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—— Abstract
We describe an algorithm for supporting allocation and free for fized-sized blocks, for p asynchronous
processors, with O(1) worst-case time per operation, @(pz) additive space overhead, and using only
single-word read, write, and CAS. While many algorithms rely on having constant-time fixed-size
allocate and free, we present the first implementation of these two operations that is constant
time with reasonable space overhead.
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1 Introduction

Dynamic memory allocation is an important problem that plays a role in many data structures.
Although some data structures require variable sized memory blocks, many are built on fixed
sized blocks, including linked lists and trees.

Our goal is to efficiently solve the dynamic memory allocation problem for fixed sized
memory blocks in a concurrent setting. An allocate() returns a reference to a block, and
a free(p) takes a reference p to an block. We say a block is live at some point in the
execution history if the last operation that used it (either a free that took it, or allocate
that returned it) was an allocate. Otherwise the block is available. As would be expected,
an allocate must transition the returned block from available to live (i.e., the operation
cannot return a block that is already live), and a free(p) must be applied to a live block p
(i-e., the operation cannot free a block that is already available). In our setting, processes
run asynchronously and may be delayed arbitrarily.

We describe a concurrent linearizable implementation of the fixed-sized memory allocation
problem with the following properties.

> Result 1 (Fixed-sized Allocate/Free). Given m as the maximum number of live blocks, on p
processes, we can support linearizable allocate and free for fized sized blocks of k > 2 words,
with
1. references that are just pointers to the block (i.e., memory addresses),
2. O(1) worst-case time for each operation,
3. k(m + ©(p?)) space,
4. single-word (at least pointer-width) read, write, and CAS.
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Our notion of time/space complexity includes both local and shared instructions/words.
Limiting ourselves to pointer-width atomic instructions means that we do not use unbounded
sequence numbers or hide bits in pointers. Achieving the last property of Result 1 requires
using a recent result on implementing LL/SC from pointer-width CAS objects [3].

We are not addressing the problem of supporting an unbounded number of allocated cells.
Indeed this would seem to be impossible without some assumption of how the operating
system gives out large chunks of memory to allocate from. In our algorithm, the memory
allocator could potentially read from a memory block that is live, but it works correctly
regardless of what the user writes into the memory blocks. We believe these kinds of accesses
are reasonable.

There has been recent progress in designing memory reclamation algorithms that are
wait-free [9, 2, 7, 1]. With wait-free memory reclamation, the memory allocation part becomes
the new limiting factor. While there has been work on lock-free memory allocation [6, 5, 8],
the only work that we know of that is wait-free is by Aghazadeh and Woelfel [1]. Aghazadeh
and Woelfel’s GetFree and Release operations can be used to implement allocate and
free in constant time, but their algorithm requires Q(mp?) space, making it impractical
in many applications. We guarantee the same time complexity and wait-freedom while
using significantly less space. While our algorithm is mostly a theoretical contribution, the
constants are small and we believe it will be fast in practice as well.

2  Algorithm Overview

Our algorithm is fairly simple. For some constant [ € ©(p), our data structure consists of
local private pools that each hold ©(l) blocks and a shared pool that maintains a stack of
batches, each containing [ blocks. The high level idea of maintaining separate private and
shared pools is widely used and has been shown to be fast in practice [6, 5, 8]. In the common
case, most calls to allocate and free will be handled directly by the private pools. Batches
are transferred between shared and private pools occasionally to make sure there are not too
many or too few free blocks in each private pool. Having too many private blocks weakens
the bound in Item 3 of Result 1 because these blocks cannot be allocated by other processes.
Pushing to and popping from the shared stack takes O(p) time which is fairly expensive.
To amortize this cost, push and pop can be broken up into p steps of O(1) time each and
performed across multiple calls to allocate or free. In the full version of our paper, we
show how to manage the private pools so that there is at most one ongoing push or pop per
process. For our shared pool, we start with Fatourou and Kallimanis’s P-SIM stack [4] and
modify it to achieve the following bounds:

» Result 2 (Shared Stack). Given a concurrent allocator satisfying Result 1 with parameter
k > 2, assuming that reading from a memory block that has already been freed returns an
arbitrary value, on p processes, we can support linearizable push and pop with

1. O(p) worst-case time for each operation,

2. at most 2p calls to allocate and 2p calls to free in each operation,

3. Mk + ©(p2k) space (where M is the number of nodes in the stack),

4. single-word (at least pointer-width) read, write, and CAS.

At first glance, it may seem circular that Results 1 and 2 are used to implement each
other. However, this is the key trick in our algorithm. We observe that it is safe for the data
structures in the shared pool to allocate memory from the same private pools as the user.
Special care is needed to ensure that the private pools always have enough blocks to service
both the user and the shared pool. For this to work, Property 2 of Result 2 is crucial.
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In the P-SIM stack, push and pop operations help each other to ensure that each
operation completes within O(p) time (Property 1). The P-SIM stack can be modified to
satisfy Property 4 using a recent simulation of LL/SC from CAS [3]. While there has been a
lot of work on simulating LL/SC from CAS, [3] is the only one we are aware of that maintains
the other properties in Result 2. To satisfy Properties 2 and 3, we add memory management
while ensuring that each push or pop calls free at most 2p times. In the P-SIM stack, each
process performs push and pop operations on its local copy of the shared stack, and then
tries to set its local copy as the new shared stack using an SC. We modify this algorithm so
that after each successful SC, the process frees all the nodes that it locally popped, and after
each unsuccessful SC, the process frees all the nodes that it locally pushed. This modification
sounds straightforward but it has a complication. It is possible for a process working on a
outdated copy of a shared stack to read a node that is already freed by this approach. In
most settings, accessing freed memory is not allowed, however, these accesses are reasonable
in our setting because they are internal to our memory allocator. Whenever a node is popped
off the shared stack and freed, the memory is not freed back to the operating system, instead
it is made available to the user. Accessing memory that has been allocated to the user may
return an arbitrary value, so such accesses are still dangerous. We protect against this by
performing VL after every potentially dangerous access. If the VL returns true, then there
has not been an SC on the shared stack since the process’s last LL, so the process is working
on an up-to-date view of the shared stack. This means that the earlier memory access was
safe. If the VL returns false, then the process’s subsequent SC is guaranteed to fail. In this
case, the process restarts its operation and frees any nodes that it locally pushed. With these
modifications, the P-SIM stack satisfies all the properties in Result 2.
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