsO (m + n) work.
The depth is O (log1+ϵ n logn) since there are O (log1+ϵ n) rounds each of which perform a filter
and nghCount which both run in O (logn) depth.
We note that an earlier implementation of our algorithm used the edgeMap primitive combined

with fetchAndAdd to decrement degrees of neighbors of R. We found that since a large number
of vertices are removed in each round, using fetchAndAdd can cause significant contention,
especially on graphs containing vertices with high degrees. Our implementation uses a work-
efficient histogram procedure to implement nghCount (see Section 7) which updates the degrees
while incurring very little contention.

Triangle Counting

The triangle counting problem is to compute the global count of the number of triangles in the
graph. Triangle counting has received significant recent attention due to its numerous applications
inWeb and social network analysis. There have been dozens of papers on sequential triangle count-
ing (see e.g., [6, 83, 93, 117, 118, 129, 130], among many others). The fastest algorithms rely on ma-

trix multiplication and run in eitherO (nω) orO (m2ω/(1+ω)) work, where ω is the best matrix mul-
tiplication exponent [6, 83]. The fastest algorithm that does not rely matrix multiplication requires
O (m3/2) work [93, 129, 130], which also turns out to be much more practical. Parallel algorithms
with O (m3/2) work have been designed [1, 97, 142], with Shun and Tangwongsan [142] showing
an algorithm that requires O (logn) depth on the BF model.6 The implementation from [142] par-
allelizes Latapy’s compact-forward algorithm, which creates a directed graph DG where an edge

6The algorithm in [142] was described in the Parallel Cache Oblivious model, with a depth of O (log3/2 n).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:44 L. Dhulipala et al.

ALGORITHM 18: Triangle Counting

1: procedure FilterEdge(u,v)
2: return d (u) > d (v) or (d (u) = d (v) and u > v)

3: procedure TriangleCounting(G (V ,E))
4: G ′ � filterGraph(G, FilterEdge) � orient edges from lower to higher degree

5: vertexCounts[0, . . . ,n) � 0

6: vertexMap(V , fn u → vertexCounts[u] �
7: G .getVertex(u).reduceOutNgh(fn (u,v) → return intersection(N+ (u),N+ (v)), (0,+)))
8: return reduce(vertexCounts, (0,+))

(u,v) ∈ E is kept in DG iff d (u) < d (v). Although triangle counting can be done directly on the
undirected graph in the same work and depth asymptotically, directing the edges helps reduce
work, and ensures that every triangle is counted exactly once.
In this paper we implement the triangle counting algorithm described in [142] (Algorithm 18).

The algorithm first uses the filterGraph primitive (Line 4) to direct the edges in the graph from
lower-degree to higher-degree, breaking ties lexicographically (Line 2). It then maps over all ver-
tices in the graph in parallel (Line 6), and for each vertex performs a sum-reduction over its out-
neighbors, where the value for each neighbor is the intersection size between the directed neigh-
borhoods N + (u) and N + (v) (Line 7).
We note that we had to make several significant changes to the implementation in order to run

efficiently on large compressed graphs. First, we parallelized the creation of the directed graph; this
step creates a directed graph encoded in the parallel-byte format inO (m) work andO (logn) depth
using the filterGraph primitive. We also parallelized the merge-based intersection algorithm to
make it work in the parallel-byte format. We give more details on these techniques in Section 7.

6.5 Eigenvector Problems

PageRank

PageRank is a centrality algorithm first used at Google to rank webpages [42]. The algorithm
takes a graphG = (V ,E), a damping factor 0 ≤ γ ≤ 1 and a constant ϵ which controls convergence.
Initially, the PageRank of each vertex is 1/n. In each iteration, the algorithm updates the PageRanks
of the vertices using the following equation:

Pv =
1 − γ
n
+ γ

∑

u ∈N − (v)

Pu

deg+ (u)

The PageRank algorithm terminates once the l1 norm of the differences between PageRank val-
ues between iterations is below ϵ . The algorithm implemented in this paper is an extension of the
implementation of PageRank described in Ligra [136]. The main changes are using a contention-
avoiding reduction primitive, which we describe in more detail below. Some PageRank imple-
mentations used in practice actually use an algorithm called PageRank-Delta [96], which modifies
PageRank by only activating a vertex if its PageRank value has changed sufficiently. However, the
work and depth of this algorithm are the same as that of PageRank in the worst case, and therefore
we chose to implement the classic algorithm.
We show pseudocode for our PageRank implementation in Algorithm 19. The initial PageRank

values are set to 1/n (Line 1). The algorithm initializes a frontier containing all vertices (Line 5), and
sets the error (the l1 norm between consecutive PageRank vectors) to ∞ (Line 12). The algorithm
then iterates the PageRank update step while the error is above the threshold ϵ (Lines 13–16). The
update is implemented using the nghReduce primitive (see Section 4 for details on the primitive).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:45

ALGORITHM 19: PageRank

1: Pcurr [0, . . . ,n) � 1/n
2: Pnext[0, . . . ,n) � 0

3: diffs[0, . . . ,n) � 0

4: procedure PageRank(G)
5: Frontier � vertexSubset({0, . . . ,n − 1})
6: condFn � fn u → return true

7: mapFn � fn (u,v) → return Pcurr [u]/d (u)
8: applyFn � fn (v, contribution) →
9: Pnext[v] � γ ∗ contribution +

1−γ
n

10: diffs[v] � |Pnext[v] − Pcurr [v]|
11: return None

12: error � ∞
13: while (error < ϵ) do

14: nghReduceApply(G, ids,mapFn, (0,+), condFn, applyFn)
15: error � reduce(diffs, (0,+))
16: swap(Pcurr , Pnext)

17: return Pcurr

The condFn function (Line 6) specifies that value should be aggregated for each vertex with non-
zero in-degree. The mapFn function pulls a PageRank contribution of Pcurr[u]/d (u) for each in-
neighbor u in the frontier (Line 7). Finally, after the contributions to each neighbor have been
summed up, the applyFn function is called on a pair of a neighboring vertexv , and its contribution
(Lines 8–11). The apply step updates the next PageRank value for the vertex using the PageRank
equation above (Line 9) and updates the difference in PageRank values for this vertex in the diffs

vector (Line 10). The last steps in the loop applies a parallel reduction over the differences vector
to update the current error (Line 15) and finally swaps the current and next PageRank vectors
(Line 16).
The main modification we made to the implementation from Ligra was to implement the dense

iterations of the algorithm using the reduction primitive nghReduce, which can be carried out
over the incoming neighbors of a vertex in parallel, without using a fetchAndAdd instruction.
Each iteration of our implementation requires O (m + n) work and O (logn) depth (note that the
bounds hold deterministically since in each iteration we can apply a dense, or pull-based imple-
mentation which performs a parallel reduction over the in-neighbors of each vertex). As the num-
ber of iterations required for PageRank to finish for a given ϵ depends on the structure of the input
graph, our benchmark measures the time for a single iteration of PageRank.

7 IMPLEMENTATIONS AND TECHNIQUES

In this section, we introduce several general implementation techniques and optimizations that
we use in our algorithms. The techniques include a fast histogram implementation useful for re-
ducing contention in the k-core algorithm, a cache-friendly sparse edgeMap implementation that
we call edgeMapBlocked, and compression techniques used to efficiently parallelize algorithms
on massive graphs.

7.1 A Work-efficient Histogram Implementation

Our initial implementation of the peeling-based algorithm for k-core algorithm suffered from poor
performance due to a large amount of contention incurred by fetchAndAdds on high-degree
vertices. This issue occurs as many social-networks and web-graphs have large maximum degree,

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:46 L. Dhulipala et al.

but relatively small degeneracy, or largest non-empty core (labeled kmax in Table 3). For these
graphs, we observed that many early rounds, which process vertices with low coreness perform
a large number of fetchAndAdds on memory locations corresponding to high-degree vertices,
resulting in high contention [138]. To reduce contention, we designed a work-efficient histogram
implementation that can perform this step while only incurringO (logn) contentionwhp. TheHis-

togram primitive takes a sequence of (K,T) pairs, and an associative and commutative operator
R : T × T→ T and computes a sequence of (K,T) pairs, where each key k only appears once, and
its associated value t is the sum of all values associated with keys k in the input, combined with
respect to R.
A useful example of histogram to consider is summing for each v ∈ N (F) for a vertexSubset F ,

the number of edges (u,v) where u ∈ F (i.e., the number of incoming neighbors from the frontier).
This operation can be implemented by running histogram on a sequence where each v ∈ N (F)
appears once per (u,v) edge as a tuple (v, 1) using the operator +. One theoretically efficient
implementation of histogram is to simply semisort the pairs using the work-efficient semisort
algorithm from [74]. The semisort places pairs from the sequence into a set of heavy and light

buckets, where heavy buckets contain a single key that appears many times in the input sequence,
and light buckets contain at mostO (log2 n) distinct keys (k,v) keys, each of which appear at most
O (logn) times whp (heavy and light keys are determined by sampling). We compute the reduced
value for heavy buckets using a standard parallel reduction. For each light bucket, we allocate a
hash table, and hash the keys in the bucket in parallel to the table, combining multiple values for
the same key using R. As each key appears at most O (logn) times whp we incur at most O (logn)
contention whp. The output sequence can be computed by compacting the light tables and heavy
arrays.
While the semisort implementation is theoretically efficient, it requires a likely cache miss for

each key when inserting into the appropriate hash table. To improve cache performance in this
step, we implemented a work-efficient algorithm withO (nϵ) depth based on radix sort. Our imple-
mentation is based on the parallel radix sort from PBBS [139]. As in the semisort, we first sample
keys from the sequence and determine the set of heavy-keys. Instead of directly moving the ele-
ments into light and heavy buckets, we break up the input sequence into O (n1−ϵ) blocks, each of
sizeO (nϵ), and sequentially sort the keys within a block into light and heavy buckets. Within the
blocks, we reduce all heavy keys into a single value and compute an array of size O (nϵ) which
holds the starting offset of each bucket within the block. Next, we perform a segmented-scan [26]
over the arrays of the O (n1−ϵ) blocks to compute the sizes of the light buckets, and the reduced
values for the heavy-buckets, which only contain a single key. Finally, we allocate tables for the
light buckets, hash the light keys in parallel over the blocks and compact the light tables and heavy
keys into the output array. Each step runs in O (n) work and O (nϵ) depth. Compared to the orig-
inal semisort implementation, this version incurs fewer cache misses because the light keys per
block are already sorted and consecutive keys likely go to the same hash table, which fits in cache.
We compared our times in the histogram-based version of k-core and the fetchAndAdd-based
version of k-core and saw between a 1.1–3.1x improvement from using the histogram.

