
Sage: Parallel Semi-Asymmetric Graph Algorithms
for NVRAMs

Laxman Dhulipala1 Charles McGuffey1 Hongbo Kang2

Yan Gu3 Guy E. Blelloch1 Phillip B. Gibbons1 Julian Shun4

1CMU 2Tsinghua 3U.C. Riverside 4MIT CSAIL
{ldhulipa, cmcguffe}@cs.cmu.edu kanghongbothu@gmail.com
ygu@cs.ucr.edu {guyb, gibbons}@cs.cmu.edu jshun@mit.edu

ABSTRACT
Non-volatile main memory (NVRAM) technologies provide an at-
tractive set of features for large-scale graph analytics, including
byte-addressability, low idle power, and improved memory-density.
NVRAM systems today have an order of magnitude more NVRAM
than traditional memory (DRAM). NVRAM systems could there-
fore potentially allow very large graph problems to be solved on a
single machine, at a modest cost. However, a significant challenge
in achieving high performance is in accounting for the fact that
NVRAM writes can be much more expensive than NVRAM reads.

In this paper, we propose an approach to parallel graph analytics
using the Parallel Semi-Asymmetric Model (PSAM), in which the
graph is stored as a read-only data structure (in NVRAM), and the
amount of mutable memory is kept proportional to the number of
vertices. Similar to the popular semi-external and semi-streaming
models for graph analytics, the PSAM approach assumes that the
vertices of the graph fit in a fast read-write memory (DRAM), but
the edges do not. In NVRAM systems, our approach eliminates
writes to the NVRAM, among other benefits.

To experimentally study this new setting, we develop Sage, a
parallel semi-asymmetric graph engine with which we implement
provably-efficient (and often work-optimal) PSAM algorithms for
over a dozen fundamental graph problems. We experimentally study
Sage using a 48-core machine on the largest publicly-available real-
world graph (the Hyperlink Web graph with over 3.5 billion vertices
and 128 billion edges) equipped with Optane DC Persistent Memory,
and show that Sage outperforms the fastest prior systems designed
for NVRAM. Importantly, we also show that Sage nearly matches
the fastest prior systems running solely in DRAM, by effectively
hiding the costs of repeatedly accessing NVRAM versus DRAM.

PVLDB Reference Format:
Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blel-
loch, Phillip B. Gibbons, and Julian Shun. Sage: Parallel Semi-Asymmetric
Graph Algorithms for NVRAMs. PVLDB, 13(9): 1598-1613, 2020.
DOI: https://doi.org/10.14778/3397230.3397251

1 Introduction
Over the past decade, there has been a steady increase in the main-
memory sizes of commodity multicore machines, which has led
to the development of fast single-machine shared-memory graph

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397251

algorithms for processing massive graphs with hundreds of billions
of edges [37, 71, 84, 86] on a single machine. Single-machine
analytics by-and-large outperform their distributed memory counter-
parts, running up to orders of magnitude faster using much fewer
resources [37, 64, 84, 86]. These analytics have become increas-
ingly relevant due to a longterm trend of increasing memory sizes,
which continues today in the form of new non-volatile memory
technologies that are now emerging on the market (e.g., Intel’s
Optane DC Persistent Memory). These devices are significantly
cheaper on a per-gigabyte basis, provide an order of magnitude
greater memory capacity per DIMM than traditional DRAM, and
offer byte-addressability and low idle power, thereby providing a
realistic and cost-efficient way to equip a commodity multicore
machine with multiple terabytes of non-volatile RAM (NVRAM).

Due to these advantages, NVRAMs are likely to be a key compo-
nent of many future memory hierarchies, likely in conjunction with
a smaller amount of traditional DRAM. However, a challenge of
these technologies is to overcome an asymmetry between reads and
writes—write operations are more expensive than reads in terms of
energy and throughput. This property requires rethinking algorithm
design and implementations to minimize the number of writes to
NVRAM [10, 15, 16, 26, 96]. As an example of the memory tech-
nology and its tradeoffs, in this paper we use a 48-core machine
that has 8x as much NVRAM as DRAM (we are aware of machines
with 16x as much NVRAM as DRAM [42]), where the combined
read throughput for all cores from the NVRAM is about 3x slower
than reads from the DRAM, and writes on the NVRAM are a further
factor of about 4x slower [49, 94] (a factor of 12 total). Under this
asymmetric setting, algorithms performing a large number of writes
could see a significant performance penalty if care is not taken to
avoid or eliminate writes.

An important property of most graphs used in practice is that they
are sparse, but still tend to have many more edges than vertices,
often from one to two orders of magnitude more. This is true for
almost all social network graphs [56], but also for many graphs that
are derived from various simulations [35]. In Figure 2 we show that
over 90% of the large graphs (more than 1 million vertices) from the
SNAP [56] and LAW [22] datasets have at least 10 times as many
edges as vertices. Given that very large graphs today can have over
100 billion edges (requiring around a terabyte of storage), but only
a few billion vertices, a popular and reasonable assumption both in
theory and in practice is that vertices, but not edges, fit in DRAM [1,
41, 52, 63, 65, 70, 75, 89, 106, 107].

With these characteristics of NVRAM and real-world graphs in
mind, we propose a semi-asymmetric approach to parallel graph
analytics, in which (i) the full graph is stored in NVRAM and is
accessed in read-only mode and (ii) the amount of DRAM is pro-
portional to the number of vertices. Although completely avoiding

1598

BFS
wBFS

Bellm
an-Ford

Widest-
Path

Betw
eenness

O(k)-S
panner

LDD

Connectiv
ity

SpanningForest

Biconnectiv
ity MIS

Maxim
al-M

atching

Graph-C
olorin

g

Apx-Set-C
over

k-C
ore

Apx-D
ens-S

ubgraph

Tria
ngle-C

ount

PageRank-It
er

PageRank
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
S

lo
w

d
ow

n
re

la
ti

ve
to

fa
st

es
t

1
1

9
8

8
2

7
8

5
4

5
5

2
4

3
6

6
1

2
3

4

5
2

1
6

6

1
9

7

1
9

3

2
1

5

4
2

3
5

2
9

2
4

8
2

7

3
6

1
9

0

1
4

9

9
0

1
4

8

1
2

5

6
2

7
6

1
1

6 4
8

2

9
9

4
5

5

2
1

6 2
4

5

2
5

9

1
0

6

1
6

6
5

3
8 1
3

1
8

3
5

1
1

8

5
6

7
6

1
7

0
6

Values on top of bars display parallel (96-thread) running times.
Sage (NVRAM)

GBBS-MemMode

Galois

Figure 1: Performance of Sage on the Hyperlink2012 graph compared with existing state-of-the-art systems for processing larger-than-memory graphs using
NVRAM measured relative to the fastest system (smaller is better). Sage (NVRAM) are the new codes developed in this paper, GBBS-MemMode is the code
developed in [37] run using MemoryMode, and Galois is the NVRAM codes from [42]. The bars are annotated with the parallel running times (in seconds) of
the codes on a 48-core system with 2-way hyper-threading. Note that the Hyperlink2012 graph does not fit in DRAM for the machine used in these experiments.

106 107 108 109 1010

Number of vertices (logscale)

0

20

40

60

80

100

N
um

.
E

dg
es

/
N

um
.

V
er

ti
ce

s

Graph Type

social

web

citation

Figure 2: Number of vertices (logscale) vs. average degree (m/n) on 42
real-world graphs with n > 106 from the SNAP [56] and LAW [22] datasets.
Over 90% of the graphs have average degree larger than 10 (corresponding
to the gray dashed line).

writes to the NVRAM may seem overly restrictive, the approach
has the following benefits: (i) algorithms avoid the high cost of
NVRAM writes, (ii) the algorithms do not contribute to NVRAM
wear-out or wear-leveling overheads, and (iii) algorithm design is
independent of the actual cost of NVRAM writes, which has been
shown to vary based on access pattern and number of cores [49, 94]
and will likely change with innovations in NVRAM technology and
controllers. Moreover, it enables an important NUMA optimization
in which a copy of the graph is stored on each socket (Section 5), for
fast read-only access without any cross-socket coordination. Finally,
with no graph mutations, there is no need to re-compress the graph
on-the-fly when processing compressed graphs [36, 37].

The key question, then, is the following:

Is the (restrictive) semi-asymmetric approach effective for
designing fast graph algorithms?

In this paper, we provide strong theoretical and experimental evi-
dence of the approach’s effectiveness.

Our main contribution is Sage, a parallel semi-asymmetric graph
engine with which we implement provably-efficient (and often work-
optimal) algorithms for over a dozen fundamental graph problems
(see Table 1). The key innovations are in ensuring that the up-
dated state is associated with vertices and not edges, which is
particularly challenging (i) for certain edge-based parallel graph
traversals and (ii) for algorithms that “delete” edges as they go
along in order to avoid revisiting them once they are no longer

needed. We provide general techniques (Sections 4.1 and 4.2) to
solve these two problems. For the latter, used by four of our al-
gorithms, we require relaxing the prescribed amount of DRAM
to be on the order of one bit per edge. Details of our algorithms
are given in Section 4.3. Our codes extend the current state-of-
the-art DRAM-only codes from GBBS [37], and can be found at
https://github.com/ParAlg/gbbs/tree/master/sage.

From a theoretical perspective, we propose a model for analyzing
algorithms in the semi-asymmetric setting (Section 3). The model,
called the Parallel Semi-Asymmetric Model (PSAM), consists of a
shared asymmetric large-memory with unbounded size that can hold
the entire graph, and a shared symmetric small-memory with O(n)
words of memory, where n is the number of vertices in the graph.
In a relaxed version of the model, we allow small-memory size of
O(n + m/ logn) words, where m is the number of edges in the
graph. Although we do not use writes to the large-memory in our
algorithms, the PSAM model permits writes to the large-memory,
which are ω > 1 times more costly than reads. We prove strong
theoretical bounds in terms of PSAM work and depth for all of
our parallel algorithms in Sage, as shown in Table 1. Most of the
algorithms are work-efficient (performing asymptotically the same
work as the best sequential algorithm for the problem) and have
polylogarithmic depth (parallel time). These provable guarantees
ensure that our algorithms perform reasonably well across graphs
with different characteristics, machines with different core counts,
and NVRAMs with different read-write asymmetries.

We experimentally study Sage on large-scale real-world graphs
(Section 5). We show that Sage scales to the largest publicly-
available graph, the Hyperlink2012 graph with over 3.5 billion ver-
tices and 128 billion edges (and 225 billion edges for algorithms run-
ning on the undirected/symmetrized graph). Figure 1 compares the
performance of Sage algorithms with the fastest available NVRAM
approaches on the Hyperlink2012 graph, which is larger than the
DRAM of the machine used in our experiments. Compared with
the state-of-the-art DRAM codes from GBBS [37], automatically
extended to use NVRAM using MemoryMode,1 Sage is 1.89x faster
on average, and slower only in one instance for reasons that we
discuss in Section 5. Compared with the recently developed codes
from [42], which are the current state-of-the-art NVRAM codes
available today, our codes are faster on all five graph problems
studied in [42], and achieve an average speedup of 1.94x.
1Effectively using the DRAM as a cache—see Section 5.1.2.

1599

https://github.com/ParAlg/gbbs/tree/master/sage

We also study the performance of Sage compared with state-of-
the-art graph codes run entirely in DRAM on the largest dataset used
in our study that still fits within memory (Figure 7 in Section 5.4).
We compare Sage with the GBBS codes run entirely in DRAM,
and also when automatically converted to use NVRAM using lib-
vmmalloc, a standard NVRAM memory allocator. Compared with
GBBS codes running in DRAM, Sage on NVRAM is only 1.01x
slower on average, within 6% of the in-memory running time on
all but two problems, and at most 1.82x slower in the worst case.
Interestingly, we find that Sage when run in DRAM is 1.17x faster
than the GBBS codes run in DRAM on average. This indicates
that our optimizations to reduce writes also help on DRAM, al-
though not to the same extent as on NVRAM. In particular, Sage
on NVRAM is 6.69x faster on average than GBBS when run on
NVRAM using libvmmalloc. Thus, Sage significantly outperforms
a naive approach to convert DRAM codes to NVRAM ones, is faster
than state-of-the-art DRAM-only codes when run in DRAM, and
is highly competitive with the fastest DRAM-only running times
when run in NVRAM.

We summarize our contributions below.
(1) A semi-asymmetric approach to parallel graph analytics that

avoids writing to the NVRAM and uses DRAM proportional to
the number of vertices.

(2) Sage: a parallel semi-asymmetric graph engine with implemen-
tations of 18 fundamental graph problems, and general tech-
niques for semi-asymmetric parallel graph algorithms. We have
made all of our codes publicly-available.2

(3) A new theoretical model called the Parallel Semi-Asymmetric
Model, and techniques for designing efficient, and often work-
optimal parallel graph algorithms in the model.

(4) A thorough experimental evaluation of Sage on an NVRAM
system showing that Sage significantly outperforms prior work
and nearly matches state-of-the-art DRAM-only performance.

2 Preliminaries
Graph Notation. We denote an unweighted graph by G(V,E),
where V is the set of vertices and E is the set of edges. The number
of vertices is n = |V | and the number of edges ism = |E|. Vertices
are assumed to be indexed from 0 to n− 1. We use N(v) to denote
the neighbors of vertex v and deg(v) to denote its degree. We focus
on undirected graphs in this paper, although many of our algorithms
and techniques naturally generalize to directed graphs. We assume
that m = Ω(n) when reporting bounds. We use dG to refer to the
diameter of the graph, which is the longest shortest path distance
between any vertex s and any vertex v reachable from s. ∆ (davg)
is used to denote the maximum (average) degree of the graph. We
assume that there are no self-edges or duplicate edges in the graph.
We refer to graphs stored in the compressed sparse column and
compressed sparse row formats as CSC and CSR, respectively. We
also consider compressed graphs that store the differences between
consecutive neighbors using variable-length codes for each sorted
adjacency list [86].

Parallel Cost Model. We use the work-depth model in this paper,
and define the model formally when introducing the Parallel Semi-
Asymmetric Model model, which extends it (Section 3).

Parallel Primitives. The following parallel procedures are used
throughout the paper. Prefix Sum takes as input an array A of
length n, an associative binary operator ⊕, and an identity element
⊥ such that ⊥ ⊕ x = x for any x, and returns the array (⊥,⊥ ⊕
2Our code can be found at https://github.com/ParAlg/gbbs/
tree/master/sage, and an accompanying website at https://
paralg.github.io/gbbs/sage.

write (1)

Processors

DRAM

NVRAM

write (ω)

read (1)read (1)

unbounded size

Regular model:

Relaxed model:

Figure 3: The Parallel Semi-Asymmetric Model. Algorithms in the model
perform accesses to a symmetric small-memory (DRAM) and an asymmetric
large-memory (NVRAM) at a word-granularity. Reads from both memories
are charged unit-cost, whereas writes to the asymmetric memory are charged
ω. In the regular model, algorithms have access to O(n) words of symmetric
memory, and in a relaxed variant have access to O(n + m/ logn) words
of symmetric memory. Compared to existing two-level models, the main
advantages of the PSAM are that it explicitly models NVRAM read-write
asymmetry and it provides sufficient symmetric memory to design provably-
efficient and practical parallel graph algorithms.

A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕n−2
i=0 A[i]) as well as the overall sum,

⊥ ⊕n−1
i=0 A[i]. Reduce takes an array A and a binary associative

function f and returns the sum of the elements in A with respect to
f . Filter takes an array A and a predicate f and returns a new array
containing a ∈ A for which f(a) is true, in the same order as in A.
If done in small-memory (Section 3), prefix sum, reduce and filter
can all be done in O(n) work and O(logn) depth (assuming that⊕
and f take O(1) work) [51].
Ligra, Ligra+, and Julienne. As discussed in Section 4, Sage
builds on the Ligra [84], Ligra+ [86], and Julienne [36] frameworks
for shared-memory graph processing. These frameworks provide
primitives for representing subsets of vertices (vertexSubset), and
mapping functions over them (EDGEMAP). EDGEMAP takes as
input a graph G(V,E), a vertexSubset U ⊆ V , and two boolean
functions F and C. EDGEMAP applies F to (u, v) ∈ E such that
u ∈ U and C(v) = true (call this subset of undirected edges
Ea), and returns a vertexSubset U ′ where u ∈ U ′ if and only if
(u, v) ∈ Ea and F (u, v) = true . F can side-effect data structures
associated with the vertices.

3 Parallel Semi-Asymmetric Model
3.1 Model Definition
The Parallel Semi-Asymmetric Model (PSAM) consists of an asym-
metric large-memory (NVRAM) with unbounded size, and a sym-
metric small-memory (DRAM) with O(n) words of memory. In
a relaxed version of the model, we allow small-memory size of
O(n+m/ logn) words. The relaxed version is intended to model a
system where the ratio of NVRAM to DRAM is close to the average
degree of real-world graphs (see Figure 2 and Table 2).

The PSAM has a set of threads that share both the large-memory
and small-memory. The underlying mechanisms for parallelism are
identical to the T-RAM or binary forking model, which is discussed
in detail in [13, 17, 37]. In the model, each thread acts like a
sequential RAM that also has a fork instruction. When a thread
performs a fork, two newly created child threads run starting at the
next instruction, and the original thread is suspended until all the
children terminate. A computation starts with a single root thread
and finishes when that root thread finishes.
Algorithm Cost. We analyze algorithms on the PSAM using the
work-depth measure [51]. The work-depth measure is a fundamen-
tal tool in analyzing parallel algorithms, e.g., see [14, 37, 44, 85, 90,
91, 100] for a sample of recent practical uses of this model. Like
other multi-level models (e.g., the ANP model [10]), we assume

1600

https://github.com/ParAlg/gbbs/tree/master/sage
https://github.com/ParAlg/gbbs/tree/master/sage
https://paralg.github.io/gbbs/sage
https://paralg.github.io/gbbs/sage

unit cost reads and writes to the small-memory, and reads from the
large-memory, all in the unit of a word. A write to the large-memory
has a cost of ω > 1, which is the cost of a write relative to a read
on NVRAMs. The overall work W of an algorithm is the sum of
the costs for all memory accesses by all threads. The depth D is the
cost of the highest cost sequence of dependent instructions in the
computation. A work-stealing scheduler can execute a computation
in W/p + O(D) time with high probability on p processors [10,
21]. Figure 3 illustrates the PSAM model.

3.2 Discussion
It is helpful to first clarify why we chose to keep the modeling pa-
rameters simple, focusing on NVRAM read-write asymmetry, when
several other parameters are also available (as discussed below). Our
goal was to design a theoretical model that helps guide algorithm
design by capturing the most salient features of the new hardware.
Modeling Read and Write Costs. Although NVRAM reads are
about 3x more costly than accesses to DRAM [94], we charge both
unit cost in the PSAM. When this cost gap needs to be studied
(especially for showing lower bounds), we can use an approach
similar to the asymmetric RAM (ARAM) model [16], and define
the I/O cost Q of an algorithm without charging for instructions or
DRAM accesses. All algorithms in this paper have asymptotically
as many instructions as NVRAM reads, and therefore have the same
I/O cost Q as work W up to constant factors.
Writes to Large-memory. Although in the approach used in this
paper we do not perform writes to the large-memory, the PSAM
is designed to allow for analyzing alternate approaches that do
perform writes to large-memory. Furthermore, permitting writes
to the large-memory enables us to consider the cost of algorithms
from previous work such as GBBS [37] and observe that many
prior algorithms with W work in the standard work-depth model
are Θ(ωW) work in the PSAM. We emphasize that the objective of
this work is to evaluate whether the restrictive approach used in our
algorithms—i.e., completely avoiding writes to the large-memory,
thereby gaining the benefits discussed in Section 1—is effective
compared to existing approaches for programming NVRAM graph
algorithms. We note that algorithms designed with a small number
of large-memory writes could possibly be quite efficient in practice.
Applicability. In this paper, we provide evidence that the PSAM
is broadly applicable for many (18) fundamental graph problems.
We believe that many other problems will also fit in the PSAM.
For example, counting and enumerating k-cliques, which were very
recently studied in the in-memory setting [81], can be adapted to the
PSAM using the filtering technique proposed in this paper. Other
fundamental subgraph problems, such as subgraph matching [46,
92] and frequent subgraph mining [39, 99] could be solved in the
PSAM using a similar approach, but mining many large subgraphs
may require performing some writes to the NVRAM (as discussed
below). Other problems, such as local search problems including
CoSimRank [76], personalized PageRank, and other local clustering
problems [87], naturally fit in the regular PSAM model.

We note that certain problems seem to require performing writes
in the PSAM. For example, in the k-truss problem, the output re-
quires emitting the trussness value for each edge, and thus storing
the output requires Θ(m) words of memory, which requires Θ(ωm)
cost due to writes. Generalizations of k-truss, such as the (r, s)-
nucleii problem appear to have the same requirement for r ≥ 2 [79].

3.3 Relationship to Other Models
Asymmetric Models. The model considered in this paper is related
to the ARAM model [16] and the asymmetric nested-parallel (ANP)
model [10]. Compared to these more general models, the PSAM is

specially designed for graphs, with its small-memory being either
O(n) or O(n+m/ logn) words (for n vertices and m edges).
External and Semi-External Models. The External Memory model
(also known as the I/O or disk-access model) [2] is a classic two-
level memory model containing a bounded internal memory of size
M and an unbounded external memory. I/Os to the external memory
are done in blocks of size B. The Semi-External Memory model [1]
is a relaxation of the External Memory model where there is a
small-memory that can hold the vertices but not the edges.

There are three major differences between the PSAM and the Ex-
ternal Memory and Semi-External Memory models. First, unlike the
PSAM, neither the External Memory nor the Semi-External Memory
model account for accessing the small-memory (DRAM), because
the objective of these models is to focus on the cost of expensive
I/Os to the external memory. We believe that for existing systems
with NVRAMs, the cost of DRAM accesses is not negligible. Sec-
ond, both the External Memory and Semi-External Memory have a
parameter B to model data movement in large chunks. NVRAMs
support random access, so for the ease of design and analysis we
omit this parameter B. Third, the PSAM explicitly models the
asymmetry of writing to the large memory, whereas the External
Memory and Semi-External Memory models treat both reads and
writes to the external memory indistinguishably (both cost B). The
asymmetry of these devices is significant for current devices (writes
to NVRAM are 4x slower than reads from NVRAM, and 12x slower
than reads from DRAM [49, 94]), and could be even larger in fu-
ture generations of energy-efficient NVRAMs. Explicitly modeling
asymmetry is an important aspect of our approach in the PSAM.
Semi-Streaming Model. In the semi-streaming model [41, 70],
there is a memory size of O(n · polylog(n)) bits and algorithms can
only read the graph in a sequential streaming order (with possibly
multiple passes). In contrast, the PSAM allows random access to
the input graph because NVRAMs intrinsically support random
access. Furthermore the PSAM allows expensive writes to the large-
memory, which is read-only in the semi-streaming model.