7.2 edgeMapBlocked

One of the core primitives used by our algorithms is edgeMap (described in Section 3). The push-
based version of edgeMap, edgeMapSparse, takes a frontier U and iterates over all (u,v) edges
incident to it. It applies an update function on each edge that returns a boolean indicating whether
or not the neighbor should be included in the next frontier. The standard implementation of
edgeMapSparse first computes prefix-sums of d (u),u ∈ U to compute offsets, allocates an array
of size

∑
u ∈U d (u), and iterates over allu ∈ U in parallel, writing the ID of the neighbor to the array

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:47

ALGORITHM 20: edgeMapBlocked

1: procedure edgeMapBlocked(G,U , F)
2: O � Prefix sums of degrees of u ∈ U
3: dU �

∑
u ∈U d (u)

4: nblocks � �dU /bsize�
5: B � Result of binary search for nblocks indices into O

6: I � Intermediate array of size
∑

u ∈U d (u)
7: A � Intermediate array of size nblocks

8: i ∈ B

9: Process work in B[i] and pack live neighbors into I [i · bsize]
10: A[i] � Number of live neighbors

11: R � Prefix sum A and compact I

12: return R

if the update function F returns true, and ⊥ otherwise. It then filters out the ⊥ values in the array
to produce the output vertexSubset.
In real-world graphs, |N (U) |, the number of unique neighbors incident to the current frontier

is often much smaller than
∑

u ∈U d (u). However, edgeMapSparse will always perform
∑

u ∈U d (u)
writes and incur a proportional number of cache misses, despite the size of the output being at
most |N (U) |. More precisely, the size of the output is at most LN (U) ≤ |N (U) |, where LN (U) is
the number of live neighbors of U , where a live neighbor is a neighbor of the current frontier for
which F returns true. To reduce the number of cache misses we incur in the push-based traversal,
we implemented a new version of edgeMapSparse that performs at most LN (U) writes that we
call edgeMapBlocked. The idea behind edgeMapBlocked is to logically break the edges incident
to the current frontier up into a set of blocks, and iterate over the blocks sequentially, packing
live neighbors compactly for each block. The output is obtained by applying a prefix-sum over the
number of live neighbors per-block, and compacting the block outputs into the output array.
We now describe a theoretically efficient implementation of edgeMapBlocked (Algorithm 20).

As in edgeMapSparse, we first compute an array of offsets O (Line 2) by prefix summing the
degrees ofu ∈ U . We process the edges incident to this frontier in blocks of size bsize. As we cannot
afford to explicitly write out the edges incident to the current frontier to block them, we instead
logically assign the edges to blocks. Each block searches for a range of vertices to process with bsize

edges; the i-th block binary searches the offsets array to find the vertex incident to the start of the
(i · bsize)-th edge, storing the result into B[i] (Lines 4–5). The vertices that block i must process
are therefore between B[i] and B[i + 1]. We note that multiple blocks can be assigned to process
the edges incident to a high-degree vertex. Next, we allocate an intermediate array I of size dU

(Line 6), but do not initialize the memory, and an array A that stores the number of live neighbors
found by each block (Line 7). Next, we process the blocks in parallel by sequentially applying F to
each edge in the block and compactly writing any live neighbors to I [i · bsize] (Line 9), and write
the number of live neighbors toA[i] (Line 10). Finally, we do a prefix sum onA, which gives offsets
into an array of size proportional to the number of live neighbors, and copy the live neighbors in
parallel to R, the output array (Line 11).
We found that this optimization helps the most in algorithms where there is a significant imbal-

ance between the size of the output of each edgeMap, and
∑

u ∈U d (u). For example, in weighted
BFS, relatively few of the edges actually relax a neighboring vertex, and so the size of the out-
put, which contains vertices that should be moved to a new bucket, is usually much smaller than
the total number of edges incident to the frontier. In this case, we observed as much as a 1.8x
improvement in running time by switching from edgeMapSparse to edgeMapBlocked.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:48 L. Dhulipala et al.

7.3 Techniques for Overlapping Searches

In this section, we describe how we compute and update the reachability labels for vertices that
are visited in a phase of our SCC algorithm. Recall that each phase performs a graph traversal
from the set of active centers on this round,CA, and computes for each center c , all vertices in the
weakly-connected component for the subproblem of c that can be reached by a directed path from
it. We store this reachability information as a set of (u, li) pairs in a hash-table, which represent
the fact that u can be reached by a directed path from ci (li is a unique label for the center ci ,
see Algorithm 11). A phase performs two graph traversals from the centers to compute RF and
RB , the out-reachability set and in-reachability sets respectively. Each traversal allocates an initial
hash table and runs rounds of edgeMap until no new label information is added to the table.
The main challenge in implementing one round in the traversal is (1) ensuring that the table

has sufficient space to store all pairs that will be added this round, and (2) efficiently iterating
over all of the pairs associated with a vertex. We implement (1) by performing a parallel reduce to
sum over vertices u ∈ F , the current frontier, the number of neighbors v in the same subproblem,
multiplied by the number of distinct labels currently assigned tou. This quantity upper-bounds the
number of distinct labels that could be added this round, and although we may overestimate the
number of actual additions, we will never run out of space in the table. We update the number of
elements stored in the table during concurrent insertions by storing a per-processor count which
gets incremented whenever the processor performs a successful insertion. The counts are then
summed together at the end of a round and used to update the count of the number of elements
in the table.
One simple implementation of (2) is to simply allocate O (logn) space for every vertex, as one

can show that the maximum number of centers that visit any vertex during a phase is at most
O (logn)whp. However, this approach will waste a significant amount of space, as most vertices
are visited just a few times (a constant number of times per round, in expectation). Instead, our
implementation stores (u, l) pairs in the table for visited vertices u, and computes hashes based
only on the ID of u. As each vertex is only expected to be visited a constant number of times
during a phase, the expected probe length is still a constant. Storing the pairs for a vertex in the
same probe-sequence is helpful for two reasons. First, we may incur fewer cache misses than if we
had hashed the pairs based on both entries, as multiple pairs for a vertex can fit in the same cache
line. Second, storing the pairs for a vertex along the same probe sequence makes it easy to find all
pairs associated with a vertex u; the idea is to simply perform linear-probing, reporting all pairs
that have u as their key until we hit an empty cell. Our experiments confirm that this technique
is practical, and we believe that it may have applications in similar algorithms, such as computing
least-element lists and FRT trees in parallel [33, 34].

7.4 Primitives on Compressed Graphs

Most of the algorithms studied in this paper are concisely expressed using fundamental primitives
such as map, map-reduce, filter, pack, and intersection (see Section 4). To run our algorithms with-
out any modifications on compressed graphs, we wrote new implementations of these primitives
using using the parallel-byte format from Ligra+, some of which required some new techniques in
order to be theoretically efficient. We first review the byte and parallel-byte formats from [141].
In byte coding, we store a vertex’s neighbor list by difference encoding consecutive vertices, with
the first vertex difference encoded with respect to the source. Decoding is done by sequentially
uncompressing each difference, and summing the differences into a running sum which gives the
ID of the next neighbor. As this process is sequential, graph algorithms using the byte format that
map over the neighbors of a vertex will require Ω(Δ) depth, where Δ is the maximum degree of a
vertex in the graph. The parallel-byte format from Ligra+ breaks the neighbors of a high-degree

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:49

vertex into blocks, where each block contains a fixed number of neighbors. Each block is differ-
ence encoded with respect to the source. As each block can have a different compressed size, it
also stores offsets that point to the start of each block. The format stores the blocks in a neighbor
list L in sorted order.
We now describe efficient implementations of primitives used by our algorithms. All descrip-

tions are given for neighbor lists coded in the parallel-byte format, and we assume for simplicity
that the block size (the number of neighbors stored in each block) is O (logn). The Map primitive
takes as input neighbor list L, and amap function F , and applies F to each ID in L. This primitive can
be implemented with a parallel-for loop across the blocks, where each iteration decodes its block
sequentially. Our implementation of map runs in O (|L|) work and O (logn) depth. Map-Reduce

takes as input a neighbor list L, a map function F : vtx→ T and a binary associative function R
and returns the sum of the mapped elements with respect to R. We perform map-reduce similarly
by first mapping over the blocks, then sequentially reducing over the mapped values in each block.
We store the accumulated value on the stack or in an heap-allocated array if the number of blocks
is large enough. Finally, we reduce the accumulated values using R to compute the output. Our
implementation of map-reduce runs in O (|L|) work and O (logn) depth.

Filter takes as input a neighbor list L, a predicate P , and an array T into which the vertices
satisfying P are written, in the same order as in L. Our implementation of filter also takes as input
an array S , which is an array of size d (v) space for lists L larger than a constant threshold, and
null otherwise. In the case where L is large, we implement the filter by first decoding L into S in
parallel; each block in L has an offset into S as every block except possibly the last block contains
the same number of vertex IDs. We then filter S into the output array T . In the case where L is
small we just run the filter sequentially. Our implementation of filter runs in O (|L|) work and
O (logn) depth. Pack takes as input a neighbor list L and a predicate P function, and packs L,
keeping only vertex IDs that satisfied P . Our implementation of pack takes as input an array S ,
which an array of size 2 ∗ d (v) for lists larger than a constant threshold, and null otherwise. In the
case where L is large, we first decode L in parallel into the first d (v) cells of S . Next, we filter these
vertices into the second d (v) cells of S , and compute the new length of L. Finally, we recompress
the blocks in parallel by first computing the compressed size of each new block. We prefix-sum
the sizes to calculate offsets into the array and finally compress the new blocks by writing each
block starting at its offset. When L is small we just pack L sequentially. We make use of the pack
and filter primitives in our implementations of maximal matching, minimum spanning forest, and
triangle counting. Our implementation of pack runs in O (|L|) work and O (logn) depth.
The Intersection primitive takes as input two neighbor lists La and Lb and computes the size

of the intersection of La and Lb (|La | ≤ |Lb |). We implement an algorithm similar to the optimal
parallel intersection algorithm for sorted lists. As the blocks are compressed, our implementation
works on the first element of each block, which can be quickly decoded. We refer to these elements
as block starts. If the number of blocks in both lists sum to less than a constant, we intersect them
sequentially. Otherwise, we take the start vs of the middle block in La , and binary search over the
starts of Lb to find the first block whose start is less than or equal to vs . Note that as the closest
value less than or equal tovs could be in themiddle of the block, the subproblemswe generatemust
consider elements in the two adjoining blocks of each list, which adds an extra constant factor of
work in the base case. Our implementation of intersection runs inO (|La | log(1 + |Lb |/|La |)) work
and O (logn) depth.

8 EXPERIMENTS

In this section, we describe our experimental results on a set of real-world graphs and also discuss
related experimental work. Tables 5 and 6 show the running times for our implementations on

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:50 L. Dhulipala et al.

Table 3. Graph Inputs, Including Vertices and Edges

Graph Dataset Num. Vertices Num. Edges diam ρ kmax
LiveJournal 4,847,571 68,993,773 16 ∼ ∼
LiveJournal-Sym 4,847,571 85,702,474 20 3480 372
com-Orkut 3,072,627 234,370,166 9 5,667 253
Twitter 41,652,231 1,468,365,182 65* ∼ ∼
Twitter-Sym 41,652,231 2,405,026,092 23* 14,963 2488
3D-Torus 1,000,000,000 6,000,000,000 1500* 1 6
ClueWeb 978,408,098 42,574,107,469 821* ∼ ∼
ClueWeb-Sym 978,408,098 74,744,358,622 132* 106,819 4244
Hyperlink2014 1,724,573,718 64,422,807,961 793* ∼ ∼
Hyperlink2014-Sym 1,724,573,718 124,141,874,032 207* 58,711 4160
Hyperlink2012 3,563,602,789 128,736,914,167 5275* ∼ ∼
Hyperlink2012-Sym 3,563,602,789 225,840,663,232 331* 130,728 10565

diam is the diameter of the graph. For undirected graphs, ρ and kmax are the number of peeling rounds,

and the largest non-empty core (degeneracy). We mark diam values where we are unable to calculate

the exact diameter with * and report the effective diameter observed during our experiments, which is

a lower bound on the actual diameter.

our graph inputs. For compressed graphs, we use the compression schemes from Ligra+ [141],
which we extended to ensure theoretical efficiency (see Section 7.4). We describe statistics about
our input graphs and algorithms (e.g., number of colors used, number of SCCs, etc.) in Section A.