4 Sage: A Semi-Asymmetric Graph Engine
Our main approach in Sage is to develop PSAM techniques that
perform no writes to the large-memory. Using these primitives lets
us derive efficient parallel algorithms (i) whose cost is independent
of ω, the asymmetry of the underlying NVRAM technology, (ii) that
do not contribute to NVRAM wearout or wear-leveling overheads,
and (iii) that do not require on-the-fly recompression for compressed
graphs. The surprising result of our experimental study is that this
strict discipline—to entirely avoid writes to the large-memory—
achieves state-of-the-art results in practice. This discipline also
enables storage optimizations (discussed in Section 5), and perhaps
most importantly lends itself to designing provably-efficient parallel
algorithms that interact with the graph through high-level primitives.
Semi-Asymmetric EDGEMAP. Our first contribution in Sage is a
version of EDGEMAP (Section 2) that achieves improved efficiency
in the PSAM. The issue with the implementation of EDGEMAP used
in Ligra, and subsequent systems (Ligra+ and Julienne) based on
Ligra is that although it is work-efficient, it may use significantly
more thanO(n) space, violating the PSAM model. In this paper, we
design an improved implementation of EDGEMAP which achieves
superior performance in the PSAM model (described in Section 4.1).
Our result is summarized by the following theorem:

THEOREM 4.1. There is a PSAM algorithm for EDGEMAP given
a vertexSubset U that runs in O(

∑
u∈U deg(u)) work, O(logn +

davg) depth, and uses O(n) words of memory in the worst case.

1601

Table 1: Work and depth bounds of Sage algorithms in the PSAM. The
GBBS Work column shows the work of GBBS algorithms converted to use
NVRAM without taking advantage of the small-memory, and corresponds
to the GBBS-NVRAM using libvmmalloc experiment (pink bars in Fig-
ure 7). The theoretical performance for the GBBS-MemMode experiment
(green dashed-bars in Figure 1) lies in-between the GBBS Work and Sage
Work. The vertical text in the first column indicates the technique used to
obtain the result in the PSAM: EDGEMAPCHUNKED is the semi-asymmetric
traversal in Section 4.1 and Filter is the Graph Filtering method in Sec-
tion 4.2. † denotes that our algorithm uses O(n + m/ logn) words of
memory. ¶ denotes that our algorithm uses O(n + m/ logn) words of
memory in practice, but requires only O(n) words of memory theoretically.
∗ denotes that a bound holds in expectation and ‡ denotes that a bound
holds with high probability or whp (O(kf(n)) cost with probability at least
1 − 1/nk). dG is the diameter of the graph, ∆ is the maximum degree,
L = min (

√
m,∆) + log2 ∆ logn/ log logn, and Pit is the number of

iterations of PageRank until convergence. We assume m = Ω(n). For prob-
lems using EDGEMAPCHUNKED we assume davg = m/n = O(logn); for
larger davg, one of the logs in the depth should be replaced by davg.

Problem GBBS Work Sage Work Sage Depth

E
D

G
E

M
A

P
C

H
U

N
K

E
D

Breadth-First Search O(ωm) O(m) O(dG logn)
Weighted BFS O(ωm)∗ O(m)∗ O(dG logn)‡

Bellman-Ford O(ωdGm) O(dGm) O(dG logn)
Single-Source Widest Path O(ωdGm) O(dGm) O(dG logn)
Single-Source Betweenness O(ωm) O(m) O(dG logn)
O(k)-Spanner O(ωm)∗ O(m)∗ O(k logn)‡

LDD O(ωm)∗ O(m)∗ O(log2 n)‡

Connectivity O(ωm)∗ O(m)∗ O(log3 n)‡

Spanning Forest O(ωm)∗ O(m)∗ O(log3 n)‡

Graph Coloring O(ωm)∗ O(m)∗ O(logn+
L log ∆)∗

Maxmial Independent Set O(ωm)∗ O(m)∗ O(log2 n)‡

B
ot

h Biconnectivity¶ O(ωm)∗ O(m)∗ O(dG logn
+ log3 n)‡

Apx. Set Cover† O(ωm)∗ O(m)∗ O(log3 n)‡

Fi
lte

r Triangle Counting† O(ω(m+ n)+ O(m3/2) O(logn)
m3/2)

Maximal Matching† O(ωm)∗ O(m)∗ O(log3m)‡

PageRank Iteration O(m+ ωn) O(m) O(logn)
PageRank O(Pit(m+ ωn)) O(Pitm) O(Pit logn)
k-core O(ωm)∗ O(m)∗ O(ρ logn)‡

Apx. Densest Subgraph O(ωm) O(m) O(log2 n)

Semi-Asymmetric Graph Filtering. An important primitive used
by many parallel graph algorithms performs batch-deletions of
edges incident to vertices over the course of the algorithm. A
batch-deletion operation is just a bulk remove operation that logi-
cally deletes these edges from the graph. These deletions are done
to reduce the number of edges that must be examined in the fu-
ture. For example, four of the algorithms studied in this paper—
biconnectivity, approximate set cover, triangle counting, and maxi-
mal matching—utilize this primitive.

In prior work in the shared-memory setting, deleted edges are
handled by actually removing them from the adjacency lists in the
graph. In these algorithms, deleting edges is important for two
reasons. First, it reduces the amount of work done when edges
incident to the vertex are examined again, and second, removing the
edges is important to bound the theoretical efficiency of the resulting
implementations [36, 37]. In the PSAM, however, deleting edges is
expensive because it requires writes to the large-memory.

In our Sage algorithms, instead of directly modifying the underly-
ing graph, we build an auxiliary data structure, which we refer to
as a graphFilter, that efficiently supports updating a graph with a
sequence of deletions. The graphFilter data structure can be viewed
as a bit-packed representation of the original graph that supports
mutation. Importantly, this data structure fits into the small-memory
of the relaxed version of the PSAM. We formally define our data
structure and state our theoretical results in Section 4.2.

Efficient Semi-Asymmetric Graph Algorithms. We use our new
semi-asymmetric techniques to design efficient semi-asymmetric
graph algorithms for 18 fundamental graph problems. In all but
a few cases, the bounds are obtained by applying our new semi-
asymmetric techniques in conjunction with existing efficient DRAM-
only graph algorithms from Dhulipala et al. [37]. We summarize
the PSAM work and depth of the new algorithms designed in this
paper in Table 1, and present the detailed results in Section 4.3.

4.1 Semi-Asymmetric Graph Traversal
Our first technique is a cache-friendly and memory-efficient sparse
EDGEMAP primitive designed for the PSAM. This technique is
useful for obtaining PSAM algorithms for many of the problems
studied in this paper. Graph traversals are a basic graph primitive,
used throughout many graph algorithms [32, 84]. A graph traversal
starts with a frontier (subset) of seed vertices. It then runs a number
of iterations, where in each iteration, the edges incident to the current
frontier are explored, and vertices in this neighborhood are added to
the next frontier based on some user-defined conditions.

4.1.1 Existing Memory-Inefficient Graph Traversal
Ligra implements the direction-optimization proposed by Beamer [8],
which runs either a sparse (push-based) or dense (pull-based) traver-
sal, based on the number of edges incident to the current frontier.
The sparse traversal processes the out-edges of the current frontier
to generate the next frontier. The dense traversal processes the in-
edges of all vertices, and checks whether they have a neighbor in
the current frontier. Ligra uses a threshold to select a method, which
by default is a constant fraction of m to ensure work-efficiency.

The dense method is memory-efficient—theoretically, it only
requires O(n) bits to store whether each output vertex is on the next
frontier. However, the sparse method can be memory-inefficient
because it allocates an array with size proportional to the number
of edges incident to the current frontier, which can be up to O(m).
In the PSAM, an array of this size can only be allocated in the
large-memory, so the traversal is inefficient. This is also true for the
real graphs and machines that we tested in this paper.

The GBBS algorithms [37] use a blocked sparse traversal, referred
to as EDGEMAPBLOCKED, that improves the cache-efficiency of
parallel graph traversals by only writing to as many cache lines
as the size of the newly generated frontier. This technique is not
memory-efficient, as it allocates an intermediate array with size
proportional to the number of edges incident to the current frontier,
which can be up to O(m) in the worst-case.

4.1.2 Memory-Efficient Traversal: EDGEMAPCHUNKED

In this paper, we present a chunk-based approach that improves
the memory-efficiency of the sparse (push-based) EDGEMAP. Our
approach, which we refer to as EDGEMAPCHUNKED, achieves the
same cache performance as the EDGEMAPBLOCKED implementa-
tion used in GBBS [37], but significantly improves the intermediate
memory usage of the approach. We provide the full details of our
algorithm and its pseudocode in the full version of this paper [38].
Our Algorithm. The high-level idea of our algorithm is as follows.
It first divides the edges that are to-be traversed into groups of work.
This is done based on the underlying group size, g, of the graph,
which is set to the average degree davg. The edges incident to each
vertex are partitioned into groups based on g. The algorithm then
performs a work-assignment phase, which statically load-balances
the work over the incident edges to O(P) virtual threads. Next, in
parallel for each virtual thread, it processes the edges assigned to
the thread. For each group, it uses a thread-local allocator to obtain
a chunk that is ensured to have sufficient memory to store the output
of mapping over the edges in the group. The chunks are stored

1602

1 #include "sage.h"
2 #include <limits>
3 template <class W, class Int>
4 struct BFSFunc {
5 sequence<Int>& P;
6 Int max_int;
7 BFSFunc(sequence<Int>& P) : P(P) {
8 max_int = std::numeric_limits<Int>::max();}
9 bool update(Int s, Int d, W w) {

10 if (P[d] == max_int) {
11 P[d] = s;
12 return 1;
13 }
14 return 0;
15 }
16 bool updateAtomic(Int s, Int d, W w) {
17 return (CAS(&P[d], max_int, s));
18 }
19 bool cond(Int d) { return (P[d] == max_int); }
20 };
21 template <class Graph, class Int>
22 sequence<Int> BFS(Graph& G, Int src) {
23 using W = typename Graph::weight_type;
24 Int max_int = std::numeric_limits<Int>::max();
25 auto P = sequence<Int>(G.n, max_int);
26 P[src] = src;
27 auto frontier = vertexSubset(G.n, src);
28 while (!frontier.isEmpty()) {
29 auto F = BFSFunc<W, Int>(P);
30 frontier = edgeMapChunked(G, frontier, F);
31 }
32 return P;
33 }

Figure 4: Code for Breadth-First Search in Sage.

in thread-local vectors. Upon completion of processing all edges
incident to the vertexSubset, the algorithm aggregates all chunks
stored in the thread-local vectors and uses a prefix-sum and a parallel
copy to store the output neighbors contiguously in a single flat array.
The overall work of the procedure is O(

∑
u∈U deg(u)) where U

is the input vertexSubset. The depth is O(logn+ davg), since the
algorithm sets the underlying group size g to the average degree davg

(please see the full version of this paper for details [38]). Our algo-
rithm obtains the same cache-efficiency as EDGEMAPBLOCKED,
while improving the memory usage to O(n) words.

4.1.3 Case Study: Breadth-First Search
Algorithm. Figure 4 provides the full Sage code used for our
implementation of BFS. The algorithm outputs a BFS-tree, but
can trivially be modified to output shortest-path distances from the
source to all reachable vertices. The user first imports the Sage
library (Line 1). The definition of BFSFUNC defines the user-
defined function supplied to EDGEMAP (Lines 3–20). The main
algorithm, BFS, is templatized over a graph type (Line 21). The
BFS code first initializes the parent array P (Line 25), sets the parent
of the source vertex to itself (Line 26), and initializes the first frontier
to contain just the parent (Line 27). It then loops while the frontier
is non-empty (Lines 28–31), and calls EDGEMAPCHUNKED in each
iteration of the while loop (Line 30).

The function supplied to EDGEMAPCHUNKED is BFSFUNC
(Lines 3–20), which contains two implementations of update based
on whether a sparse or dense traversal is applied (UPDATE and
UPDATEATOMIC respectively), and the function COND indicating
whether a neighbor should be visited. This logic is identical to the
update function used in BFS in Ligra, and we refer the interested
reader to Shun and Blelloch [84] for a detailed explanation.
PSAM: Work-Depth Analysis. The work is calculated as follows.
First, the work of initializing the parent array, and constructing
the initial frontier is just O(n). The remaining work is to apply

EDGEMAP across all rounds. To bound this quantity, first ob-
serve that each vertex, v, processes its out-edges at most once,
in the round where it is contained in Frontier (if other vertices
try to visit v in subsequent rounds notice that the COND function
will return false). Let R be the set of all rounds run by the algo-
rithm, WEDGEMAPCHUNKED(r) be the work of EDGEMAPCHUNKED
on the r-th round, and Ur be the set of vertices in Frontier in
the r-th round. Then, the work is

∑
r∈RWEDGEMAPCHUNKED(r) =∑

r∈R
∑

u∈Ur
deg(u) = O(m).

The depth to initialize the parents array isO(logn), and the depth
of each of the r applications of EDGEMAPCHUNKED is O(logn+
davg) by Theorem 4.1. Thus, the overall depth is O(r(logn +
davg)) = O(dG(logn + davg)). The small-memory space used
for the parent array is O(n) words, and the maximum space used
over all EDGEMAPCHUNKED calls is O(n) words by Theorem 4.1.
This proves the following theorem:

THEOREM 4.2. There is a PSAM algorithm for breadth-first
search that runs in O(m) work, O(dG(logn + davg)) depth, and
uses only O(n) words of small-memory.

4.2 Semi-Asymmetric Graph Filtering
Sage provides a high-level filtering interface that captures both the
current implementation of filtering in GBBS, as well as the new
mutation-avoiding implementation described in this paper. The
interface provides functions for creating a new graphFilter, filtering
edges from a graph based on a user-defined predicate, and a function
similar to EDGEMAP which filters edges incident to a subset of
vertices based on a user-defined predicate. Since edges incident to
a vertex can be deleted over the course of the algorithm by using
a graphFilter, we call edges that are currently part of the graph
represented by the graphFilter as active edges.

We first discuss a semantic issue that arises when filtering graphs.
Suppose the user builds a filter Gf over a symmetric graph G. If the
filtering predicate takes into account the directionality of the edge,
then the resulting graph filter can become directed, which is unlikely
to be what the user intends. Therefore, we designed the constructor
to have the user explicitly specify this decision by indicating whether
the user-defined predicate is symmetric or asymmetric, which results
in either a symmetric or asymmetric graph filter.

The filtering interface is defined as follows:
• MAKEFILTER(G : Graph,

P : edge 7→ bool, S : bool) : graphFilter
Creates a graphFilter Gf for the immutable graph G with respect
to the user-defined predicate P , and S, which indicates whether
the filter is symmetric or asymmetric.

• FILTEREDGES(Gf : graphFilter) : int
Filters all active edges in Gf that do not satisfy the predicate
P from Gf . The function mutates the supplied graphFilter, and
returns the number of edges remaining in the graphFilter.

• EDGEMAPPACK(Gf : graphFilter,
S : vertexSubset) : vertexSubset

Filters edges incident to v ∈ S that do not satisfy the predicate
P from Gf . Returns a vertexSubset on the same vertex set as S,
where each vertex is augmented with its new degree in Gf .

4.2.1 Graph Filter Data Structure
For simplicity, we describe the symmetric version of the graph filter
data structure. The asymmetric filter follows naturally by using two
copies of the data structure described below, one for the in-edges
and one for the out-edges.

We first review how edges are represented in Sage. In the (un-
compressed) CSR format, the neighbors of a vertex are stored con-
tiguously in an array. If the graph is compressed using one of the

1603

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0

idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Figure 5: This figure illustrates our graph filter data structure, and is
described in detail in Section 4.2.1.

parallel compression methods from Ligra+ [86], the incident edges
are divided into a number of compression blocks, where each block
is sequentially encoded using a difference-encoding scheme with
variable-length codes. Each block must be sequentially decoded
to retrieve the neighbor IDs within the block, but by choosing an
appropriate block size, the edges incident to a high-degree vertex
can be traversed in parallel across the blocks.

The graph filter’s design mirrors the CSR representation described
above. The design of our structure is inspired by similar bit-packed
structures, most notably the cuckoo-filter by Eppstein et al. [40].
Figure 5 illustrates the graph filter for the following description.
Definition. The graph data is stored in the compressed sparse row
(CSR) format on NVRAM, and is read-only. Each vertex’s incident
edges are logically divided into blocks of size FB , the filter block
size, which is the provided block size rounded up to the next multiple
of the number of bits in a machine word, inclusive (64 bits on
modern architectures and logn bits in theory). In Figure 5, FB =
2. For compressed graphs, this block size is always equal to the
compression block size (and thus, both must be tuned together).

The filter consists of blocks corresponding to a subset of the
logical blocks in the edges array, and is stored in DRAM. Each
vertex stores a pointer to the start of its blocks, which are stored
contiguously. For each block, the filter stores FB many bits, where
the bits correspond one-to-one to the edges in the block. Each
block also stores two words of metadata: (i) the original block-ID
in the adjacency list that the block corresponds to, and (ii) the offset,
which stores the number of active edges before this block. The
original block-IDs are necessary because over the course of the
algorithm, only a subset of the original blocks used for a vertex may
be currently present in the graph filter, and the data structure must
remember the original position of each block. The offset is needed
for graph primitives which copy all active edges incident to a vertex
into an array with size proportional to the degree of the vertex.

The overall graph filter structure thus consists of blocks of bitsets
per vertex. It stores the per-vertex blocks contiguously, and stores
an offset to the start of each vertex’s blocks. It also stores each
vertex’s current degree, as well as the number of blocks in the vertex
structure. Finally, the structure stores an additional n bits of memory
which are used to mark vertices as dirty.

4.2.2 Algorithms
MAKEFILTER. To create a graph filter, the algorithm first com-
putes the number of blocks that each vertex requires, based on FB ,
and writes the space required per vertex into an array. Next, it prefix
sums the array, and allocates the required O(m) bits of memory
contiguously. It then initializes the per-vertex blocks in parallel, set-
ting all edges as active (their corresponding bit is set to 1). Finally, it
allocates an array of n per-vertex structures storing the degree, offset
into the bitset structure corresponding to the start of the vertex’s
blocks, and the number of blocks for that vertex. Lastly, it initializes
per-vertex dirty bits to false (not dirty) in parallel.

The overall work to create the filter isO(m) and the overall depth
is O(logn + FB), because a block is processed sequentially. If

the user specifies that the initially supplied predicate returns false
for some edges, the implementation calls FILTEREDGES (described
below), which runs within the same work and depth bounds.
PACKVERTEX. Next, we describe an algorithm to pack out the
edges incident to a vertex given a predicate P . This algorithm is
an internal primitive in Sage and is not exposed to the user. The
algorithm first maps over all blocks incident to the vertex in parallel.

For each block, it finds all active bits in the block, reads the edge
corresponding to the active bit and applies the predicate P , unsetting
the bit iff the predicate returns false. If the bit for an edge (u, v)
is unset, the algorithm marks the dirty bit for v to true if needed.
The algorithm maintains a count of how many bits are still active
while processing the block, and stores the per-block counts in an
array of size equal to the number of blocks. Next, it performs a
reduction over this array to compute the number of blocks with at
least one active edge. If this value is less than a constant fraction of
the current number of blocks incident to the vertex, the algorithm
filters out all of these blocks with no active elements, and packs the
remaining blocks contiguously in the same memory, using a parallel
filter over the blocks. The algorithm then updates the offsets for all
blocks using a prefix sum. Finally, the algorithm updates the vertex
degree and number of currently active blocks incident to the vertex.

The overall work is O(A · (FB/ logn) + dactive(v)) and the
depth is O(logn + FB), where A is the number of non-empty
blocks corresponding to v and dactive(v) is the number of active
edges incident to vertex v.
EDGEMAPPACK. The EDGEMAPPACK primitive is implemented
by applying PACKVERTEX to each vertex in the vertexSubset in
parallel. It then updates the number of active edges by performing
a reduction over the new vertex degrees in the vertexSubset. The
overall work is the sum of the work for packing out each vertex
in the vertexSubset, S, which is O(A · (FB/ logn) +

∑
v∈S(1 +

dactive(v))), and the depth isO(logn+FB), whereA is the number
of non-empty blocks corresponding to all v ∈ S.
FILTEREDGES. The FILTEREDGES primitive uses the EDGEMAP-
PACK, providing a vertexSubset containing all vertices. The work is
O(n+A·(FB/ logn)+|Eactive|), and the depth isO(logn+FB),
whereA is the number of non-empty blocks in the graph andEactive

is the set of active edges represented by the graph filter.

4.2.3 Implementation
Optimizations. We use the widely available TZCNT and BLSR x86
intrinsics to accelerate block processing. Each block is logically
divided into a number of machine words, so we consider processing
a single machine word. If the word is non-zero, we create a tem-
porary copy of the word, and loop while this copy is non-zero. In
each iteration, we use TZCNT to find the index of the next lowest bit,
and clear the lowest bit using BLSR. Doing so allows us to process a
block with q words and k non-zero bits in O(q + k) instructions.

We also implemented intersection primitives, which are used in
our triangle counting algorithm based on the decoding implementa-
tion described above. For compressed graphs, since we may have
to decode an entire compressed block to fetch a single active edge,
we immediately decompress the entire block and store it locally
in the iterator’s memory. We then process the graph filter’s bits
word-by-word using the intrinsic-based algorithm described above.
Memory Usage. The overall memory requirement of a graphFilter
is 3n words to store the degrees, offsets, and number of blocks, plus
O(m) bits to store the bitset data and the metadata. The metadata
increases the memory usage by a constant factor, sinceFB is at least
the size of a machine word, and so the metadata stored per block
can be amortized against the bits stored in the block. The overall
memory usage is therefore O(n + m/ logn) words of memory.

1604

For our uncompressed inputs, the size of the graph filter is 4.6–
8.1x smaller than the size of the uncompressed graph. For our
compressed inputs, the size of the filter is 2.7–2.9x smaller than the
size of the compressed graph.

4.3 Semi-Asymmetric Graph Algorithms
We now describe Sage’s efficient parallel graph algorithms in the
PSAM model. Our results and theoretical bounds are summarized in
Table 1. The bounds are obtained by combining efficient in-memory
algorithms in our prior work [37] with the new semi-asymmetric
techniques designed in Sections 4.1 and 4.2. Due to space con-
straints, we provide details about how our theoretical results are
obtained based on the proofs from Dhulipala et al. [37].

4.3.1 Shortest Path Problems
Algorithms. We consider six shortest-path problems in this pa-
per: breadth-first search (BFS), integral-weight SSSP (wBFS),
general-weight SSSP (Bellman-Ford), single-source betweenness
centrality, single-source widest path, and O(k)-spanner. Our
BFS, Bellman-Ford, and betweenness centrality implementations
are based on those in Ligra [84], and our wBFS implementation
is based on the one in Julienne [36]. We provide two implemen-
tations of the single-source widest path algorithm, one based on
Bellman-Ford, and another based on the wBFS implementation
from Julienne [36]. An O(k)-spanner is a subgraph that preserves
shortest-path distances within a factor of O(k). Our O(k)-spanner
implementation is based on an algorithm by Miller et al. [68].
Efficiency in the PSAM. Our theoretical bounds for these problems
in the PSAM are obtained by using the EDGEMAPCHUNKED primi-
tive (Section 4.1) for performing sparse graph traversals, because
all of these algorithms can be expressed as iteratively performing
EDGEMAPCHUNKED over subsets of vertices. The proofs are sim-
ilar to the proof we provide for BFS in Section 4.1.3 and rely on
Theorem 4.1. Note that the bucketing data structure used in Juli-
enne [36] requires only O(n) words of space to bucket vertices, and
thus automatically fits in the PSAM model. The Miller et al. con-
struction builds an O(k)-spanner with size O(n1+1/k), and runs
in O(m) expected work and O(k logn) depth whp. Our imple-
mentation in Sage runs our low-diameter decomposition algorithm,
which is efficient in the PSAM as we describe below. We set k to be
Θ(logn), which results in a spanner with size O(n).