8.1 Experimental Setup and Graph Inputs

Experimental Setup.We ran all of our experiments on a 72-core Dell PowerEdge R930 (with two-
way hyper-threading) with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a 4800MHz
bus and 45MB L3 cache) and 1TB of main memory. Our programs use Cilk Plus to express paral-
lelism and are compiled with the g++ compiler (version 5.4.1) with the -O3 flag. By using Cilk’s
work-stealing scheduler we are able obtain an expected running time ofW /P +O (D) for an algo-
rithm withW work and D depth on P processors [38]. We note that our codes can also be easily
run using other parallel runtimes, such as OpenMP, TBB, or a homegrown scheduler based on
the Arora-Blumofe-Plaxton deque [10] that we implemented ourselves [27]. For the parallel ex-
periments, we use the command numactl -i all to balance the memory allocations across the
sockets. All of the speedup numbers we report are the running times of our parallel implementa-
tion on 72-cores with hyper-threading over the running time of the implementation on a single
thread.

Graph Data. To show how our algorithms perform on graphs at different scales, we selected a
representative set of real-world graphs of varying sizes. Most of the graphs are Web graphs and
social networks—low diameter graphs that are frequently used in practice. To test our algorithms
on large diameter graphs, we also ran our implementations on 3-dimensional tori where each
vertex is connected to its 2 neighbors in each dimension.
We list the graphs used in our experiments, along with their size, approximate diameter, peel-

ing complexity [52], and degeneracy (for undirected graphs) in Table 3. LiveJournal is a directed
graph of the social network obtained from a snapshot in 2008 [39]. com-Orkut is an undirected
graph of the Orkut social network. Twitter is a directed graph of the Twitter network, where
edges represent the follower relationship [92]. ClueWeb is a Web graph from the Lemur project at
CMU [39]. Hyperlink2012 and Hyperlink2014 are directed hyperlink graphs obtained from the

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:51

Table 4. Compressed Graph Inputs, Including Memory Required to

Store the Graph in an Uncompressed CSR Format, Memory Required

to Store the Graph in the Parallel Byte-compressed CSR Format, and

the Savings Obtained Over the Uncompressed Format by the

Compressed Format

Graph Dataset Uncompressed Compressed Savings
ClueWeb 324GB 115GB 2.81x
ClueWeb-Sym 285GB 100GB 2.85x
Hyperlink2014 492GB 214GB 2.29x
Hyperlink2014-Sym 474GB 184GB 2.57x
Hyperlink2012 985GB 446GB 2.21x
Hyperlink2012-Sym 867GB 351GB 2.47x

The number of vertices and edges in these graphs are given in Table 3.

WebDataCommons dataset where nodes represent web pages [107]. 3D-Torus is a 3-dimensional
torus with 1B vertices and 6B edges. We mark symmetric (undirected) versions of the directed
graphs with the suffix -Sym. We create weighted graphs for evaluating weighted BFS, Borůvka,
widest path, and Bellman-Ford by selecting edge weights between [1, logn) uniformly at ran-
dom. We process LiveJournal, com-Orkut, Twitter, and 3D-Torus in the uncompressed format, and
ClueWeb, Hyperlink2014, and Hyperlink2012 in the compressed format.
Table 4 lists the size in gigabytes of the compressed graph inputs used in this paper bothwith and

without compression, and reports the savings obtained by using compression. Note that the largest
graph studied in this paper, the directed Hyperlink2012 graph, barely fits in the main memory of
our machine in the uncompressed format, but would leave hardly any memory to be used for an
algorithm analyzing this graph. Using compression significantly reduces the memory required to
represent each graph (between 2.21–2.85x, and 2.53x on average). We converted the graphs listed
in Table 4 directly from the WebGraph format to the compressed format used in this paper by
modifying a sequential iterator method from the WebGraph framework [39].

8.2 SSSP Problems

Our BFS, weighted BFS, Bellman-Ford, and betweenness centrality implementations achieve be-
tween a 13–67x speedup across all inputs. We ran all of our shortest path experiments on the sym-

metrized versions of the graph. Our widest path implementation achieves between 38–72x speedup
across all inputs, and our spanner implementation achieves between 31–65x speedup across all in-
puts. We ran our spanner code with k = 4. Our experiments show that our weighted BFS and
Bellman-Ford implementations perform as well as or better than our prior implementations from
Julienne [52]. Our running times for BFS and betweenness centrality are the same as the times
of the implementations in Ligra [136]. We note that our running times for weighted BFS on the
Hyperlink graphs are larger than the times reported in Julienne. This is because the shortest-path
experiments in Julienne were run on directed version of the graph, where the average vertex can
reach significantly fewer vertices than on the symmetrized version. We set a flag for our weighted
BFS experiments on the ClueWeb and Hyperlink graphs that lets the algorithm switch to a dense
edgeMap once the frontiers are sufficiently dense, which lets the algorithm run within half of the
RAM on our machine. Before this change, our weighted BFS implementation would request a large
amount of memory when processing the largest frontiers which then caused the graph to become
partly evicted from the page cache. For widest path, the times we report are for the Bellman-Ford
version of the algorithm, which we were surprised to find is consistently 1.1–1.3x faster than our

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:52 L. Dhulipala et al.

Table 5. Running Times (in seconds) of Our Algorithms Over Symmetric Graph Inputs on a 72-core

Machine (with Hyper-threading) Where (1) is the Single-thread Time, (72h) is the 72 Core Time Using

Hyper-threading, and (SU) is the Parallel Speedup (Single-thread Time Divided by 72-core Time)

Problem LiveJournal-Sym com-Orkut Twitter-Sym 3D-Torus

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 0.59 0.018 32.7 0.41 0.012 34.1 5.45 0.137 39.7 301 5.53 54.4

Integral-Weight SSSP (weighted BFS) 1.45 0.107 13.5 2.03 0.095 21.3 33.4 0.995 33.5 437 18.1 24.1

General-Weight SSSP (Bellman-Ford) 3.39 0.086 39.4 3.98 0.168 23.6 48.7 1.56 31.2 6280 133 47.2

Single-Source Widest Path (Bellman-Ford) 3.48 0.090 38.6 4.39 0.098 44.7 42.4 0.749 56.6 580 9.7 59.7

Single-Source Betweenness Centrality (BC) 1.66 0.049 33.8 2.52 0.057 44.2 26.3 0.937 28.0 496 12.5 39.6

O (k)-Spanner 1.31 0.041 31.9 2.34 0.046 50.8 41.5 0.768 54.0 380 11.7 32.4

Low-Diameter Decomposition (LDD) 0.54 0.027 20.0 0.33 0.019 17.3 8.48 0.186 45.5 275 7.55 36.4

Connectivity 1.01 0.029 34.8 1.36 0.031 43.8 34.6 0.585 59.1 300 8.71 34.4

Spanning Forest 1.11 0.035 31.7 1.84 0.047 39.1 43.2 0.818 52.8 334 10.1 33.0

Biconnectivity 5.36 0.261 20.5 7.31 0.292 25.0 146 4.86 30.0 1610 59.6 27.0

Strongly Connected Components (SCC)* 1.61 0.116 13.8 ∼ ∼ ∼ 13.3 0.495 26.8 ∼ ∼ ∼
Minimum Spanning Forest (MSF) 3.64 0.204 17.8 4.58 0.227 20.1 61.8 3.02 20.4 617 23.6 26.1

Maximal Independent Set (MIS) 1.18 0.034 34.7 2.23 0.052 42.8 34.4 0.759 45.3 236 4.44 53.1

Maximal Matching (MM) 2.42 0.095 25.4 4.65 0.183 25.4 46.7 1.42 32.8 403 11.4 35.3

Graph Coloring 4.69 0.392 11.9 9.05 0.789 11.4 148 6.91 21.4 350 11.3 30.9

Approximate Set Cover 4.65 0.613 7.58 4.51 0.786 5.73 66.4 3.31 20.0 1429 40.2 35.5

k-core 3.75 0.641 5.85 8.32 1.33 6.25 110 6.72 16.3 753 6.58 114.4

Approximate Densest Subgraph 2.89 0.052 55.5 4.71 0.081 58.1 76.0 1.14 66.6 95.4 1.59 60.0

Triangle Counting (TC) 13.5 0.342 39.4 78.1 1.19 65.6 1920 23.5 81.7 168 6.63 25.3

PageRank Iteration 0.861 0.012 71.7 1.28 0.018 71.1 24.16 0.453 53.3 107 2.25 47.5

We mark experiments that are not applicable for a graph with ∼, and experiments that did not finish within 5 hours

with —. *SCC was run on the directed versions of the input graphs.

algorithm based on bucketing. We observe that our spanner algorithm is only slightly more costly
than computing connectivity on the same input.
In an earlier paper [52], we compared the running time of our weighted BFS implementation

to two existing parallel shortest path implementations from the GAP benchmark suite [22] and
Galois [100], as well as a fast sequential shortest path algorithm from the DIMACS shortest path
challenge, showing that our implementation is between 1.07–1.1x slower than the Δ-stepping im-
plementation from GAP, and 1.6–3.4x faster than the Galois implementation. Our old version of
Bellman-Ford was between 1.2–3.9x slower than weighted BFS; we note that after changing it to
use the edgeMapBlocked optimization, it is now competitive with weighted BFS and is between
1.2x faster and 1.7x slower on our graphs with the exception of 3D-Torus, where it performs 7.3x
slower than weighted BFS, as it performs O (n4/3) work on this graph.