4.3.2 Connectivity Problems
Algorithms. We consider four connectivity problems in this pa-
per: low-diameter decomposition (LDD), connectivity, spanning
forest, and biconnectivity. Our implementations are extensions of
the implementations provided in GBBS [37], and due to space con-
straints we refer the reader to that paper for detailed descriptions of
the problems and of our provably-efficient in-memory algorithms.
Efficiency in the PSAM. First, we replace the calls to EDGEMAP-
BLOCKED in each algorithm with calls to EDGEMAPCHUNKED,
which ensures that the graph traversal step usesO(n) words of small-
memory using Theorem 4.1. This modification results in PSAM
algorithms for LDD. For the other connectivity-like algorithms that
use LDD, namely connectivity, spanning forest, biconnectivity, we
use the improved analysis of LDD provided in [68] to argue that the
number of inter-cluster edges after applying LDD with β = O(1)
is O(n) in expectation. Thus, the graph on the inter-cluster edges
can be built in small-memory. We provide the full details in [38].
We also obtain the same space bounds in the worst case for our
connectivity, spanning forest, biconnectivity, and O(k)-spanner al-
gorithms without affecting the work and depth of the algorithms
(see [38] for details). Lastly, we note that although this results in
only O(n) words of small-memory theoretically, in practice our

implementation of biconnectivity instead uses the graph filtering
structure to optimize a call to connectivity that runs on the input
graph, with a large subset of the edges removed.

4.3.3 Covering Problems
Algorithms. We consider four covering problems in this paper:
maximal independent set (MIS), maximal matching, graph color-
ing, and approximate set cover. All of our implementations are
extensions of our previous work in GBBS [37].
Efficiency in the PSAM. For MIS and graph coloring, we derive
PSAM algorithms by applying our EDGEMAPCHUNKED optimiza-
tion because other than graph traversals, both algorithms already
use O(n) words of small-memory. Both maximal matching and
approximate set cover use our graph filtering technique to achieve
immutability and reduced memory usage without affecting the theo-
retical bounds of the algorithms. We provide more details about our
maximal matching algorithm in the full version of this paper [38].
For set cover, our new bounds for filtering match the bounds on
filtering used in the GBBS code which mutates the underlying graph,
and so our implementation also computes a (1 + ε)-approximate set
cover in O(m) expected work and O(log3 n) depth whp.

4.3.4 Substructure Problems
Algorithms. We consider three substructure-based problems in
this paper: k-core, approximate densest subgraph and triangle
counting. Substructure problems are fundamental building blocks
for community detection and network analysis (e.g., [23, 48, 57,
78, 79, 98]). Our k-core and triangle-counting implementations are
based on the implementation from GBBS [37].
Efficiency in the PSAM. For the k-core algorithm to use O(n)
words of small-memory, it should use the fetch-and-add based im-
plementation of k-core, which performs atomic accumulation in
an array in order to update the degrees. However, the fetch-and-
add based implementation performs poorly in practice, where it
incurs high contention to update the degrees of vertices incident
to many removed vertices [37]. Therefore, in practice we use a
histogram-based implementation, which always runs faster than the
fetch-and-add based implementation (the histogram primitive is fully
described in [37]). In this paper, we implemented a dense version of
the histogram routine, which performs reads for all vertices in the
case where the number of neighbors of the current frontier is higher
than a threshold t. The work of the dense version is O(m). Using
t = m/c for some constant c ensures work-efficiency, and results
in low memory usage for sparse calls in practice. Our approximate
densest subgraph algorithm is similar to our k-core algorithm, and
uses a histogram to accelerate processing the removal of vertices.
The code uses the dense histogram optimization described above.
Our triangle counting implementation uses the graph filter structure
to orient edges in the graph from lower degree to higher degree.

4.3.5 Eigenvector Problems
Algorithms. We consider the PageRank algorithm, designed to
rank the importance of vertices in a graph [24]. Our PageRank
implementation is based on the implementation from Ligra.
Efficiency in the PSAM. We optimized the Ligra implementation to
improve the depth of the algorithm. The implementation from Ligra
runs dense iterations, where the aggregation step for each vertex
(reading its neighbor’s PageRank contributions) is done sequentially.
In Sage, we implemented a reduction-based method that reduces
over these neighbors using a parallel reduce. Therefore, each it-
eration of our implementation requires O(m) work and O(logn)
depth. The overall work is O(Pit ·m) and depth is O(Pit logn),
where Pit is the number of iterations required to run PageRank to
convergence with a convergence threshold of ε = 10−6.

1605

5 Experiments
Overview of Results. After describing the experimental setup (Sec-
tion 5.1), we show the following main experimental results:

• Section 5.2: Our NUMA-optimized graph storage approach out-
performs naive (and natural) approaches by 6.2x.
• Section 5.3: Sage achieves between 31–51x speedup for short-

est path problems, 28–53x speedup for connectivity problems,
16–49x speedup for covering problems, 9–63x speedup for sub-
structure problems and 42–56x speedup for eigenvector problems.
• Section 5.4: Compared to existing state-of-the-art DRAM-only

graph analytics, Sage run on NVRAM is 1.17x faster on average
on our largest graph that fits in DRAM. Sage run on NVRAM is
only 5% slower on average than when run entirely in DRAM.
• Section 5.5: We study how Sage compares to other NVRAM

approaches for graphs that are larger than DRAM. We find that
Sage on NVRAM using App-Direct Mode is 1.94x faster on
average than the recent state-of-the-art Galois codes [42] run using
Memory Mode. Compared to GBBS codes run using Memory
Mode, Sage is 1.87x faster on average across all 18 problems.
• Section 5.6: We compare Sage with existing state-of-the-art semi-

external memory graph processing systems, including FlashGraph,
Mosaic, and GridGraph and find that our times are 9.3x, 12x, and
8024x faster on average, respectively.

5.1 Experimental Setup
5.1.1 Machine Configuration
We run our experiments on a 48-core, 2-socket machine (with two-
way hyper-threading) with 2× 2.2Ghz Intel 24-core Cascade Lake
processors (with 33MB L3 cache) and 375GB of DRAM. The ma-
chine has 3.024TB of NVRAM spread across 12 252GB DIMMs (6
per socket). All of our speedup numbers report running times on a
single thread (T1) divided by running times on 48-cores with hyper-
threading (T96). Our programs are compiled with the g++ compiler
(version 7.3.0) with the -O3 flag. We use the command numactl -i
all for our parallel experiments. Our programs use a work-stealing
scheduler that we implemented, implemented similarly to Cilk [20].

5.1.2 NVRAM Configuration
NVRAM Modes. The NVRAM we use (Optane DC Persistent
Memory) can be configured in two distinct modes. In Memory
Mode, the DRAM acts like a direct-mapped cache between L3 and
the NVRAM for each socket. Memory Mode transparently provides
access to higher memory capacity without software modification.
In this mode, the read-write asymmetry of NVRAM is obscured
by the DRAM cache, and causes the DRAM hit rate to dominate
memory performance. In App-Direct Mode, NVRAM acts as byte-
addressable storage independent of DRAM, providing developers
with direct access to the NVRAM.
Sage Configuration. In Sage, we configure the NVRAM to use
App-Direct Mode. The devices are configured using the FSDAX
mode, which removes the page cache from the I/O path for the
device and allows MMAP to directly map to the underlying memory.
Graph Storage. The approach we use in Sage is to store two
separate copies of the graph, one copy on the local NVRAM of each
socket. Threads can determine which socket they are running on by
reading a thread-local variable, and access the socket-local copy of
the graph. We discuss the approach in detail in Section 5.2

5.1.3 Graph Data
To show how our algorithms perform on graphs at different scales,
we selected a representative set of real-world graphs of varying
sizes. These graphs are Web graphs and social networks, which are
low-diameter graphs that are frequently used in practice. We list the

Table 2: Graph inputs, number of vertices, edges, and average degree (davg).
Graph Dataset Num. Vertices Num. Edges davg

LiveJournal [22] 4,847,571 85,702,474 17.6
com-Orkut [102] 3,072,627 234,370,166 76.2
Twitter [53] 41,652,231 2,405,026,092 57.7
ClueWeb [22] 978,408,098 74,744,358,622 76.3
Hyperlink2014 [67] 1,724,573,718 124,141,874,032 72.0
Hyperlink2012 [67] 3,563,602,789 225,840,663,232 63.3

graphs used in our experiments in Table 2, which we symmetrized
to obtain larger graphs and so that all of the algorithms would work
on them. Hyperlink 2012 is the largest publicly-available real-world
graph. We create weighted graphs for evaluating weighted BFS,
Bellman-Ford, and Widest Path by selecting edge weights in the
range [1, logn) uniformly at random. We process the ClueWeb, Hy-
perlink2014, and Hyperlink2012 graphs in the parallel byte-encoded
compression format from Ligra+ [86], and process LiveJournal,
com-Orkut, and Twitter in the uncompressed (CSR) format.

5.2 Graph Layout in NVRAM
While building Sage, we observed startingly poor performance of
cross-socket reads to graph data stored on NVRAM. We designed a
simple micro-benchmark that illustrates this behavior. The bench-
mark runs over all vertices in parallel. For the i-th vertex, it counts
the number of neighbors incident to it by reducing over all of its
incident edges. It then writes this value to an array location corre-
sponding to the i-th vertex. The graph is stored in CSR format, and
so the benchmark reads each vertex offset exactly once, and reads
the edges incident to each vertex exactly once. Therefore the total
number of reads from the NVRAM is proportional to n+m, and
the number of (in-memory) writes is proportional to n.

For the ClueWeb graph, we observed that running the benchmark
with the graph on one socket using all 48 hyper-threads on the same
socket results in a running time of 7.1 seconds. However, using
numactl -i all, and running the benchmark on all threads across
both sockets results in a running time of 26.7 seconds, which is 3.7x
worse, despite using twice as many hyper-threads. While we are
uncertain as to the underlying reason for this slowdown, one possible
reason could be the granularity size for the current generation of
NVRAM DIMMs, which have a larger effective cache line size of
256 bytes [49], and a relatively small cache within the physical NVM
device. Using too many threads could cause thrashing, which is a
possible explanation of the slowdowns we observed when scaling
up reads to a single NVRAM device by increasing the number of
threads. To the best of our knowledge, this significant slowdown
has not been observed before, and understanding how to mitigate it
is an interesting question for future work.

As described earlier, our approach in Sage is to store two separate
copies of the graph, one on the local NVRAM of each socket. Using
this configuration, our micro-benchmark runs in 4.3 seconds using
all 96 hyper-threads, which is 1.6x faster than the single-socket
experiment and 6.2x faster than using threads across both sockets to
the graph stored locally within a single socket.

5.3 Scalability
Figure 6 shows the speedup obtained on our machine for Sage
implementations on our large graphs, annotating each bar with the
parallel running time. In all of these experiments, we store all of
the graph data in NVRAM and use DRAM for all temporary data.
Shortest Path Problems. Our BFS, weighted BFS, Bellman-Ford,
and betweenness centrality implementations achieve between par-
allel speedups of 31–51x across all inputs. For O(k)-Spanner,
we achieve 39–51x speedups across all inputs. All Sage codes
use the memory-efficient sparse traversal (i.e., EDGEMAPCHUN-
KED) designed in this paper. We note that the new weighted-SSSP
implementations using EDGEMAPCHUNKED are up to 2x more

1606

BFS
wBFS

Bellm
an-Ford

Widest-
Path

Betw
eenness

O(k)-S
panner

LDD

Connectiv
ity

SpanningForest

Biconnectiv
ity MIS

Maxim
al-M

atching

Graph-C
olorin

g

Apx-Set-C
over

k-C
ore

Apx-D
ens-S

ubgraph

Tria
ngle-C

ount

PageRank-It
er

0

10

20

30

40

50

60
S

p
ee

d
u

p
(T

1
/

T
9

6
)

Values on top of bars display parallel (96-thread) running times.