8.3 Connectivity Problems

Our low-diameter decomposition (LDD) implementation achieves between 17–59x speedup across
all inputs.We fixed β to 0.2 in all of the codes that use LDD. The running time of LDD is comparable
to the cost of a BFS that visits most of the vertices. We are not aware of any prior experimental
work that reports the running times for an LDD implementation.
Our work-efficient implementation of connectivity and spanning forest achieve 34–65x speedup

and 31–67x speedup across all inputs, respectively. We note that our implementation does not

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:53

Table 6. Running Times (in seconds) of Our Algorithms Over Symmetric Graph Inputs on a 72-core

Machine (with Hyper-threading) Where (1) is the Single-thread Time, (72h) is the 72 Core Time Using

Hyper-threading, and (SU) is the Parallel Speedup (Single-thread Time Divided by 72-core Time)

Problem ClueWeb-Sym Hyperlink2014-Sym Hyperlink2012-Sym

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 106 2.29 46.2 250 4.50 55.5 576 8.44 68.2

Integral-Weight SSSP (weighted BFS) 736 14.4 51.1 1390 22.3 62.3 3770 58.1 64.8

General-Weight SSSP (Bellman-Ford) 1050 16.2 64.8 1460 22.9 63.7 4010 59.4 67.5

Single-Source Widest Path (Bellman-Ford) 849 11.8 71.9 1211 16.8 72.0 3210 48.4 66.3

Single-Source Betweenness Centrality (BC) 569 27.7 20.5 866 16.3 53.1 2260 37.1 60.9

O (k)-Spanner 613 9.79 62.6 906 14.3 63.3 2390 36.3 65.8

Low-Diameter Decomposition (LDD) 176 3.62 48.6 322 6.84 47.0 980 16.6 59.0

Connectivity 381 6.01 63.3 710 11.2 63.3 1640 25.0 65.6

Spanning Forest 936 18.2 51.4 1319 22.4 58.8 2420 35.8 67.5

Biconnectivity 2250 48.7 46.2 3520 71.5 49.2 9860 165 59.7

Strongly Connected Components (SCC)* 1240 38.1 32.5 2140 51.5 41.5 8130 185 43.9

Minimum Spanning Forest (MSF) 2490 45.6 54.6 3580 71.9 49.7 9520 187 50.9

Maximal Independent Set (MIS) 551 8.44 65.2 1020 14.5 70.3 2190 32.2 68.0

Maximal Matching (MM) 1760 31.8 55.3 2980 48.1 61.9 7150 108 66.2

Graph Coloring 2050 49.8 41.1 3310 63.1 52.4 8920 158 56.4

Approximate Set Cover 1490 28.1 53.0 2040 37.6 54.2 5320 90.4 58.8

k-core 2370 62.9 37.6 3480 83.2 41.8 8515 184 46.0

Approximate Densest Subgraph 1380 19.6 70.4 1721 24.3 70.8 4420 61.4 71.9

Triangle Counting (TC) 13997 204 68.6 — 480 — — 1168 —

PageRank Iteration 256.1 3.49 73.3 385 5.17 74.4 973 13.1 74.2

We mark experiments that are not applicable for a graph with ∼, and experiments that did not finish within 5 hours with
—. *SCC was run on the directed versions of the input graphs.

assume that vertex IDs in the graph are randomly permuted and always generates a random per-
mutation, even on the first round, as adding vertices based on their original IDs can result in poor
performance (for example on 3D-Torus). There are several existing implementations of fast parallel
connectivity algorithms [119, 139, 140, 144], however, only the implementation from [140], which
presents the connectivity algorithm that we implement in this paper, is theoretically-efficient. The
implementation from Shun et al. was compared to both theMultistep [144] and Patwary et al. [119]
implementations, and shown to be competitive on a broad set of graphs. We compared our con-
nectivity implementation to the work-efficient connectivity implementation from Shun et al. on
our uncompressed graphs and observed that our code is between 1.2–2.1x faster in parallel. Our
spanning forest implementation is slightly slower than connectivity due to having to maintain a
mapping between the current edge set and the original edge set.
Despite our biconnectivity implementation havingO (diam(G) logn) depth, our implementation

achieves between a 20–59x speedup across all inputs, as the diameter of most of our graphs is ex-
tremely low. Our biconnectivity implementation is about 3–5x slower than running connectivity
on the graph, which seems reasonable as our current implementation performs two calls to connec-
tivity, and one breadth-first search. There are a several existing implementations of biconnectivity.
Cong and Bader [46] parallelize the Tarjan-Vishkin algorithm and demonstrated speedup over the
Hopcroft-Tarjan (HT) algorithm. Edwards and Vishkin [61] also implement the Tarjan-Vishkin al-
gorithm using the XMT platform, and show that their algorithm achieves good speedups. Slota and

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:54 L. Dhulipala et al.

Madduri [143] present a BFS-based biconnectivity implementation which requiresO (mn) work in
the worst-case, but behaves like a linear-work algorithm in practice. We ran the Slota and Madduri
implementation on 36 hyper-threads allocated from the same socket, the configuration on which
we observed the best performance for their code, and found that our implementation is between
1.4–2.1x faster than theirs. We used a DFS-ordered subgraph corresponding to the largest con-
nected component to test their code, which produced the fastest times. Using the original order of
the graph affects the running time of their implementation, causing it to run between 2–3x slower
as the amount of work performed by their algorithm depends on the order in which vertices are
visited.
Our strongly connected components implementation achieves between a 13–43x speedup across

all inputs. Our implementation takes a parameter β , which is the base of the exponential rate at
which we grow the number of centers added. We set β between 1.1–2.0 for our experiments and
note that using a larger value of β can improve the running time on smaller graphs by up to a
factor of 2x. Our SCC implementation is between 1.6x faster to 4.8x slower than running connec-
tivity on the undirected version of the graph. There are several existing SCC implementations that
have been evaluated on real-world directed graphs [79, 106, 144]. The Hong et al. algorithm [79]
is a modified version of the FWBW-Trim algorithm from McLendon et al. [106], but neither al-
gorithm has any theoretical bounds on work or depth. Unfortunately [79] do not report running
times, so we are unable to compare our performance with them. The Multistep algorithm [144]
has a worst-case running time of O (n2), but the authors point-out that the algorithm behaves
like a linear-time algorithm on real-world graphs. We ran our implementation on 16 cores con-
figured similarly to their experiments and found that we are about 1.7x slower on LiveJournal,
which easily fits in cache, and 1.2x faster on Twitter (scaled to account for a small difference in
graph sizes). While the multistep algorithm is slightly faster on some graphs, our SCC implemen-
tation has the advantage of being theoretically-efficient and performs a predictable amount of
work.
Our minimum spanning forest implementation achieves between 17–54x speedup over the im-

plementation running on a single thread across all of our inputs. Obtaining practical parallel al-
gorithms for MSF has been a longstanding goal in the field, and several existing implementations
exist [14, 47, 116, 139, 155]. We compared our implementation with the union-find based MSF im-
plementation from PBBS [139] and the implementation of Borůvka from [155], which is one of the
fastest implementations we are aware of. Our MSF implementation is between 2.6–5.9x faster than
the MSF implementation from PBBS. Compared to the edgelist based implementation of Borůvka
from [155] our implementation is between 1.2–2.9x faster.

8.4 Covering Problems

Our MIS and maximal matching implementations achieve between 31–70x and 25–66x speedup
across all inputs. The implementations by Blelloch et al. [32] are the fastest existing implemen-
tations of MIS and maximal matching that we are aware of, and are the basis for our maximal
matching implementation. They report that their implementations are 3–8x faster than Luby’s al-
gorithm on 32 threads, and outperform a sequential greedy MIS implementation on more than 2
processors. We compared our rootset-based MIS implementation to the prefix-based implementa-
tion, and found that the rootset-based approach is between 1.1–3.5x faster. Our maximal matching
implementation is between 3–4.2x faster than the implementation from [32]. Our implementa-
tion of maximal matching can avoid a significant amount of work, as each of the filter steps can
extract and permute just the 3n/2 highest priority edges, whereas the edgelist-based version in
PBBS must permute all edges. Our coloring implementation achieves between 11–56x speedup
across all inputs. We note that our implementation appears to be between 1.2–1.6x slower than the

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:55

asynchronous implementation of JP in [77], due to synchronizing on many rounds which contain
few vertices.
Our approximate set cover implementation achieves between 5–58x speedup across all inputs.

Our implementation is based on the implementation presented in Julienne [52]; the one major
modification was to regenerate random priorities for sets that are active on the current round.
We compared the running time of our implementation with the parallel implementation from [37]
which is available in the PBBS library.We ran both implementations with ϵ = 0.01. Our implemen-
tation is between 1.2x slower to 1.5x faster than the PBBS implementation on our graphs, with the
exception of 3D-Torus. On 3D-Torus, the implementation from [37] runs 56x slower than our im-
plementation as it does not regenerate priorities for active sets on each round causing worst-case
behavior. Our performance is also slow on this graph, as nearly all of the vertices stay active (in
the highest bucket) during each round, and using ϵ = 0.01 causes a large number of rounds to be
performed.

8.5 Substructure Problems

Our k-core implementation achieves between 5–46x speedup across all inputs, and 114x speedup
on the 3D-Torus graph as there is only one round of peeling in which all vertices are removed.
There are several recent papers that implement parallel algorithms for k-core [50, 52, 86, 128]. Both
the ParK algorithm [50] and Kabir and Madduri algorithm [86] implement the peeling algorithm
inO (kmaxn +m) work, which is not work-efficient. Our implementation is between 3.8–4.6x faster
than ParK on a similar machine configuration. Kabir and Madduri show that their implementation
achieves an average speedup of 2.8x over ParK. Our implementation is between 1.3–1.6x faster
than theirs on a similar machine configuration.
Our approximate densest subgraph implementation achieves between 55–71x speedup across

all inputs. We ran our implementation with ϵ = 0.001, which in our experiments produced sub-
graphs with density roughly equal to those produced by the 2-approximation algorithm based on
degeneracy ordering, or setting ϵ to 0. To the best of our knowledge, there are no prior existing
shared-memory parallel algorithms for this problem.
Our triangle counting (TC) implementation achieves between 39–81x speedup across all inputs.

Unfortunately, we are unable to report speedup numbers for TC on our larger graphs as the single-
threaded times took too long due to the algorithm performingO (m3/2) work. There are a number
of experimental papers that consider multicore triangle counting [1, 72, 90, 97, 133, 142]. We im-
plement the algorithm from [142], and adapted it to work on compressed graphs. We note that in
our experiments we intersect directed adjacency lists sequentially, as there was sufficient paral-
lelism in the outer parallel-loop. There was no significant difference in running times between our
implementation and the implementation from [142]. We ran our implementation on 48 threads on
the Twitter graph to compare with the times reported by EmptyHeaded [1] and found that our
times are about the same.

8.6 Eigenvector Problems

Our PageRank (PR) implementation achieves between 47–74x speedup across all inputs. We note
that the running times we report are for a single iteration of PageRank. Our implementation is
based on the implementation from Ligra [136], and uses a damping factor γ = 0.85. We note that
the modification made to carry out dense iterations using a reduction over the in-neighbors of a
vertex was important to decrease contention and improve parallelism, and provided between 2–3x
speedup over the Ligra implementation in practice. Many graph processing systems implement
PageRank. The optimizing compiler used by GraphIt generates a highly-optimized implementa-
tion that is currently the fastest shared-memory implementation known to us [153]. We note that

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:56 L. Dhulipala et al.

Fig. 7. Log-linear plot of normalized throughput vs. vertices for MIS, BFS, BC, and coloring on the 3D-Torus

graph family.

our implementation is about 1.8x slower than the implementation in GraphIt for LiveJournal and
Twitter when run on the same number of threads as in their experiments, which is likely due to
a partitioning optimization used by GraphIt that eliminates a large amount of cross-socket traffic
and thus improves performance on multi-socket systems.