2
.4 2
5

.9 2
6

.3

2
9

.6

2
3

.1 1
5

.1

3
.7

8
.3

1
5

.0

5
7

.3 1
2

.9

4
2

.9

6
3

.8

5
8

.8

7
0

.3

1
2

.5

4
9

8
.0 5

.9

5
.1 4
0

.7 3
2

.8

4
1

.1 3
0

.7

2
1

.7

7
.4

1
5

.8

2
9

.0

9
4

.7

2
2

.5

7
2

.9

8
8

.7

6
5

.0

9
6

.0

1
7

.1

5
7

2
2

.0

9
.0

1
1

.4

9
8

.0

8
2

.3

7
7

.5 5
3

.9

5
5

.1

2
4

.0 3
6

.2

6
1

.3

2
3

4
.0

5
2

.3

1
6

6
.0

2
3

9
.0

1
9

3
.0

2
1

5
.0

4
2

.2

3
5

2
9

.0 2
3

.6

ClueWeb Hyperlink2014 Hyperlink2012

Figure 6: Speedup of Sage algorithms on large graph inputs on a 48-core machine (with 2-way hyper-threading), measured relative to the algorithm’s
single-thread time. All algorithms are run using NVRAM in App-Direct Mode. Each bar is annotated with the parallel running time on top of the bar.

memory-efficient than the implementations from [37]. We ran our
O(k)-Spanner implementation with k set to dlog2 ne by default.
Connectivity Problems. Our low-diameter decomposition imple-
mentation achieves a speedup of 28–42x across all inputs. Our
connectivity and spanning forest implementations, which use the
new filtering structure from Section 4.2, achieve speedups of 37–
53x across all inputs. Our biconnectivity implementation achieves a
speed up of 38–46x across all inputs. We found that setting β = 0.2
in the LDD-based algorithms (connectivity, spanning forest, and
biconnectivity) performs best in practice, and creates significantly
fewer than mβ = m/5 inter-cluster edges predicted by the theoreti-
cal bound [69], due to many duplicate edges that get removed.
Covering Problems. Our MIS, maximal matching, and graph col-
oring implementations achieve speedups of 43–49x, 33–44x, and
16–39x, respectively. Our MIS implementation is similar to the im-
plementation from GBBS. Our maximal matching implementation
implements several new optimizations over the implementation from
GBBS, such as using a parallel hash table to aggregate edges that
will be processed in a given round. These optimizations result in our
code (using the graph filter) running faster than the original code
when run in DRAM-only, outperforming the 72-core DRAM-only
times reported in [37] for some graphs (we discuss the speedup of
Sage over GBBS in Section 5.4).
Substructure Problems. Our k-core, approximate densest sub-
graph, and triangle counting implementations achieve speedups of
9–38x, 43–48x, and 29–63x, respectively. Our code achieves similar
speedups and running times on NVRAM compared to the previous
times reported in [37]. We ran the approximate densest subgraph
implementation with ε = 0.001, which produces subgraphs of sim-
ilar density to the 2-approximation of Charikar [27]. Lastly, the
Sage triangle counting algorithm uses the iterator defined over graph
filters to perform parallel intersection. The performance of our
implementation is affected by the number of edges that must be
decoded for compressed graph inputs, and we discuss this in detail
in the full version of this paper [38].
Eigenvector Problems. Our PageRank implementation achieves a
parallel speedup of 42–56x. Our implementation is based on the
PageRank implementation from Ligra, and improves the parallel
scalability of the Ligra-based code by aggregating the neighbor’s
contributions for a given vertex in parallel. We ran our PageRank
implementation with ε = 10−6 and a damping factor of 0.85.

5.4 NVRAM vs. DRAM Performance
In this section, we study how fast Sage is compared to state-of-the-
art shared-memory graph processing codes, when these codes are

run entirely in DRAM. For these experiments, we study the ClueWeb
graph since it is the largest graph among our inputs where both the
graph and all intermediate algorithm-specific data fully resides in the
DRAM of our machine. We consider the following configurations:

(1) GBBS codes run entirely in DRAM
(2) GBBS codes converted to use NVRAM using libvmmalloc (a

robust NVRAM memory allocator)
(3) Sage codes run entirely in DRAM
(4) Sage codes run using NVRAM in App-Direct Mode

Setting (2) is relevant since it captures the performance of a naive ap-
proach to obtaining NVRAM-friendly code, which is to simply run
existing shared-memory code using a NVRAM memory allocator.

Figure 7 displays the results of these experiments. Comparing
Sage to GBBS when both systems are run in memory shows that
our code is faster than the original GBBS implementations by 1.17x
on average (between 2.38x faster to 1.73x slower). The notable
exception is for triangle counting, where Sage is 1.73x slower than
the GBBS code (both run in memory). The reason for this differ-
ence is due to the input-ordering the graph is provided in, and is
explained in detail in the full version of this paper [38]. A number
of Sage implementations, like connectivity and approximate densest
subgraph, are faster than the GBBS implementations due to opti-
mizations in our codes that are absent in GBBS, such as a faster
implementation of graph contraction. Our read-only codes when
run using NVRAM are only about 5% slower on average than when
run using DRAM-only. This difference in performance is likely
due to the higher cost of NVRAM reads compared to DRAM reads.
Finally, Sage is always faster than GBBS when run on NVRAM
using libvmmalloc, and is 6.69x faster on average.

These results show that for a wide range of parallel graph algo-
rithms, Sage significantly outperforms a naive approach that con-
verts DRAM codes to NVRAM ones, is often faster than the fastest
DRAM-only codes when run in DRAM, and is competitive with the
fastest DRAM-only running times when run in NVRAM.

5.5 Alternate NVRAM approaches
We now compare Sage to the fastest available NVRAM approaches
when the input graph is larger than the DRAM size of the machine.
We focus on the Hyperlink2012 graph, which is our only graph
where both the graph and intermediate algorithm data are larger than
DRAM. We first compare Sage to the Galois-based implementations
by Gill et al. [42], which use NVRAM configured in Memory Mode.
We then compare Sage to the unmodified shared-memory codes
from GBBS modified to use NVRAM configured in Memory Mode.

1607

BFS
wBFS

Bellm
an-Ford

Widest-
Path

Betw
eenness

O(k)-S
panner

LDD

Connectiv
ity

SpanningForest

Biconnectiv
ity MIS

Maxim
al-M

atching

Graph-C
olorin

g

Apx-Set-C
over

k-C
ore

Apx-D
ens-S

ubgraph

Tria
ngle-C

ount

PageRank-It
er

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

lo
w

d
ow

n
re

la
ti

ve
to

fa
st

es
t

2
.6

2
6

.6

2
7

.3

2
9

.9

2
4

.4

1
6

.6

4
.1

8
.6

1
5

.7

6
2

.3

1
2

.6

4
6

.4 5
4

.1

3
2

.3

6
6

.3

2
8

.2

2
7

9
.0

5
.7

*
1

8
.2

*
2

4
2

.1

*
2

3
2

.0

*
2

5
1

.7

*
7

9
.8

*
6

1
.8

*
3

5
.1

*
4

1
.8

*
6

8
.5

*
3

9
3

.0

*
5

0
.7

*
2

7
1

.1

*
4

9
6

.8

*
2

5
1

.6

*
7

6
7

.5

*
1

3
1

.3

6
0

4
.4

*
2

1
.6

2
.0

2
4

.0

2
5

.5

2
7

.1

1
3

.3

1
3

.0

3
.5

7
.9

1
4

.7

5
5

.8

1
2

.0

4
1

.6

4
1

.1

4
9

.0

6
6

.0

1
1

.8

4
8

5
.0

5
.92

.4

2
5

.9

2
6

.3

2
9

.6

1
5

.1

1
5

.1

3
.7

8
.3

1
5

.0

5
7

.3

1
2

.9

4
2

.9 4
9

.8

5
8

.8

7
0

.3

1
2

.5

4
9

8
.0

5
.9

Values on top of bars display parallel (96-thread) running times.
GBBS-DRAM GBBS-NVRAM (libvmmalloc) Sage-DRAM Sage-NVRAM

Figure 7: Performance of Sage on the ClueWeb graph compared with existing state-of-the-art in-memory graph processing systems in terms of slowdown
relative to the fastest system (smaller is better). GBBS refers to the DRAM-only codes developed in [37], and Sage refers to the codes developed in this paper.
Both codes are run in two configurations: DRAM measures the running time when the graph is stored in memory, and NVRAM measures the running time
when the graph is stored in non-volatile memory, and accessed either using the techniques developed in this paper (Sage-NVRAM) or using LIBVMMALLOC to
automatically convert the DRAM-only codes from GBBS to work using non-volatile memory (GBBS-NVRAM). We truncate relative times slower than 3x and
mark the tops of these bars with ∗. All bars are annotated with the parallel running times of the codes on a 48-core system with 2-way hyper-threading. Note
that the ClueWeb graph is the largest graph dataset studied in this paper that fits in the main memory of this machine.

Comparison with Galois [42]. Gill et al. [42] study the perfor-
mance of several state-of-the-art graph processing systems, includ-
ing Galois [71], GBBS [37], GraphIt [105], and GAP [9] when run
on NVRAM configured to use Memory Mode. Their experiments
are run on a nearly identical machine to ours, with the same amount
of DRAM. However, their machine has 6.144TB of NVRAM (12
NVRAM DIMMs with 512GB of capacity each).

Gill et al. [42] find that their Galois-based codes outperform GAP,
GraphIt, and GBBS by between 3.8x, 1.9x, and 1.6x on average,
respectively, for three large graphs inputs, including the Hyper-
link2012 graph. In our experiments running GBBS on NVRAM
using MemoryMode, we find that the GBBS performance using
MemoryMode is 1.3x slower on average than Galois. There are
several possible reasons for the small difference. First, Gill et
al. [42] use the directed version of the Hyperlink2012 graph, which
has 1.75x fewer edges than the symmetrized version (225.8B vs.
128.7B edges). The symmetrized graph exhibits a massive con-
nected component containing 94% of the vertices, which a graph
search algorithm must process for most source vertices. However, a
search from the largest SCC in the directed graph reaches about half
the vertices [66]. Second, they do not enable compression in GBBS,
which is important for reducing cache-misses and NVRAM reads.
Lastly, we found that transparent huge pages (THP) significantly
improves performance, while they did not, which may be due to
differences regarding THP configuration on the different machines.

Figure 1 shows results for their Galois-based system on the di-
rected Hyperlink2012 graph. Compared with their NVRAM codes,
Sage is 1.04–3.08x faster than their fastest reported times, and 1.94x
faster on average. Their codes use the maximum degree vertex in the
directed graph as the source for BFS, SSSP, and betweenness cen-
trality. We use the maximum degree vertex in the symmetric graph,
and note that running on the symmetric graph is more challenging,
since our codes must process more edges.

Despite the fact that our algorithm must perform more work, our
running times for BFS are 3.08x faster than the time reported for
Galois, and our SSSP time is 1.43x faster. For connectivity and
PageRank, our times are 2.09x faster and 2.12x faster respectively.
For betweenness, our times are 1.04x faster. The authors also report
running times for an implementation of k-core that computes a sin-
gle k-core, for a given value of k. This requires significantly fewer
rounds than the k-core computation studied in this paper, which

computes the coreness number of every vertex, or the largest k such
that the vertex participates in the k-core. They report that their code
requires 49.2 seconds to find the 100-core of the Hyperlink2012
graph. Our code finds all k-cores of this graph in 259 seconds,
which requires running 130,728 iterations of the peeling algorithm
and also discovers the value of the largest k-core supported by the
graph (kmax = 10565).

In summary, we find that using Sage on NVRAM using App-
Direct Mode is 1.94x faster on average than the Galois codes run
using Memory Mode.
Algorithms using Memory Mode. Next, we compare Sage to
the unmodified shared-memory codes from GBBS modified to use
NVRAM configured in Memory Mode. We run these Memory Mode
experiments on the same machine with 3TB of NVRAM, where
1.5TB is configured to be used in Memory Mode.