8.7 Performance on 3D-Torus

We ran experiments on a family of 3D-Torus graphs with different sizes to study how our diameter-
bounded algorithms scale relative to algorithms with polylogarithmic depth. We were surprised to
see that the running time of some of our polylogarithmic depth algorithms on this graph, like LDD
and connectivity, are 17–40x more expensive than their running time on Twitter and Twitter-Sym,
despite 3D-Torus only having 4x and 2.4x more edges than Twitter and Twitter-Sym. One reason
for our slightly worse scaling on this graph (and the higher cost of algorithms relative to graphs
with a similar number of edges) is the very low average-degree of this graph (m/n = 6) compared
with the Twitter graph (m/n = 57.8). Many of the algorithms we study in this paper process all
edges incident to a vertex whenever a vertex is considered (e.g., when a vertex is part of a frontier
in the LDD computation). Furthermore, each vertex is only processed a constant number of times.
Thus, each time such an algorithm processes a vertex in the 3D-Torus graph, it only uses 24 bytes
out of each 64-byte cache line (assuming each edge is stored in 4 bytes), but it will utilize the
entire cache line in the Twitter graph, on average. Another possible reason is that we store the
3D-Torus graph ordered by dimension, instead of using a local ordering. However, we did not
study reordering this graph, since it was not the main focus of this work.
In Figure 7 we show the normalized throughput of MIS, BFS, BC, and graph coloring for

3-dimensional tori of different sizes, where throughput is measured as the number of edges pro-
cessed per second. The throughput for each application becomes saturated before our largest-scale
graph for all applications except for BFS, which is saturated on a graph with 2 billion vertices. The
throughput curves show that the theoretical bounds are useful in predicting how the half-lengths7

are distributed. The half-lengths are ordered as follows: coloring, MIS, BFS, and BC. This is the
same order as sorting these algorithms by their depth with respect to this graph.

7The graph size when the system achieves half of its peak-performance.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:57

Table 7. Cycles Stalled While the Memory Subsystem has an Outstanding Load (Trillions), LLC

Hit Rate and Misses (Billions), Bandwidth in GB/s (Bytes Read and Written from Memory,

Divided by Running Time), and Running Time in Seconds

Algorithm Cycles Stalled LLC Hit Rate LLC Misses BW Time
k-core (histogram) 9 0.223 49 96 62.9
k-core (fetchAndAdd) 67 0.155 42 24 221
weighted BFS (blocked) 3.7 0.070 19 130 14.4
weighted BFS (unblocked) 5.6 0.047 29 152 25.2

All experiments are run on the ClueWeb graph using 72 cores with hyper-threading.

8.8 Locality

While our algorithms are efficient in the specific variants of the binary-forking model that we
consider, we do not analyze their cache complexity, and in general they may not be efficient in a
model that takes caches into account. Despite this fact, we observed that our algorithms have good
cache performance on the graphs we tested on. In this section we give some explanation for this
fact by showing that our primitives make good use of the caches. Our algorithms are also aided
by the fact that these graph datasets often come in highly local orders (e.g., see the Natural order
in [56]).
We ran a set of experiments to study the locality of a subset of our algorithms on the ClueWeb

graph. Table 7 shows locality metrics for our experiments, which wemeasured using the Open Per-
formance Counter Monitor (PCM). We found that using a work-efficient histogram is 3.5x faster
than using fetchAndAdd in our k-core implementation, which suffers from high contention on
this graph. Using a histogram reduces the number of cycles stalled due to memory by more than
7x. We also ran our wBFS implementation with and without the edgeMapBlocked optimization,
which reduces the number of cache-lines read from and written to when performing a sparse
edgeMap. The blocked implementation reads and writes 2.1x fewer bytes than the unoptimized
version, which translates to a 1.7x faster running time. We note that we disabled the dense opti-
mization for this experiment to directly compare the two implementations of a sparse edgeMap.

8.9 Processing Massive Web Graphs

In Table 6, we show the running times of our implementations on the ClueWeb, Hyperlink2014,
and Hyperlink2012 graphs. To put our performance on these massive graphs in context, we com-
pare our 72-core running times to running times reported by existing work. Table 8 summarizes
state-of-the-art existing results in the literature. Most results process the directed versions of these
graphs, which have about half as many edges as the symmetrized version. Unless otherwise men-
tioned, all results from the literature use the directed versions of these graphs. Tomake the compar-
ison easier we show our running times for BFS, SSSP (weighted BFS), BC and SCC on the directed
graphs, and running times for Connectivity, k-core and TC on the symmetrized graphs in Table 8.
FlashGraph [154] reports disk-based running times for the Hyperlink2012 graph on a 4-socket,

32-core machine with 512GB of memory and 15 SSDs. On 64 hyper-threads, they solve BFS in
208s, BC in 595s, connected components in 461s, and triangle counting in 7818s. Our BFS and BC
implementations are 12x faster and 16x faster, and our triangle counting and connectivity imple-
mentations are 5.3x faster and 18x faster than their implementations, respectively. Mosaic [99]
report in-memory running times on the Hyperlink2014 graph; we note that the system is opti-
mized for external memory execution. They solve BFS in 6.5s, connected components in 700s, and
SSSP (Bellman-Ford) in 8.6s on a machine with 24 hyper-threads and 4 Xeon-Phis (244 cores with
4 threads each) for a total of 1000 hyper-threads, 768GB of RAM, and 6 NVMes. Our BFS and

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:58 L. Dhulipala et al.

Table 8. System Configurations (Memory in Terabytes, Hyper-threads, and Nodes) and Running Times

(in seconds) of Existing Results on the Hyperlink Graphs

Paper Problem Graph Memory Hyper-threads Nodes Time

Mosaic [99]
BFS* 2014 0.768 1000 1 6.55
Connectivity* 2014 0.768 1000 1 708
SSSP* 2014 0.768 1000 1 8.6

FlashGraph [154]

BFS* 2012 .512 64 1 208

BC* 2012 .512 64 1 595
Connectivity* 2012 .512 64 1 461
TC* 2012 .512 64 1 7818

GraFBoost [85]
BFS* 2012 0.064 32 1 900

BC* 2012 0.064 32 1 800

Slota et al. [146]
Largest-CC* 2012 16.3 8192 256 63

Largest-SCC* 2012 16.3 8192 256 108
Approx k-core* 2012 16.3 8192 256 363

Stergiou et al. [147] Connectivity 2012 128 24000 1000 341

Gluon [51]

BFS 2012 24 69632 256 380

Connectivity 2012 24 69632 256 75.3
PageRank 2012 24 69632 256 158.2
SSSP 2012 24 69632 256 574.9

This paper

BFS* 2014 1 144 1 5.71

SSSP* 2014 1 144 1 9.08
Connectivity 2014 1 144 1 11.2
BFS* 2012 1 144 1 16.7

BC* 2012 1 144 1 35.2
Connectivity 2012 1 144 1 25.0
SCC* 2012 1 144 1 185
SSSP 2012 1 144 1 58.1
k-core 2012 1 144 1 184
PageRank 2012 1 144 1 462

TC 2012 1 144 1 1168

The last section shows our running times. *These problems are run on directed versions of the graph.

connectivity implementations are 1.1x and 62x faster respectively, and our SSSP implementation
is 1.05x slower. Both FlashGraph and Mosaic compute weakly connected components, which is
equivalent to connectivity. GraFBoost [85] report disk-based running times for BFS and BC on the
Hyperlink2012 graph on a 32-core machine. They solve BFS in 900s and BC in 800s. Our BFS and
BC implementations are 53x and 22x faster than their implementations, respectively.
Slota et al. [146] report running times for the Hyperlink2012 graph on 256 nodes on the Blue

Waters supercomputer. Each node contains two 16-core processors with one thread each, for a total
of 8192 hyper-threads. They report they can find the largest connected component and SCC from
the graph in 63s and 108s respectively. Our implementations find all connected components 2.5x
faster than their largest connected component implementation, and find all strongly connected
components 1.6x slower than their largest-SCC implementation. Their largest-SCC implementa-
tion computes two BFSs from a randomly chosen vertex—one on the in-edges and the other on the
out-edges—and intersects the reachable sets. We perform the same operation as one of the first
steps of our SCC algorithm and note that it requires about 30 seconds on our machine. They solve

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:59

approximate k-cores in 363s, where the approximate k-core of a vertex is the coreness of the vertex
rounded up to the nearest powers of 2. Our implementation computes the exact coreness of each
vertex in 184s, which is 1.9x faster than the approximate implementation while using 113x fewer
cores.
Recently, Dathathri et al. [51] have reported running times for the Hyperlink2012 graph using

Gluon, a distributed graph processing system based on Galois. They process this graph on a 256
node system, where each node is equipped with 68 4-way hyper-threaded cores, and the hosts are
connected by an Intel Omni-Path network with 100Gbps peak bandwidth. They report times for
BFS, connectivity, PageRank, and SSSP. Other than their connectivity implementation, which uses
pointer-jumping, their implementations are based on data-driven asynchronous label-propagation.
We are not aware of any theoretical bounds on thework and depth of these implementations. Com-
pared to their reported times, our implementation of BFS is 22.7x faster, our implementation of
connectivity is 3x faster, and our implementation of SSSP is 9.8x faster. Our PageRank implemen-
tation is 2.9x slower (we ran it with ϵ , the variable that controls the convergence rate of PageRank,
set to 1e − 6). However, we note that the PageRank numbers they report are not for true PageRank,
but PageRank-Delta, and are thus incomparable.
Stergiou et al. [147] describe a connectivity algorithm that runs in O (logn) rounds in the BSP

model and report running times for the Hyperlink2012-Sym graph. They implement their algo-
rithm using a proprietary in-memory/secondary-storage graph processing system used at Yahoo!,
and run experiments on a 1000 node cluster. Each node contains two 6-core processors that are
2-way hyper-threaded and 128GB of RAM, for a total of 24000 hyper-threads and 128TB of RAM.
Their fastest running time on the Hyperlink2012 graph is 341s on their 1000 node system. Our
implementation solves connectivity on this graph in 25s–13.6x faster on a system with 128x less
memory and 166x fewer cores. They also report running times for solving connectivity on a pri-
vate Yahoo! webgraph with 272 billion vertices and 5.9 trillion edges, over 26 times the size of
our largest graph. While such a graph seems to currently be out of reach of our machine, we are
hopeful that techniques from theoretically-efficient parallel algorithms can help solve problems
on graphs at this scale and beyond.

9 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we showed thatwe can process the largest publicly-available real-world
graph on a single shared-memory server with 1TB of memory using theoretically-efficient parallel
algorithms.We also presented the programming interfaces, algorithms, and graph processing tech-
niques used to obtain these results. Our implementations outperform existing implementations on
the largest real-world graphs, and use many fewer resources than the distributed-memory solu-
tions. On a per-core basis, our numbers are significantly better. Our results provide evidence that
theoretically-efficient shared-memory graph algorithms can be efficient and scalable in practice.