Figure 1 reports the parallel running times of both Sage codes
using NVRAM, and the GBBS codes using NVRAM configured in
Memory Mode for the Hyperlink2012 graph. The results show that
in all but one case (triangle counting) our running times are faster
(between 1.15–2.92x). For triangle counting, the directed version
of the Hyperlink2012 graph fits in about 180GB of memory, which
fits within the DRAM of our machine and will therefore reside in
memory. We note that we also ran Memory Mode experiments on
the ClueWeb graph, which fits in memory. The running times were
only 5–10% slower compared to the DRAM-only running times
for the same GBBS codes reported in Figure 7, indicating a small
overhead due to Memory Mode when the data fits in memory.

In summary, our results for this experiment show that the tech-
niques developed in this paper produce meaningful improvements
(1.87x speedup on average, across all 18 problems) over simply run-
ning unmodified shared-memory graph algorithms using Memory
Mode to handle graph sizes that are larger than DRAM.

5.6 External and Semi-External Systems
In this section we place Sage’s performance in context by com-
paring it to existing state-of-the-art semi-external memory graph
processing systems. Table 3 shows the running times and system
configurations for state-of-the-art results on semi-external memory
graph processing systems. We report the published results presented
by the authors of these systems to give a high-level comparison due
to the fact that (i) our machine does not have parallel SSD devices

1608

Table 3: System configurations (memory in terabytes and threads (hyper-
threads)) and running times (seconds) of existing semi-external memory
results on the Hyperlink graphs. The last section shows our running times
(note that our system is also equipped with NVRAM DIMMs). *These
problems are run on directed versions of the graph.

Paper Problem Graph Mem Threads Time

FlashGraph [34]

BFS* 2012 .512 64 208
BC* 2012 .512 64 595
Connectivity* 2012 .512 64 461
PageRank* 2012 .512 64 2041
TC* 2012 .512 64 7818

Mosaic [61]
BFS* 2014 0.768 1000 6.55
Connectivity* 2014 0.768 1000 708
PageRank (1 iter.)* 2014 0.768 1000 21.6
SSSP* 2014 0.768 1000 8.6

Sage

BFS 2014 0.375 96 5.10
SSSP 2014 0.375 96 32.8
Connectivity 2014 0.375 96 15.8
PageRank (1 iter.) 2014 0.375 96 8.99
BFS 2012 0.375 96 11.4
BC 2012 0.375 96 53.9
Connectivity 2012 0.375 96 36.2
SSSP 2012 0.375 96 82.3
PageRank 2012 0.375 96 827
TC 2012 0.375 96 3529

that most of these systems require, and (ii) modifying them to use
NVRAM would be a serious research undertaking in its own right.
FlashGraph. FlashGraph [34] is a semi-external memory graph
engine that stores vertex data in memory and stores the edge lists in
an array of SSDs. Their system is optimized for I/Os at a flash page
granularity (4KB), and merges I/O requests to maximize throughput.
FlashGraph provides a vertex-centric API, and thus cannot imple-
ment some of the work-optimal algorithms designed in Sage, like
our connectivity, biconnectivity, or parallel set cover algorithms.

We report running times for FlashGraph for Hyperlink2012 on
a 32-core 2-way hyper-threaded machine with 512GB of memory
and 15 SSDs in Table 3). Compared to FlashGraph, the Sage times
are 9.3x faster on average. Our BFS and BC times are 18.2x and
11x faster, and our connectivity, PageRank and triangle counting
implementations are 12.7x, 2.4x faster, and 2.2x faster, respectively.
We note that our times are on the symmetric version of the Hyper-
link2012 graph which has twice the edges, where a BFS from a
random seed hits the massive component containing 95% of the ver-
tices (BFSes on the directed graph reach about 30% of the vertices).
Mosaic. Mosaic [61] is a hybrid engine supporting semi-external
memory processing based on a Hilbert-ordered data structure. Mo-
saic uses co-processors (Xeon Phis) to offload edge-centric process-
ing, allowing host processors to perform vertex-centric operations.
Giving a full description of their complex execution strategy is not
possible in this space, but at a high level, it is based on exploiting
the fact that user-programs are written in a vertex-centric model.

We report the running times for Mosaic run using 1000 hyper-
threads, 768GB of RAM, and 6 NVMes in Table 3. Compared
with their times, Sage is 12x faster on average, solving BFS 1.2x
faster, connectivity 44.8x faster, SSSP 3.8x slower, and 1-iteration
of PageRank 2.4x faster. Given that both SSSP and PageRank are
implemented using an SpMV like algorithm in their system, we are
not sure why their PageRank times are 2.5x slower than the total
time of an SSSP computation. In our experiments, the most costly
iteration of Bellman-Ford takes roughly the same amount of time
as a single PageRank iteration since both algorithms require similar
memory accesses in this step. Sage solves a much broader range of
problems compared to Mosaic, and is often faster than it.
GridGraph. GridGraph is an out-of-core graph engine based on
a 2-dimensional grid representation of graphs. Their processing
scheme ensures that only a subset of the vertex-values accessed and
written to are in memory at a given time. GridGraph also offers a

mechanism similar to edge filtering which prevents streaming edges
from disk if they are inactive. Like FlashGraph, GridGraph is a
vertex-centric system and thus cannot implement algorithms that do
not fit in this restricted computational model.

The authors consider significantly smaller graphs than those used
in our experiments (the largest is a 6.64B edge WebGraph). How-
ever, they do solve the LiveJournal and Twitter graphs that we use.
For the Twitter graph, our BFS and Connectivity times are 15690x
and 359x faster respectively than theirs (our speedups for LiveJour-
nal are similar). GridGraph does not use direction optimization,
which is likely why their BFS times are much slower.

6 Related Work
A significant amount of research has focused on reducing expen-
sive writes to NVRAMs. Early work has designed algorithms for
database operators [29, 95, 96]. Blelloch et al. [10, 15, 16] define
computational models to capture the asymmetric read-write cost
on NVRAMs, and many algorithms and lower bounds have been
obtained based on the models [11, 18, 19, 45, 50]. Other models and
systems to reduce writes or memory footprint on NVRAMs have
also been described [5, 6, 25, 26, 28, 54, 60, 72, 73, 80, 93].

Persistence is a key property of NVRAMs due to their non-
volatility. Many new persistent data structures have been designed
for NVRAMs [7, 12, 30, 31, 74, 83]. There has also been re-
search on automatic recovery schemes and transactional memory
for NVRAMs [3, 33, 55, 59, 97, 104, 108]. There are several recent
papers benchmarking performance on NVRAMs [49, 58, 94].

Parallel graph processing frameworks have received significant
attention due to the need to quickly analyze large graphs [77].
The only previous graph processing work targeting NVRAMs is
the concurrent work by Gill et al. [42], which we discuss in Sec-
tion 5.5. Dhulipala et al. [36, 37] design the Graph Based Bench-
mark Suite, and show that the largest publicly-available graph, the
Hyperlink2012 graph, can be efficiently processed on a single mul-
ticore machine. We compare with these algorithms in Section 5.
Other multicore frameworks include Galois [71], Ligra [84, 86],
Polymer [103], Gemini [109], GraphGrind [88], Green-Marl [47],
Grazelle [43], and GraphIt [105]. We refer the reader to [4, 62, 82,
101] for excellent surveys of this growing literature.

7 Conclusion
We have introduced Sage, which takes a semi-asymmetric approach
to designing parallel graph algorithms that avoid writing to the
NVRAM and uses DRAM proportional to the number of vertices.
We have designed a new model, the Parallel Semi-Asymmetric
Model, and have shown that all of our algorithms in Sage are prov-
ably efficient, and often work-optimal in the model. Our empirical
study shows that Sage graph algorithms can bridge the performance
gap between NVRAM and DRAM. This enables NVRAMs, which
are more cost-efficient and support larger capacities than traditional
DRAM, to be used for large-scale graph processing. Interesting
directions for future work include studying which filtering algo-
rithms can be made to use only O(n) words of DRAM, and to study
how Sage performs relative to existing NVRAM graph-processing
approaches on synthetic graphs with trillions of edges.

Acknowledgements
This research was supported by DOE Early Career Award DE-
SC0018947, NSF CAREER Award CCF-1845763, NSF grants
CCF-1725663, CCF-1910030 and CCF-1919223, Google Faculty
Research Award, DARPA SDH Award HR0011-18-3-0007, and the
Applications Driving Algorithms (ADA) Center, a JUMP Center
co-sponsored by SRC and DARPA.

1609

8 References

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A
functional approach to external graph algorithms.
Algorithmica, 32(3):437–458, Mar 2002.

[2] A. Aggarwal and J. S. Vitter. The Input/Output complexity of
sorting and related problems. Commun. ACM, 31(9), 1988.

[3] M. Alshboul, H. Elnawawy, R. Elkhouly, K. Kimura, J. Tuck,
and Y. Solihin. Efficient checkpointing with recompute
scheme for non-volatile main memory. ACM Transactions on
Architecture and Code Optimization (TACO), 16(2):18, 2019.

[4] K. Ammar and M. T. Özsu. Experimental analysis of
distributed graph systems. PVLDB, 11(10):1151–1164, 2018.

[5] J. Arulraj, J. J. Levandoski, U. F. Minhas, and P. Larson.
BzTree: A high-performance latch-free range index for
non-volatile memory. PVLDB, 11(5):553–565, 2018.

[6] J. Arulraj and A. Pavlo. How to build a non-volatile memory
database management system. In ACM SIGMOD, pages
1753–1758, 2017.

[7] H. Attiya, O. Ben-Baruch, P. Fatourou, D. Hendler, and
E. Kosmas. Tracking in order to recover: Recoverable
lock-free data structures. CoRR, abs/1905.13600, 2019.

[8] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. In SC, 2012.

[9] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP
benchmark suite. CoRR, abs/1508.03619, 2015.

[10] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
Y. Gu, C. McGuffey, and J. Shun. Parallel algorithms for
asymmetric read-write costs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2016.

[11] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
Y. Gu, C. McGuffey, and J. Shun. Implicit decomposition for
write-efficient connectivity algorithms. In IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), 2018.

[12] N. Ben-David, G. E. Blelloch, M. Friedman, and Y. Wei.
Delay-free concurrency on faulty persistent memory. In
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 253–264, 2019.

[13] G. E. Blelloch and L. Dhulipala. Introduction to parallel
algorithms 15-853: Algorithms in the real world. 2018.

[14] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for
parallel ordered sets. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2016.

[15] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and
J. Shun. Sorting with asymmetric read and write costs. In
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2015.

[16] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and
J. Shun. Efficient algorithms with asymmetric read and write
costs. In European Symposium on Algorithms (ESA), 2016.

[17] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal
parallel algorithms in the binary-forking model. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

[18] G. E. Blelloch and Y. Gu. Improved parallel cache-oblivious
algorithms for dynamic programming. In SIAM/ACM
Symposium on Algorithmic Principles of Computer Systems
(APOCS), pages 105–119, 2020.

[19] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel
write-efficient algorithms and data structures for

computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), 1995.

[21] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46(5):720–748, 1999.

[22] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW 2004),
pages 595–601, 2004.

[23] F. Bonchi, A. Khan, and L. Severini. Distance-generalized
core decomposition. In ACM SIGMOD, pages 1006–1023,
2019.

[24] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In International World Wide
Web Conference (WWW), pages 107–117, 1998.

[25] T. Cai, F. Chen, Q. He, D. Niu, and J. Wang. The matrix KV
storage system based on NVM devices. Micromachines,
10(5):346, 2019.

[26] E. Carson, J. Demmel, L. Grigori, N. Knight,
P. Koanantakool, O. Schwartz, and H. V. Simhadri.
Write-avoiding algorithms. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2016.

[27] M. Charikar. Greedy approximation algorithms for finding
dense components in a graph. In International Workshop on
Approximation Algorithms for Combinatorial Optimization,
pages 84–95, 2000.

[28] Q. Chen, H. Lee, Y. Kim, H. Y. Yeom, and Y. Son. Design
and implementation of skiplist-based key-value store on
non-volatile memory. Cluster Computing, 22(2):361–371,
2019.