Future Work. There are many directions for future work stemming from this work. One is to
continue to extend GBBS with other graph problems that were not considered in this paper. For
example, the recent work of Shi et al. [134] extends GBBS with work-efficient clique-counting
algorithms and work-efficient algorithms for low out-degree orientation. It would be interesting
to include parallel implementations for other classic graph problems as part of GBBS, such as
planarity testing and embedding, planar separator, higher connectivity, among many others.
It would also be interesting to study practical implementations for dynamic graph problems

in the parallel batch-dynamic setting. Recent work has proposed theoretically-efficient parallel
batch-dynamic algorithms for many fundamental problems such as dynamic connectivity [2, 55]
and dynamic k-clique counting [57], among other problems. It would be interesting to study the

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:60 L. Dhulipala et al.

practicality of these algorithms using an efficient parallel batch-dynamic data structure for dy-
namic graphs, such as Aspen [54], and to include these problems as part of GBBS.
Another direction is to extend GBBS to important application domains of graph algorithms,

such as graph clustering. Although clustering is quite different from the problems studied in this
paper since there is usually no single “correct” way to cluster a graph or point set, we believe that
our approach will be useful for building theoretically-efficient and scalable single-machine clus-
tering algorithms, including density-based clustering [62], affinity clustering [20], and hierarchical
agglomerative clustering (HAC) on graphs [102]. The recent work of Tseng et al. [150] presents a
work-efficient parallel structural graph clustering algorithm which is incorporated into GBBS.
Lastly, it would be interesting to understand the portability of our implementations in different

architectures and computational settings. Recent work in this direction has found that implemen-
tations developed in this paper can be efficiently implemented in a settingwhere the graph is stored
in NVRAM, and algorithms have access to a limited amount of DRAM [29, 58]. The experimen-
tal results for their NVRAM system, called Sage, shows that applying the implementations from
this paper in conjunction with an optimized edgeMap primitive designed for NVRAMs achieves
superior performance on an NVRAM-basedmachine compared to the state-of-the-art NVRAM im-
plementations of Gill et al. [69], providing promising evidence for the portability of our approach.

APPENDIX

A GRAPH STATISTICS

In this section, we list graph statistics computed for the graphs from Section 8.8 These statistics
include the number of connected components, strongly connected components, colors used by the
LLF and LF heuristics, number of triangles, and several others. These numbers will be useful for
verifying the correctness or quality of our algorithms in relation to future algorithms that also run
on these graphs. Although some of these numbers were present in Table 3, we include in the tables
below for completeness. We provide details about the statistics that are not self-explanatory.

• Effective Directed Diameter: the maximum number of levels traversed during a graph tra-
versal algorithm (BFS or SCC) on the unweighted directed graph.

• Effective Undirected Diameter: the maximum number of levels traversed during a graph tra-
versal algorithm (BFS) on the unweighted directed graph.

• Size of Largest (Connected/Biconnected/Strongly-Connected) Component: The number of ver-

tices in the largest (connected/biconnected/strongly-connected) component. Note that in
the case of biconnectivity, we assign labels to edges, so a vertex participates in a compo-
nent for each distinct edge label incident to it.

• Num. Triangles: The number of closed triangles inG, where each triangle (u,v,w) is counted
exactly once.

• Num. Colors Used by (LF/LLF): The number of colors used is just the maximum color ID
assigned to any vertex.

• (Maximum Independent Set/Maximum Matching/Approximate Set Cover) Size: We report the
sizes of these objects computed by our implementations. For MIS and maximum match-
ing we report this metric to lower-bound the size of the maximum independent set and
maximum matching supported by the graph. For approximate set cover, we run our code
on instances similar to those used in prior work (e.g., Blelloch et al. [37] and Dhulipala
et al. [52]) where the elements are vertices and the sets are the neighbors of each vertex

8Similar statistics can be found on the SNAP website (https://snap.stanford.edu/data/) and the Laboratory for Web Algo-

rithmics website (http://law.di.unimi.it/datasets.php).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:61

Table 9. Graph Statistics for the LiveJournal Graph

Statistic Value
Num. Vertices 4,847,571
Num. Directed Edges 68,993,773
Num. Undirected Edges 85,702,474
Effective Directed Diameter 16
Effective Undirected Diameter 20
Num. Connected Components 1,876
Num. Biconnected Components 1,133,883
Num. Strongly Connected Components 971,232
Size of Largest Connected Component 4,843,953
Size of Largest Biconnected Component 3,665,291
Size of Largest Strongly Connected Component 3,828,682
Num. Triangles 285,730,264
Num. Colors Used by LF 323
Num. Colors Used by LLF 327
Maximal Independent Set Size 2,316,617
Maximal Matching Size 1,546,833
Set Cover Size 964,492
kmax (Degeneracy) 372
ρ (Num. Peeling Rounds in k-core) 3,480

Table 10. Graph Statistics for the Com-Orkut Graph

Statistic Value
Num. Vertices 3,072,627
Num. Directed Edges —
Num. Undirected Edges 234,370,166
Effective Directed Diameter —
Effective Undirected Diameter 9
Num. Connected Components 187
Num. Biconnected Components 68,117
Num. Strongly Connected Components —
Size of Largest Connected Component 3,072,441
Size of Largest Biconnected Component 3,003,914
Size of Largest Strongly Connected Component —
Num. Triangles 627,584,181
Num. Colors Used by LF 86
Num. Colors Used by LLF 98
Maximal Independent Set Size 651,901
Maximal Matching Size 1,325,427
Set Cover Size 105,572
kmax (Degeneracy) 253
ρ (Num. Peeling Rounds in k-core) 5,667

As com-Orkut is an undirected graph, some of the statistics are not applicable

and we mark the corresponding values with –.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:62 L. Dhulipala et al.

Table 11. Graph Statistics for the Twitter Graph

Statistic Value
Num. Vertices 41,652,231
Num. Directed Edges 1,468,365,182
Num. Undirected Edges 2,405,026,092
Effective Directed Diameter 65
Effective Undirected Diameter 23
Num. Connected Components 2
Num. Biconnected Components 1,936,001
Num. Strongly Connected Components 8,044,729
Size of Largest Connected Component 41,652,230
Size of Largest Biconnected Component 39,708,003
Size of Largest Strongly Connected Component 33,479,734
Num. Triangles 34,824,916,864
Num. Colors Used by LF 1,081
Num. Colors Used by LLF 1,074
Maximal Independent Set Size 26,564,540
Maximal Matching Size 9,612,260
Set Cover Size 1,736,761
kmax (Degeneracy) 2,488
ρ (Num. Peeling Rounds in k-core) 14,963

Table 12. Graph Statistics for the ClueWeb Graph

Statistic Value
Num. Vertices 978,408,098
Num. Directed Edges 42,574,107,469
Num. Undirected Edges 74,774,358,622
Effective Directed Diameter 821
Effective Undirected Diameter 132
Num. Connected Components 23,794,336
Num. Biconnected Components 81,809,602
Num. Strongly Connected Components 135,223,661
Size of Largest Connected Component 950,577,812
Size of Largest Biconnected Component 846,117,956
Size of Largest Strongly Connected Component 774,373,029
Num. Triangles 1,995,295,290,765
Num. Colors Used by LF 4,245
Num. Colors Used by LLF 4,245
Maximal Independent Set Size 459,052,906
Maximal Matching Size 311,153,771
Set Cover Size 64,322,081
kmax (Degeneracy) 4,244
ρ (Num. Peeling Rounds in k-core) 106,819

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:63

Table 13. Graph Statistics for the Hyperlink2014 Graph

Statistic Value
Num. Vertices 1,724,573,718
Num. Directed Edges 64,422,807,961
Num. Undirected Edges 124,141,874,032
Effective Directed Diameter 793
Effective Undirected Diameter 207
Num. Connected Components 129,441,050
Num. Biconnected Components 132,198,693
Num. Strongly Connected Components 1,290,550,195
Size of Largest Connected Component 1,574,786,584
Size of Largest Biconnected Component 1,435,626,698
Size of Largest Strongly Connected Component 320,754,363
Num. Triangles 4,587,563,913,535
Num. Colors Used by LF 4154
Num. Colors Used by LLF 4158
Maximal Independent Set Size 1,333,026,057
Maximal Matching Size 242,469,131
Set Cover Size 23,869,788
kmax (Degeneracy) 4,160
ρ (Num. Peeling Rounds in k-core) 58,711

Table 14. Graph Statistics for the Hyperlink2012 Graph

Statistic Value
Num. Vertices 3,563,602,789
Num. Directed Edges 128,736,914,167
Num. Undirected Edges 225,840,663,232
Effective Directed Diameter 5275
Effective Undirected Diameter 331
Num. Connected Components 144,628,744
Num. Biconnected Components 298,663,966
Num. Strongly Connected Components 1,279,696,892
Size of Largest Connected Component 3,355,386,234
Size of Largest Biconnected Component 3,023,064,231
Size of Largest Strongly Connected Component 1,827,543,757
Num. Triangles 9,648,842,110,027
Num. Colors Used by LF 10,566
Num. Colors Used by LLF 10,566
Maximal Independent Set Size 1,799,823,993
Maximal Matching Size 2,434,644,438
Set Cover Size 372,668,619
kmax (Degeneracy) 10,565
ρ (Num. Peeling Rounds in k-core) 130,728

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:64 L. Dhulipala et al.

in the undirected graph. In the case of the social network and hyperlink graphs, this opti-
mization problem naturally captures the minimum number of users or Web pages whose
neighborhoods must be retrieved to cover the entire graph.

• kmax (Degeneracy): The value of k of the largest non-empty k-core.

ACKNOWLEDGMENTS

Thanks to Jessica Shi and Tom Tseng for their work on GBBS and parts of this paper, and thanks to
the reviewers and LinMa for helpful comments. This research was supported in part by NSF grants
#CCF-1408940, #CCF-1533858, #CCF-1629444, and #CCF-1845763, DOE grant #DE-SC0018947, and
a Google Faculty Research Award.

REFERENCES

[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Emp-

tyHeaded: A relational engine for graph processing. ACM Trans. Database Syst. 42, 4 (2017), 20:1–20:44.

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019. Parallel batch-dynamic graph con-

nectivity. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ,

USA, June 22–24, 2019. 381–392.

[3] Alok Aggarwal, Richard J. Anderson, and M.-Y. Kao. 1989. Parallel depth-first search in general directed graphs. In

ACM Symposium on Theory of Computing (STOC). 297–308.

[4] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. Crono: A benchmark suite for multithreaded

graph algorithms executing on futuristic multicores. In IEEE International Symposium on Workload Characterization,

IISWC. 44–55.

[5] Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized parallel algorithm for the maximal

independent set problem. J. Algorithms 7, 4 (1986), 567–583.

[6] N. Alon, R. Yuster, and U. Zwick. 1997. Finding and counting given length cycles. Algorithmica 17, 3 (1997), 209–223.

[7] Richard Anderson and Ernst W. Mayr. 1984. A P-complete Problem and Approximations to It. Technical Report.

[8] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate undirected shortest paths via low hop

emulators. In ACM Symposium on Theory of Computing (STOC). ACM, 322–335.

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread scheduling for multiprogrammedmultiprocessors. Theory

of Computing Systems (TOCS) 34, 2 (01 Apr 2001).

[10] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread scheduling for multiprogrammed multipro-

cessors. Theory of Computing Systems (TOCS) 34, 2 (2001), 115–144.

[11] Baruch Awerbuch. 1985. Complexity of network synchronization. J. ACM 32, 4 (1985), 804–823.

[12] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1992. Low-diameter graph decomposition is in

NC. In Scandinavian Workshop on Algorithm Theory. 83–93.