[29] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In Conference on
Innovative Data Systems Research (CIDR), 2011.

[30] S. Chen and Q. Jin. Persistent B+-trees in non-volatile main
memory. PVLDB, 8(7):786–797, 2015.

[31] N. Cohen, R. Guerraoui, and M. I. Zablotchi. The inherent
cost of remembering consistently. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2018.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[33] A. Correia, P. Felber, and P. Ramalhete. Romulus: Efficient
algorithms for persistent transactional memory. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 271–282, 2018.

[34] D. M. Da Zheng, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay. Flashgraph: Processing billion-node graphs on
an array of commodity SSDs. In FAST, 2015.

[35] T. A. Davis and Y. Hu. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw., 38(1), Dec.
2011.

[36] L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A
framework for parallel graph algorithms using work-efficient
bucketing. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2017.

[37] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically
efficient parallel graph algorithms can be fast and scalable.

1610

In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 293–304, 2018.

[38] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch,
P. B. Gibbons, and J. Shun. Sage: Parallel semi-asymmetric
graph algorithms for NVRAMs. arXiv preprint
arXiv:1910.12310, 2020.

[39] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis.
Grami: Frequent subgraph and pattern mining in a single
large graph. PVLDB, 7(7):517–528, 2014.

[40] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and M. R.
Torres. 2-3 cuckoo filters for faster triangle listing and set
intersection. In ACM Symposium on Principles of Database
Systems (PODS), pages 247–260, 2017.

[41] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming model.
Theoretical Computer Science, 348(2-3):207–216, 2005.

[42] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali.
Single machine graph analytics on massive datasets using
intel optane DC persistent memory. PVLDB, 13(8):1304–13,
2020.

[43] S. Grossman, H. Litz, and C. Kozyrakis. Making pull-based
graph processing performant. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP),
pages 246–260, 2018.

[44] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down
parallel semisort. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 24–34, 2015.

[45] Y. Gu, Y. Sun, and G. E. Blelloch. Algorithmic building
blocks for asymmetric memories. In European Symposium
on Algorithms (ESA), 2018.

[46] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast
and robust subgraph isomorphism search in large graph
databases. In ACM SIGMOD, pages 337–348, 2013.

[47] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:
a DSL for easy and efficient graph analysis. In ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 349–362, 2012.

[48] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs. In
ACM SIGMOD, pages 1311–1322, 2014.

[49] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor,
et al. Basic performance measurements of the Intel Optane
DC persistent memory module. arXiv preprint
arXiv:1903.05714, 2019.

[50] R. Jacob and N. Sitchinava. Lower bounds in the asymmetric
external memory model. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2017.

[51] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

[52] L. Kliemann. Engineering a bipartite matching algorithm in
the semi-streaming model. In Algorithm Engineering -
Selected Results and Surveys, volume 9220 of Lecture Notes
in Computer Science, pages 352–378. 2016.

[53] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In International World
Wide Web Conference (WWW), 2010.

[54] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh.
WORT: Write optimal radix tree for persistent memory

storage systems. In USENIX Conference on File and Storage
Technologies (FAST), 2017.

[55] L. Lersch, W. Lehner, and I. Oukid. Persistent buffer
management with optimistic consistency. In International
Workshop on Data Management on New Hardware, pages
14:1–14:3, 2019.

[56] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection.
http://snap.stanford.edu/data, June 2014.

[57] R.-H. Li, J. X. Yu, and R. Mao. Efficient core maintenance in
large dynamic graphs. IEEE Transactions on Knowledge and
Data Engineering, 2013.

[58] J. Liu and S. Chen. Initial experience with 3D XPoint main
memory. In IEEE International Conference on Data
Engineering Workshops (ICDEW), pages 300–305, 2019.

[59] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and
C. Jung. iDO: Compiler-directed failure atomicity for
nonvolatile memory. In Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–270,
2018.

[60] X. Liu, Y. Hua, X. Li, and Q. Liu. Write-optimized and
consistent RDMA-based NVM systems. arXiv preprint
arXiv:1906.08173, 2019.

[61] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and
T. Kim. Mosaic: Processing a trillion-edge graph on a single
machine. In EuroSys, 2017.

[62] R. R. McCune, T. Weninger, and G. Madey. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale
distributed graph processing. ACM Comput. Surv., 48(2), Oct.
2015.

[63] A. McGregor. Graph stream algorithms: A survey. ACM
SIGMOD, 43(1):9–20, May 2014.

[64] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at
what COST? In Workshop on Hot Topics in Operating
Systems (HotOS), 2015.

[65] K. Mehlhorn and U. Meyer. External-memory breadth-first
search with sublinear I/O. In European Symposium on
Algorithms (ESA), pages 723–735, 2002.

[66] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. Graph
structure in the Web—revisited: a trick of the heavy tail. In
Proceedings of the 23rd international conference on World
Wide Web, 2014.

[67] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph
structure in the Web–analyzed on different aggregation
levels. The Journal of Web Science, 1(1), 2015.

[68] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. Improved
parallel algorithms for spanners and hopsets. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 192–201, 2015.

[69] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph
decompositions using random shifts. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2013.

[70] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005.

[71] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[72] R. Nissim and O. Schwartz. Revisiting the I/O-complexity of
fast matrix multiplication with recomputations. In IEEE

1611

http://snap.stanford.edu/data

International Parallel and Distributed Processing
Symposium (IPDPS), pages 714–716, 2019.

[73] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm,
and G. Gomes. Memory management techniques for
large-scale persistent-main-memory systems. PVLDB, 2017.

[74] W. Pan, T. Xie, and X. Song. Hart: A concurrent
hash-assisted radix tree for DRAM-PM hybrid memory
systems. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2019.

[75] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded
asynchronous graph traversal for in-memory and
semi-external memory. In ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–11, 2010.

[76] S. Rothe and H. Schütze. Cosimrank: A flexible & efficient
graph-theoretic similarity measure. In Annual Meeting of the
Association for Computational Linguistics, pages
1392–1402, 2014.

[77] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu.
The ubiquity of large graphs and surprising challenges of
graph processing. PVLDB, 11(4):420–431, 2017.

[78] A. E. Sariyüce, C. Seshadhri, and A. Pinar. Local algorithms
for hierarchical dense subgraph discovery. PVLDB,
12(1):43–56, 2018.

[79] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek.
Finding the hierarchy of dense subgraphs using nucleus
decompositions. In International World Wide Web
Conference (WWW), 2015.

[80] Y. Shen and Z. Zou. Efficient subgraph matching on
non-volatile memory. In International Conference on Web
Information Systems Engineering, pages 457–471, 2017.

[81] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and
peeling algorithms. arXiv preprint arXiv:2002.10047, 2020.

[82] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua. Graph processing on GPUs: A survey. ACM Comput.
Surv., 50(6), Jan. 2018.

[83] T. Shull, J. Huang, and J. Torrellas. Autopersist: an
easy-to-use Java NVM framework based on reachability. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 316–332, 2019.

[84] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In ACM
Symposium on Principles and Practice of Parallel
Programming (PPOPP), 2013.

[85] J. Shun, L. Dhulipala, and G. E. Blelloch. A simple and
practical linear-work parallel algorithm for connectivity. In
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2014.

[86] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In
Data Compression Conference (DCC), 2015.

[87] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. W.
Mahoney. Parallel local graph clustering. PVLDB,
9(12):1041–1052, 2016.

[88] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos.
GraphGrind: Addressing load imbalance of graph
partitioning. In International Conference on Supercomputing
(ICS), pages 16:1–16:10, 2017.

[89] P. Sun, Y. Wen, T. N. B. Duong, and X. Xiao. GraphMP: An
efficient semi-external-memory big graph processing system
on a single machine. In IEEE International Conference on

Parallel and Distributed Systems (ICPADS), pages 276–283,
2017.

[90] Y. Sun, G. E. Blelloch, W. S. Lim, and A. Pavlo. On
supporting efficient snapshot isolation for hybrid workloads
with multi-versioned indexes. PVLDB, 13(2):211–225, 2019.

[91] Y. Sun, D. Ferizovic, and G. E. Blelloch. PAM: Parallel
augmented maps. In ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), 2018.

[92] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. PVLDB,
5(9):788–799, 2012.

[93] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida,
K. Oe, Y. Doi, L. Harada, and M. Sato. Managing
non-volatile memory in database systems. In ACM SIGMOD,
2018.

[94] A. van Renen, L. Vogel, V. Leis, T. Neumann, and
A. Kemper. Persistent memory I/O primitives. In
International Workshop on Data Management on New
Hardware, pages 12:1–12:7, 2019.

[95] S. D. Viglas. Adapting the B+-tree for asymmetric I/O. In
Advances in Databases and Information Systems (ADBIS),
2012.

[96] S. D. Viglas. Write-limited sorts and joins for persistent
memory. PVLDB, 7(5):413–424, 2014.

[97] C. Wang, S. Chattopadhyay, and G. Brihadiswarn. Crash
recoverable ARMv8-oriented B+-tree for byte-addressable
persistent memory. In ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 33–44, 2019.

[98] J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

[99] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu.
Rstream: Marrying relational algebra with streaming for
efficient graph mining on a single machine. In USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 763–782, 2018.

[100] Y. Wang, Y. Gu, and J. Shun. Theoretically-efficient and
practical parallel DBSCAN. In ACM SIGMOD, 2020.

[101] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph
analytics platforms. Foundations and Trends in Databases, 7,
2017.

[102] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, Jan 2015.

[103] K. Zhang, R. Chen, and H. Chen. Numa-aware
graph-structured analytics. In ACM Symposium on Principles
and Practice of Parallel Programming (PPOPP), 2015.

[104] L. Zhang and S. Swanson. Pangolin: A fault-tolerant
persistent memory programming library. In USENIX Annual
Technical Conference (USENIX ATC), 2019.

[105] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and
S. Amarasinghe. GraphIt: A high-performance graph DSL.
Proc. ACM Program. Lang., 2(OOPSLA):121:1–121:30, Oct.
2018.

[106] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. Flashgraph: Processing
billion-node graphs on an array of commodity SSDs. In
USENIX Conference on File and Storage Technologies
(FAST), 2015.

[107] D. Zheng, D. Mhembere, V. Lyzinski, J. T. Vogelstein, C. E.
Priebe, and R. Burns. Semi-external memory sparse matrix

1612

multiplication for billion-node graphs. IEEE Trans. Parallel
Distrib. Syst., 28(5):1470–1483, May 2017.

[108] T. Zhou, P. Zardoshti, and M. Spear. Brief announcement:
Optimizing persistent transactions. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
169–170, 2019.

[109] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing system. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 301–316, 2016.

1613

	1 Introduction
	2 Preliminaries
	3 Parallel Semi-Asymmetric Model
	3.1 Model Definition
	3.2 Discussion
	3.3 Relationship to Other Models

	4 Sage: A Semi-Asymmetric Graph Engine
	4.1 Semi-Asymmetric Graph Traversal
	4.1.1 Existing Memory-Inefficient Graph Traversal
	4.1.2 Memory-Efficient Traversal: edgeMapChunked
	4.1.3 Case Study: Breadth-First Search

	4.2 Semi-Asymmetric Graph Filtering
	4.2.1 Graph Filter Data Structure
	4.2.2 Algorithms
	4.2.3 Implementation

	4.3 Semi-Asymmetric Graph Algorithms
	4.3.1 Shortest Path Problems
	4.3.2 Connectivity Problems
	4.3.3 Covering Problems
	4.3.4 Substructure Problems
	4.3.5 Eigenvector Problems

	5 Experiments
	5.1 Experimental Setup
	5.1.1 Machine Configuration
	5.1.2 NVRAM Configuration
	5.1.3 Graph Data

	5.2 Graph Layout in NVRAM
	5.3 Scalability
	5.4 NVRAM vs. DRAM Performance
	5.5 Alternate NVRAM approaches
	5.6 External and Semi-External Systems

	6 Related Work
	7 Conclusion
	8 References