[13] Baruch Awerbuch and Y. Shiloach. 1983. New connectivity and MSF algorithms for ultracomputer and PRAM. In

International Conference on Parallel Processing (ICPP). 175–179.

[14] David A. Bader and Guojing Cong. 2006. Fast shared-memory algorithms for computing the minimum spanning

forest of sparse graphs. J. Parallel Distrib. Comput. 66, 11 (2006), 1366–1378.

[15] David A. Bader and Kamesh Madduri. 2005. Design and implementation of the HPCS graph analysis benchmark on

symmetric multiprocessors. In IEEE International Conference on High-Performance Computing (HiPC). 465–476.

[16] David A. Bader and Kamesh Madduri. 2006. Designing multithreaded algorithms for breadth-first search and st-

connectivity on the Cray MTA-2. In International Conference on Parallel Processing (ICPP). 523–530.

[17] Bahman Bahmani, Ashish Goel, and KameshMunagala. 2014. Efficient primal-dual graph algorithms forMapReduce.

In International Workshop on Algorithms and Models for the Web-Graph. 59–78.

[18] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and MapReduce. Proc.

VLDB Endow. 5, 5 (2012), 454–465.

[19] Georg Baier, Ekkehard Köhler, andMartin Skutella. 2005. The k-splittable flow problem. Algorithmica 42, 3–4 (2005),

231–248.

[20] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Raimondas

Kiveris, Silvio Lattanzi, and Vahab Mirrokni. 2017. Affinity clustering: Hierarchical clustering at scale. In Advances

in Neural Information Processing Systems. 6864–6874.

[21] Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-optimizing breadth-first search. Scientific Pro-

gramming 21, 3–4 (2013), 137–148.

[22] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP benchmark suite. CoRR abs/1508.03619 (2015).

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:65

[23] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian

Shun. 2018. Implicit decomposition for write-efficient connectivity algorithms. In IEEE International Parallel and

Distributed Processing Symposium (IPDPS). 711–722.

[24] Bonnie Berger, John Rompel, and Peter W. Shor. 1994. Efficient NC algorithms for set cover with applications to

learning and geometry. J. Computer and System Sciences 49, 3 (Dec. 1994), 454–477.

[25] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. 2013. Efficient parallel and

external matching. In European Conference on Parallel Processing (Euro-Par). 659–670.

[26] Guy E. Blelloch. 1993. Prefix sums and their applications. In Synthesis of Parallel Algorithms, John Reif (Ed.). Morgan

Kaufmann.

[27] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A toolkit for parallel algorithms on

shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

507–509.

[28] Guy E. Blelloch and LaxmanDhulipala. 2018. Introduction to Parallel Algorithms. http://www.cs.cmu.edu/realworld/

slidesS18/parallelChap.pdf. Carnegie Mellon University.

[29] Guy E. Blelloch, Laxman Dhulipala, Phillip B. Gibbons, Yan Gu, Charlie McGuffey, and Julian Shun. 2021. The read-

only semi-external model. In SIAM/ACM Symposium on Algorithmic Principles of Computer Systems (APOCS). 70–84.

[30] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012. Internally deterministic algorithms

can be fast. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP). 181–192.

[31] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking

model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 89–102.

[32] Guy E. Blelloch, JeremyT. Fineman, and Julian Shun. 2012. Greedy sequential maximal independent set andmatching

are parallel on average. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 308–317.

[33] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in randomized incremental algorithms. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 467–478.

[34] Guy E. Blelloch, Yan Gu, and Yihan Sun. 2017. Efficient construction on probabilistic tree embeddings. In Intl. Colloq.

on Automata, Languages and Programming (ICALP). 26:1–26:14.

[35] Guy E. Blelloch, AnupamGupta, Ioannis Koutis, Gary LMiller, Richard Peng, and Kanat Tangwongsan. 2014. Nearly-

linear work parallel SDD solvers, low-diameter decomposition, and low-stretch subgraphs. Theory of Computing

Systems 55, 3 (2014), 521–554.

[36] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. 2011. Linear-work greedy parallel approximate set cover

and variants. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

[37] Guy E. Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Parallel and I/O efficient set covering

algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 82–90.

[38] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM

46, 5 (1999), 720–748.

[39] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph framework I: Compression techniques. In International

World Wide Web Conference (WWW). 595–601.

[40] Otakar Borůvka. 1926. O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně III 3 (1926), 37–58.

[41] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 2 (2001),

163–177.

[42] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. In International

World Wide Web Conference (WWW). 107–117.

[43] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew

Tomkins, and Janet Wiener. 2000. Graph structure in the web. Computer Networks 33, 1–6 (2000), 309–320.

[44] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In International

Workshop on Approximation Algorithms for Combinatorial Optimization. 84–95.

[45] Richard Cole, Philip N. Klein, and Robert E. Tarjan. 1996. Finding minimum spanning forests in logarithmic time

and linear work using random sampling. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

243–250.

[46] Guojing Cong and David A. Bader. 2005. An experimental study of parallel biconnected components algorithms

on symmetric multiprocessors (SMPs). In IEEE International Parallel and Distributed Processing Symposium (IPDPS).

9–18.

[47] Guojing Cong and Ilie Gabriel Tanase. 2016. Composable locality optimizations for accelerating parallel forest com-

putations. In IEEE International Conference on High Performance Computing and Communications (HPCC). 190–197.

[48] Don Coppersmith, Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. 2003. A Divide-and-conquer Algorithm for Iden-

tifying Strongly Connected Components. Technical Report RC23744. IBM Research.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

http://www.cs.cmu.edu/realworld/slidesS18/parallelChap.pdf
http://www.cs.cmu.edu/realworld/slidesS18/parallelChap.pdf

4:66 L. Dhulipala et al.

[49] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3

ed.). MIT Press.

[50] Naga Shailaja Dasari, Ranjan Desh, and Mohammad Zubair. 2014. ParK: An efficient algorithm for k-core decom-

position on multicore processors. In IEEE International Conference on Big Data (BigData). 9–16.

[51] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli Dryden, Marc Snir, and Keshav

Pingali. 2018. Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 752–768.

[52] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A framework for parallel graph algorithms

using work-efficient bucketing. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.

[53] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically efficient parallel graph algorithms can be

fast and scalable. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.

[54] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-latency graph streaming using compressed purely-

functional trees. InACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 918–934.

[55] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and Xiaorui Sun. 2020. Paral-

lel batch-dynamic graphs: Algorithms and lower bounds. In ACM-SIAM Symposium on Discrete Algorithms (SODA).

1300–1319.

[56] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and Alon Shalita. 2016. Com-

pressing graphs and indexeswith recursive graph bisection. InACM International Conference on Knowledge Discovery

and Data Mining (KDD). 1535–1544.

[57] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. 2021. Parallel batch-dynamic k-clique counting.

In SIAM/ACM Symposium on Algorithmic Principles of Computer Systems (APOCS). 129–143.

[58] Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B. Gibbons, and Julian Shun.

2020. Sage: Parallel semi-asymmetric graph algorithms for NVRAMs. Proc. VLDB Endow. 13, 9 (2020), 1598–1613.

[59] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. 2020. The graph based benchmark suite

(GBBS). In International Workshop on Graph Data Management Experiences and Systems (GRADES) and Network Data

Analytics (NDA). 11:1–11:8.

[60] Ran Duan, Kaifeng Lyu, and Yuanhang Xie. 2018. Single-source bottleneck path algorithm faster than sorting for

sparse graphs. In Intl. Colloq. on Automata, Languages and Programming (ICALP). 43:1–43:14.

[61] James A. Edwards and Uzi Vishkin. 2012. Better speedups using simpler parallel programming for graph connectivity

and biconnectivity. In International Workshop on Programming Models and Applications for Multicores and Manycores

(PMAM). 103–114.

[62] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In ACM International Conference on Knowledge Discovery and Data

Mining (KDD). 226–231.

[63] Jeremy T. Fineman. 2018. Nearly work-efficient parallel algorithm for digraph reachability. In ACM Symposium on

Theory of Computing (STOC). 457–470.

[64] Manuela Fischer and Andreas Noever. 2018. Tight analysis of parallel randomized greedy MIS. In ACM-SIAM Sym-

posium on Discrete Algorithms (SODA). 2152–2160.

[65] Lisa K. Fleischer, Bruce Hendrickson, and Ali Pinar. 2000. On identifying strongly connected components in parallel.

In IEEE International Parallel and Distributed Processing Symposium (IPDPS). 505–511.

[66] Lester Randolph Ford and Delbert R. Fulkerson. 2009. Maximal flow through a network. In Classic Papers in Combi-

natorics. Springer, 243–248.

[67] Hillel Gazit. 1991. An optimal randomized parallel algorithm for finding connected components in a graph. SIAM J.

on Computing 20, 6 (Dec. 1991), 1046–1067.

[68] Hillel Gazit and Gary L. Miller. 1988. An improved parallel algorithm that computes the BFS numbering of a directed

graph. Inform. Process. Lett. 28, 2 (1988), 61–65.

[69] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali. 2020. Single machine graph ana-

lytics on massive datasets using intel optane DC persistent memory. Proc. VLDB Endow. 13, 8 (2020), 1304–13.

[70] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report UCB/CSD-84-171. Berkeley, CA, USA.

[71] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

graph-parallel computation on natural graphs. In USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI). 17–30.

[72] Oded Green, Luis M. Munguia, and David A. Bader. 2014. Load balanced clustering coefficients. In Workshop on

Parallel programming for Analytics Applications (PPAA). 3–10.

[73] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. 1995. Limits to Parallel Computation: P-completeness

Theory. Oxford University Press, Inc.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:67

[74] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A top-down parallel semisort. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 24–34.

[75] Shay Halperin and Uri Zwick. 1996. An optimal randomized logarithmic time connectivity algorithm for the EREW

PRAM. J. Comput. Syst. Sci. 53, 3 (1996), 395–416.

[76] Shay Halperin and Uri Zwick. 2001. Optimal randomized EREW PRAM algorithms for finding spanning forests. 39,

1 (2001), 1–46.

[77] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2014. Ordering heuristics for parallel

graph coloring. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 166–177.

[78] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav Pingali, and Vijaya

Ramachandran. 2019. A round-efficient distributed betweenness centrality algorithm. In ACM Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP). 272–286.

[79] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On fast parallel detection of strongly connected compo-

nents (SCC) in small-world graphs. In International Conference for High Performance Computing, Networking, Storage

and Analysis (SC). 92:1–92:11.

[80] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM

16, 6 (1973), 372–378.

[81] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-Pérez, Thomas Manhardto, Hassan

Chafio, Mihai Capotă, Narayanan Sundaram, Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and

Peter Boncz. 2016. LDBC graphalytics: A benchmark for large-scale graph analysis on parallel and distributed plat-

forms. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1317–1328.

[82] Amos Israeli and Y. Shiloach. 1986. An improved parallel algorithm for maximal matching. Inform. Process. Lett. 22,

2 (1986), 57–60.

[83] Alon Itai andMichael Rodeh. 1977. Finding aminimum circuit in a graph. InACM Symposium on Theory of Computing

(STOC). 1–10.

[84] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[85] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. 2018. GraFBoost: Using accelerated flash storage for

external graph analytics. In ACM International Symposium on Computer Architecture (ISCA). 411–424.

[86] H. Kabir and K. Madduri. 2017. Parallel k-core decomposition on multicore platforms. In IEEE International Parallel

and Distributed Processing Symposium (IPDPS). 1482–1491.

[87] David R. Karger, Philip N. Klein, and Robert E. Tarjan. 1995. A randomized linear-time algorithm to find minimum

spanning trees. J. ACM 42, 2 (March 1995), 321–328.

[88] Richard M. Karp and Vijaya Ramachandran. 1990. Parallel algorithms for shared-memory machines. In Handbook of

Theoretical Computer Science (Vol. A), Jan van Leeuwen (Ed.). MIT Press, Cambridge, MA, USA, 869–941.

[89] Richard M. Karp and Avi Wigderson. 1984. A fast parallel algorithm for the maximal independent set problem. In

ACM Symposium on Theory of Computing (STOC). 266–272.

[90] Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, and Hwanjo Yu. 2014. OPT: A new framework for

overlapped and parallel triangulation in large-scale graphs. In ACM International Conference on Management of

Data (SIGMOD). 637–648.

[91] Ravi Kumar, BenjaminMoseley, Sergei Vassilvitskii, and Andrea Vattani. 2015. Fast greedy algorithms inMapReduce

and streaming. ACM Trans. Parallel Comput. 2, 3 (2015), 14:1–14:22.

[92] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news

media? In International World Wide Web Conference (WWW). 591–600.

[93] Matthieu Latapy. 2008. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Com-

put. Sci. 407, 1–3 (2008), 458–473.

[94] Charles E. Leiserson and Tao B. Schardl. 2010. A work-efficient parallel breadth-first search algorithm (or how

to cope with the nondeterminism of reducers). In ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 303–314.

[95] Jason Li. 2020. Faster parallel algorithm for approximate shortest path. In ACM Symposium on Theory of Computing

(STOC). 308–321.

[96] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012.

Distributed GraphLab: A framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5, 8

(April 2012).

[97] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. 2010.

GraphLab: A new parallel framework for machine learning. In Conference on Uncertainty in Artificial Intelligence

(UAI). 340–349.

[98] Michael Luby. 1986. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. (1986),

1036–1053.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:68 L. Dhulipala et al.

[99] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic:

Processing a trillion-edge graph on a single machine. In European Conference on Computer Systems (EuroSys). 527–

543.

[100] Saeed Maleki, Donald Nguyen, Andrew Lenharth, María Garzarán, David Padua, and Keshav Pingali. 2016. DSMR:

A parallel algorithm for single-source shortest path problem. In Proceedings of the 2016 International Conference on

Supercomputing (ICS). 32:1–32:14.

[101] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A system for large-scale graph processing. In ACM International Conference on Manage-

ment of Data (SIGMOD). 135–146.

[102] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval.

Cambridge university press.

[103] Yael Maon, Baruch Schieber, and Uzi Vishkin. 1986. Parallel ear decomposition search (EDS) and st-numbering in

graphs. Theoretical Computer Science 47 (1986), 277–298.

[104] David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms.

J. ACM 30, 3 (July 1983), 417–427.

[105] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex: A survey of vertex-centric

frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48, 2, Article 25 (Oct. 2015), 39 pages.

[106] William Mclendon Iii, Bruce Hendrickson, Steven J. Plimpton, and Lawrence Rauchwerger. 2005. Finding strongly

connected components in distributed graphs. J. Parallel Distrib. Comput. 65, 8 (2005), 901–910.

[107] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015. The graph structure in the web–

analyzed on different aggregation levels. The Journal of Web Science 1, 1 (2015), 33–47.

[108] Ulrich Meyer and Peter Sanders. 2000. Parallel shortest path for arbitrary graphs. In European Conference on Parallel

Processing (Euro-Par). 461–470.

[109] UlrichMeyer and Peter Sanders. 2003.Δ-stepping: A parallelizable shortest path algorithm. J. Algorithms 49, 1 (2003),

114–152.

[110] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved parallel algorithms for spanners

and hopsets. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 192–201.

[111] Gary L. Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decompositions using random shifts. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA). 196–203.

[112] Gary L. Miller and Vijaya Ramachandran. 1992. A new graph triconnectivity algorithm and its parallelization. Com-

binatorica 12, 1 (1992), 53–76.

[113] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: Understanding graph

computing in the context of industrial solutions. In International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC). 69:1–69:12.

[114] Mark E. J. Newman. 2003. The structure and function of complex networks. SIAM Rev. 45, 2 (2003), 167–256.

[115] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In

ACM Symposium on Operating Systems Principles (SOSP). 456–471.

[116] Sadegh Nobari, Thanh-Tung Cao, Panagiotis Karras, and Stéphane Bressan. 2012. Scalable parallel minimum span-

ning forest computation. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP). 205–214.

[117] Mark Ortmann and Ulrik Brandes. 2014. Triangle listing algorithms: Back from the diversion. In Algorithm Engi-

neering and Experiments (ALENEX). 1–8.

[118] Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of triangle enumeration. In ACM Sympo-

sium on Principles of Database Systems (PODS). 224–233.

[119] M. M. A. Patwary, P. Refsnes, and F. Manne. 2012. Multi-core spanning forest algorithms using the disjoint-set data

structure. In IEEE International Parallel and Distributed Processing Symposium (IPDPS). 827–835.

[120] David Peleg and Alejandro A Schäffer. 1989. Graph spanners. Journal of Graph Theory 13, 1 (1989), 99–116.

[121] Seth Pettie and Vijaya Ramachandran. 2002. A randomized time-work optimal parallel algorithm for finding a min-

imum spanning forest. SIAM J. on Computing 31, 6 (2002), 1879–1895.

[122] C. A. Phillips. 1989. Parallel graph contraction. In ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 148–157.

[123] Chung Keung Poon and Vijaya Ramachandran. 1997. A randomized linear work EREW PRAM algorithm to find a

minimum spanning forest. In International Symposium on Algorithms and Computation (ISAAC). 212–222.

[124] Sridhar Rajagopalan and Vijay V. Vazirani. 1999. Primal-dual RNC approximation algorithms for set cover and cov-

ering integer programs. SIAM J. on Computing 28, 2 (Feb. 1999), 525–540.

[125] Vijaya Ramachandran. 1989. A framework for parallel graph algorithm design. In International Symposium on Opti-

mal Algorithms. 33–40.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable 4:69

[126] Vijaya Ramachandran. 1993. Parallel open ear decomposition with applications to graph biconnectivity and tricon-

nectivity. In Synthesis of Parallel Algorithms, John H Reif (Ed.). Morgan Kaufmann Publishers Inc.

[127] J. Reif. 1985. Optimal Parallel Algorithms for Integer Sorting and Graph Connectivity. Technical Report TR-08-85.

Harvard University.

[128] Ahmet Erdem Sariyuce, C. Seshadhri, and Ali Pinar. 2018. Parallel local algorithms for core, truss, and nucleus

decompositions. Proc. VLDB Endow. 12, 1 (2018), 43–56.

[129] T. Schank. 2007. Algorithmic Aspects of Triangle-Based Network Analysis. Ph.D. Dissertation. Universitat Karlsruhe.

[130] Thomas Schank and Dorothea Wagner. 2005. Finding, counting and listing all triangles in large graphs, an experi-

mental study. In Workshop on Experimental and Efficient Algorithms (WEA). 606–609.

[131] Warren Schudy. 2008. Finding strongly connected components in parallel using O (log2 N) reachability queries. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 146–151.

[132] Stephen B. Seidman. 1983. Network structure and minimum degree. Soc. Networks 5, 3 (1983), 269–287.

[133] Martin Sevenich, Sungpack Hong, Adam Welc, and Hassan Chafi. 2014. Fast in-memory triangle listing for large

real-world graphs. In Workshop on Social Network Mining and Analysis. Article 2, 2:1–2:9 pages.

[134] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2020. Parallel clique counting and peeling algorithms. arXiv preprint

arXiv:2002.10047 (2020).

[135] Yossi Shiloach and Uzi Vishkin. 1982. An O (logn) parallel connectivity algorithm. J. Algorithms 3, 1 (1982), 57–67.

[136] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In

ACM Symposium on Principles and Practice of Parallel Programming (PPoPP). 135–146.

[137] Julian Shun and Guy E. Blelloch. 2014. Phase-concurrent hash tables for determinism. In ACM Symposium on Par-

allelism in Algorithms and Architectures (SPAA). 96–107.

[138] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2013. Reducing contention through priority

updates. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 299–300.

[139] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri, and

Kanat Tangwongsan. 2012. Brief announcement: The problem based benchmark suite. In ACM Symposium on Par-

allelism in Algorithms and Architectures (SPAA).

[140] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A simple and practical linear-work parallel algorithm for

connectivity. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 143–153.

[141] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In Data Compression Conference (DCC). 403–412.

[142] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computations without tuning. In IEEE International

Conference on Data Engineering (ICDE). 149–160.

[143] George M. Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity algorithms for multicore platforms. In

IEEE International Conference on High-Performance Computing (HiPC). 1–10.

[144] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS and coloring-based parallel algo-

rithms for strongly connected components and related problems. In IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS). 550–559.

[145] GeorgeM. Slota, Sivasankaran Rajamanickam, and KameshMadduri. 2015. Supercomputing for Web Graph Analytics.

Technical Report SAND2015-3087C. Sandia National Lab.

[146] G. M. Slota, S. Rajamanickam, and K. Madduri. 2016. A case study of complex graph analysis in distributed memory:

Implementation and optimization. In IEEE International Parallel and Distributed Processing Symposium (IPDPS). 293–

302.

[147] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcutting label propagation for distributed

connected components. In International Conference on Web Search and Data Mining (WSDM). 540–546.

[148] Robert E. Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity algorithm. SIAM J. on Computing 14, 4

(1985), 862–874.

[149] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1 (2005), 1–24.

[150] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel index-based structural graph clustering and its ap-

proximation. To appear in ACM International Conference on Management of Data (SIGMOD) (2021).

[151] Dominic J. A. Welsh and Martin B. Powell. 1967. An upper bound for the chromatic number of a graph and its

application to timetabling problems. Comput. J. 10, 1 (1967), 85–86.

[152] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big graph analytics platforms. Foundations and

Trends in Databases 7, 1–2 (2017), 1–195.

[153] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018.

GraphIt: A high-performance graph DSL. Object-Oriented Programming Systems, Languages,and Applications (OOP-

SLA) (2018), 121:1–121:30.

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

4:70 L. Dhulipala et al.

[154] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe, and Alexander S. Szalay. 2015. Flash-

Graph: Processing billion-node graphs on an array of commodity SSDs. In USENIX Conference on File and Storage

Technologies (FAST). 45–58.

[155] Wei Zhou. 2017. A Practical Scalable Shared-Memory Parallel Algorithm for Computing Minimum Spanning Trees.

Master’s thesis. KIT.

Received May 2019; accepted September 2020

ACM Transactions on Parallel Computing, Vol. 8, No. 1, Article 4. Publication date: April 2021.

